
Simulation of Gate Circuits in the Algebra of Transients

Janusz Brzozowski and Mihaela Gheorghiu

Department of Computer Science, University of Waterloo,
Waterloo, ON, Canada N2L 3G1�

brzozo,mgheorgh � @uwaterloo.ca

Abstract. We study simulation of gate circuits in algebra � recently introduced
by Brzozowski and Ésik. A transient is a word consisting of alternating � s and � s;
it represents a changing signal. In � , gates process transients instead of � s and � s.
Simulation in � is capable of counting signal changes, and detecting hazards. We
study two simulation algorithms: a general one, A, that works with any state, and
Ã, that applies if the initial state is stable. We show that the two algorithms agree
in the stable case. We prove the sufficiency of the simulation: all signal changes
occurring in binary analysis are also predicted by Algorithm A.

1 Introduction

Asynchronous circuits, in contrast to synchronous ones, operate without a clock. In-
terest in asynchronous circuits has grown in recent years [4, 6, 9], because they offer
the potential for higher speed and lower energy consumption, avoid clock distribution
problems, handle metastability safely, and are amenable to modular design.

Despite its advantages, asynchronous design has some problems, among them, haz-
ards. A hazard is an unwanted signal change, caused by stray delays. A hazard may af-
fect the correctness of a computation. Because hazards are important, much research has
been done on their detection. Multiple-valued algebras play an important role here [2].
Recently, Brzozowski and Ésik introduced an infinite-valued algebra � , which sub-
sumes all the previously used algebras [1], and a polynomial-time simulation algorithm
based on � . The algorithm is capable not only of detecting hazards, but also of counting
the number of signal changes in the worst case; this provides an estimate of the energy
consumption.

The purpose of this paper is to compare the Brzozowski-Ésik simulation of a circuit
with the binary analysis of the circuit. We prove that all the changes that occur in the
binary analysis, are also predicted by simulation.

2 The Network Model

The material here is based on [3]. For an integer ���
	 , ���� denotes ����������������� . Boolean
operations AND, OR, and NOT are denoted � , � , and � , respectively. Given a gate
circuit with � inputs and � gates, we associate an input variable �! with each input,"$# � �� , and a state variable %'& with the output of each gate, (# ���) . Input and state
variables take values in the binary domain *,+-�.	/�.�.� . Each state variable % has an
excitation 0 , which is the Boolean function of the corresponding gate.

2

���������� �

Fig. 1. Sample gate circuit

Definition 1. A network is a tuple � +	� * ��
 ��$������� where * is the domain of values,

 + ����� ������� � ��� � , the set of inputs, � + � %���������� � %�� � , the set of state variables with
associated excitations 0���������� ��0�� , and ������
�� �"!$#%�&��� �"! , a set of directed edges.
There is an edge between ' and (if and only if the excitation of (depends on ' . The
network graph is the digraph ��
�#)�$����! . Note that * need not be � 	 � ��� .
Example 1. The circuit of Fig. 1 has input � � , state variables % � � %+*.� %�, , and excitations
0 � + � � � 0-* +-% � � %�, � 0�, + %+* in domain *,+ � 	 � ��� . Its network graph is
shown in Fig. 2.

� � %.� % * % ,

Fig. 2. Network graph for circuit of Fig. 1

A state of � is an � -tuple / of values from * assigned to state variables % � ������� � % � .
A total state is an � �)0 ��! -tuple 1!+32%4�/ of values from * , the � -tuple 2 being the
values of the inputs, and the � -tuple / , the values of state variables. The dot “ 4 ”
separates inputs from state variables.

Each excitation 0 is a function of some inputs � &�5 ������� �'� &�6 #
 , and some state
variables % �5�������� ��% &7 # � , i.e., 0 +98:� � &�5�������� �'� &6 � % ;5 ������� � % <7=!�� where 8?>�*�@BA�C�D
* . We also treat 0 as a function from * � A � into * . Thus, let E0 > * � A � D * be
E0 �F2 4G/�! +H8I�F2 & 5�������� ��2 & 6 ��/ 5 ������� ��/ 7+! � for any 2J4K/ . From now on we write 0 for E0 ;
the meaning is clear from the context.

For any
" # ��� , the value of 0 in total state 2%4�/ is denoted 0 �&2%4�/�! . The tuple

0:�G�F2L4M/�! ������� � 0����F2"4N/�! is denoted by 0L�&2L4N/�! . For any 2L4N/ , we define the set of unstable
state variables as OP�&2%4�/�! + � % RQ / TS+ 0 �&2T4U/�!�� � Thus, 2%4�/ is stable if and only if
O%�&2V4K/�! +HW , i.e., 0L�&2T4=/�! +X/ .

3 Binary Analysis of Networks

In response to changes of its inputs, a circuit passes through a sequence of states
as its internal signals change. By analyzing a circuit we mean exploring all possi-
ble sequences of states. This section describes a formal analysis model introduced by
Muller [10], and later called the General Multiple Winner (GMW) model. Our presen-
tation follows that of [3], but here we refer to the GMW model as binary analysis.

In this section we use the binary domain, * + � 	 � ��� . We describe the behavior of
a network started in a given state with the input kept constant at value 2 # � 	 � ��� � , by
defining a binary relation YRZ on the set � 	 � ��� � of states of � . For any / # � 	/�.�.� � ,

3

/�Y ZK/ , if OP�&2%4�/�! + W , i.e., total state 2P4./ is stable, and /�YRZ=/ � , if O%�F2%4�/�! S+ W , and�
is any nonempty subset of O%�F2%4�/�! , where by / � we mean / with all the variables

in
�

complemented. No other pairs of states are related by YVZ . As usual, we associate
a digraph with the YRZ relation. In examples, we represent tuples without commas or
parentheses, for convenience. Thus � 	/� 	/� 	�! is written as 	 	 	 , etc.

For given 2 # � 	 � ��� � , and / # � 	/�.�.� � we define the set of all states reachable from
/ in relation Y Z as reach ��Y Z �;/�!N! + �K1 Q /�Y��Z 1.� � where Y��Z is the reflexive and transitive
closure of Y Z . We denote by � Z ��/�! the subgraph of � Z corresponding to reach ��Y Z �;/�!N! .

� ���

�����

��� �

� �	�

�����

��� � � � �

� � �

���
�

�����

� �
�

�	� ��	� � � �
�

Fig. 3. Sample �������� graphs for circuit of Fig. 1

Example 2. For the circuit in Fig. 1, graph ��� � 	 	 	�! is shown in Fig. 3 (left), where
unstable variables are underlined. Note that the graph contains no stable states. Graph
�T�K��� � �+! is shown in Fig. 3 (right). Here there is one stable state. To illustrate hazardous
behavior, consider path � � + � � �.� 	 � ����	 	 � . Here %+* changes once from � to 	 , and %K,
does not change. However, along path �-*!+ � � �.�.� ��	/�.��	 	/����	 ��� 	 �.�.� 	.	 � , %K* changes
from � to 	 to � to 	 , and %�, changes from � to 	 to � . If the behavior of � � is the
intended one, then � * violates it. Along � * there are unwanted signal pulses: a � -pulse
in %+* , and a 	 -pulse in %K, . The first pulse is an example of a dynamic hazard, and the
second, of a static hazard. These pulses can introduce errors in the circuit operation.

4 Transients

While binary analysis is an exhaustive analysis of a circuit, it is inefficient, since the
state space is exponential. Simulation using a multi-valued domain is an efficient alter-
native, if not all the information from binary analysis is needed.

The material here is based on [1]. A transient is a nonempty word over � 	/�.�.� in
which no two consecutive symbols are the same. Thus the set of all transients is � +
	 ����	�!��K# ��� 	��K!��K# 	 � ��	�!�� �K# ��� 	��K!���	 � Transients represent waveforms in a natural way, as
shown in Fig. 4. We use boldface symbols to denote transients, tuples of transients, and
functions of transients. For any transient � we denote by � ���G! and � ���G! its first and last
characters, respectively. A transient can be obtained from any nonempty binary word by
contraction, i.e., the elimination of all duplicates immediately following a symbol (e.g.,
the contraction of 	 	 ��	 	 	 � � is 	 ��	 �). For a binary word % we denote by �% the result of
its contraction. For any � ����� # � , we denote by � ��� the concatenation of � and ��� .

4

�����	�
���	���	�

���	���
�	���

Fig. 4. Transients as words for waveforms

The prefix order on � is denoted
�

, and is extended to tuples. For � + ��� � ����������� � !
and � + ��� � ������� ��� � ! in � � , we say that � is a prefix of � and write � � � , if � � � ,
for all

" # � �) .
Extensions of Boolean functions to functions of transients are defined in [1]. Any

Boolean function 8�>�� � D	� is extended to a function
�> � � D � so that, for any
tuple ���$� �������'� �+� ! of transients,
 produces the longest transient when � � ������� � �K� are
applied to the inputs of a gate performing the Boolean function 8 . We give an example
of extended Boolean function next. For more details see [1].

Example 3. Let 8 to be the two-input OR function and
 , its extension. Suppose we
want to compute
 � 	��.� 	 ��	�! . We construct a digraph � � 	��.� 	 ��	$! in which the nodes
consist of all the pairs ��� � � �B! of transients such that ��� � ��� ! � � 	��.� 	 ��	�! , and there is
an edge between any two pairs � ��� � only if � � � � , and � differs from � � in exactly
one coordinate by exactly one letter. The resulting graph is shown in Fig. 5 (left). Also,
for each node ��� ����� ! in the graph we consider as its label the value 8I� � ���G!���� �����&!N! .
This results in a graph of labels, shown in Fig. 5 (right). The value of
 � 	 �.� 	 ��	�! is
the contraction of the label sequence of those paths in the graph of labels that have the
largest number of alternations between 	 and � . Therefore,
 � 	��.� 	 ��	$! + 	���	�� .

Let ���G! and �:���=! denote the number of 	 s and the number of � s in a transient
� , respectively. We denote by � and � the extensions of the Boolean AND and OR
operations, respectively. It is shown in [1] that for any � ��� � # � of length � � ,
����� � + � , where � # � is such that � ���G! + � ����! � � ��� � ! , � ���G! + � ����!�� � ��� �<! ,
and �:���=! +��I����!"0��:��� �&! � � . Similarly, ����� � + � , where � # � is such that
� ���=! + � ����! � � ��� � ! , � ���=! + � ����! � � ��� �&! , and ���G! +� ����!:0� ��� �&! � � . If one
of the arguments is 	 or � the following rules apply:

��� 	 + 	�� � + � � ��� � + ��� � + ���
��� �$+ ��� � + � � ��� 	 + 	�� � + 	 �

The complement � of � # � is obtained by complementing each character of � . For
example, ��	 ��	 + 	 ��	 � .

� �	�! ��	��"
� �# ������$" � �	�! ��	���$"

� �	�! ��$"� �% ��$"
� �# ��	��"

�

�

�

�

�

�

Fig. 5. Graph & � � �(' � � ��� with labels

5

The algebra �,+ � �)� � � � � � � 	/�.�K! , is called the change-counting algebra, and
is a commutative de Morgan bisemigroup [1]. We also refer to � as the algebra of
transients.

We denote by � � � � concatenation followed by contraction, i.e., � � �	� +
�
� � � . The �

operation is associative, and also satisfies for � � ��� � �$� ������� � �K� # � and / # �.	/�.�.� : 1. if
� � � � then / � � � / � � � ; and 2. � � � ����� � � � +

�
� � ������� � .

5 Simulation with Algebra
�

A simulation algorithm using algebra � has been proposed in [1]; it generalizes ternary
simulation [3, 5]. We now give a more general version of the simulation algorithm,
and show how it relates to the original version. This parallels the extension of ternary
simulation from stable initial state to any initial state [3].

Given any circuit, we use two networks: a binary network � + � �.	/�.�.� ��
 ���$���I�
and the transient network �-+ � � ��
 ���$����� having set � of transients as the domain.
The two networks have the same input and state variables, but these variables take
values from different domains. A state of network � is a tuple of transients; the value
of the excitation of a variable is also a transient. Excitations in � are the extensions to
� of the Boolean excitations in � . It is shown in [1] that an extended Boolean function
depends on one of its arguments if and only if the corresponding Boolean function
depends on that argument. Therefore � and � have the same set of edges.

Binary variables, words, tuples and excitations in � are denoted by italic characters
(e.g., % , 0). Transients, tuples of transients, and excitations in � are denoted by boldface
characters (e.g., � , �). We refer to components of a tuple by subscripts (e.g., � , %).

5.1 General Simulation: Algorithm A

We want to record in the value of a variable all the changes in that variable since the start
of the simulation, as dictated by its excitation. For variables that are stable initially, since
the initial state agrees with the initial excitation, the state transient and the excitation
transient will be the same, so at each step we just copy the excitation into the variable.
For example, with initial state 	 and excitation 	 , if the excitation becomes 	 � , we set
the variable to 	�� , and so on. For variables that are initially unstable, we first record the
initial state, and then the excitation. The operator that gives us the desired result in both
cases is � ; thus we have new value + initial value � excitation.

Let 2�4K/ be a (binary) total state of � . Algorithm A is defined as follows:

Algorithm A
� � > +X/��	 > + �
�
���T> +X/ � � �&2V4� � !��
while ������� �����
� � ! do	 > + 	 0 �
�

���T> +X/ � � �&2V4���
� � !��

6

where � is applied to tuples component-wise, i.e., for all � -tuples � ��� of transients,
� � � +�� , where � is such that � + � � � , for all

" # � �) .
Algorithm A produces a sequence � � ��� � ������� �����/������� , where ��� + ����� � �����* ������� ������ ! #

� � , for all
	 � 	 . This sequence can be finite, if we reach �
��� + ����� � � for some	 ��� 	 , or infinite otherwise. For convenience, we sometimes consider the finite se-

quences as being infinite, with �� + ��� � , for all
	 � 	 � .

It is shown in [1] that any extended Boolean function
?> � � D � is monotonic
with respect to the prefix order, i.e., for any � ��� # � � , if � � � , then
 ���I! �
 ����! .

Proposition 1. The sequence resulting from Algorithm A is nondecreasing or mono-
tonic with respect to the prefix order, that is, for all

	 � 	 , �
� � ���+A � .

Proof: Since extended Boolean functions are monotonic with respect to the prefix order,
so are excitations. We proceed by induction on

	
.

Basis,
	 + 	 : � � +H/ � / � � �F2J4
� � ! + � � .

Induction step: ��� +H/ � � �F2J4��� � � ! � / � � �&2J4
���$! + ���KA � . �

For feedback-free circuits, the sequence resulting from Algorithm A is finite. We
can see this if we order the state variables by levels as follows. Level � consists of
all state variables which depend only on external inputs. Level � consists of all state
variables which depend only on variables of level �	� , and on at least one variable of
level � � � . Since the inputs do not change during simulation, level- � variables change
at most once, in the first step of Algorithm A. In general, level-

"
variables change at

most
"

times. Since the number of levels is finite, our claim follows. Thus the running
time of A for feedback-free circuits is polynomial in the number of state variables.

For display reasons, in examples of simulation we write binary states as words, but
during computations they are regarded as tuples.

Example 4. Consider the feedback-free circuit in Fig. 6. The excitations are: �"� +
 * � � * +
 � � �=��� � , + � * � ��� + � * � � , � For the initial state 2"4N/ + � �-4 ��	�� � ,
Algorithm A results in Table 1 (left).

�� �
 �� �

� � N�

Fig. 6. Circuit with finite simulation

Example 5. For circuits with feedback the simulation sequence may be infinite. Con-
sider the circuit with feedback in Fig. 1. The excitation functions are: � � +
 ��� � * +
�=� � � , � � , + � * � We run Algorithm A for this network started in state 2L4N/$+ 	�4 	 	 	 ;
the resulting sequence of states, which is infinite, is illustrated in Table 2.

7

Table 1. Examples of Algorithms A and Ã

� � � � � � ������ ��� �������	�
� � � � � � ��

� � � � � � � � �
�

� � � � � �'� �'� � �
�

� � � � � �'� �'� � � � �'� �
�

� � � � � �'� �'� � �'� � � � �
�

� � � � �� � ��������� � ���	�����
� � � �-� � � ���

� � � � � � � � ��
�

� � � � � � � � � ��
�

� � � � � � � �'� � ��
�

� � � � � � � �'� �'� � ��
�

Table 2. Infinite simulation

� � � � ������ state
� � � � ��

� � � �,� � �
�

� � �!� � � � �
�

� � �!� � � � � �
�

.

5.2 Simulation with Stable Initial State: Algorithm Ã

Algorithm A above makes no assumptions about the starting state 2J4�/ . If the network
starts in a stable total state and the inputs change, then we have a slightly simpler formu-
lation which we call Algorithm Ã; this is the version used in [1]. Assume � is started
in stable total state E2J4=/ and the input tuple changes to 2 .

Algorithm Ã
� + E2 � 2 �
E� � > +X/�	 > + � �
E��� > + � � � 4 E� � !��
while � E����� � E��� � � ! do	 > + 	 0 �
�

E��� > + � � � 4 E���
� � !��

Example 6. We illustrate Algorithm Ã with the network in Fig. 6, started in stable state

E2T4U/ + � � 4 	 	 � � , with the input changing to 2 + ��	 . The result is shown in Table 1
(right).

It is shown in [1] that the sequence of states resulting from Algorithm Ã is nonde-
creasing with respect to the prefix order, i.e., Algorithm Ã is monotonic.

For our next result, we modify the circuit model slightly. For each input �! we add a
delay, called input gate, with output %� and excitation 0 + � . This follows the model
of [3]. The following shows that Algorithms A and Ã are equivalent for any network �
started in a stable state, provided that � contains input-gate variables.

8

Theorem 1. Let � be a network containing input-gate variables. Let E� � � E� � ������� � E���/�������
be the sequence of states produced by Algorithm Ã for � started in the stable (binary)
total state E2J4=/ with the input tuple changing to 2 . Then, for all

	 � 	 , E��� + ���/� where
� � ��� � ������� ����� ������� is the sequence of states produced by Algorithm A for � started in
total state 2V4G/ .
Proof: We prove the theorem by induction on

	
.

Basis,
	 + 	 . Since � � +9/ + E� � , the basis holds.

First step,
	 + � . In states E� � and � � only input-gate variables can be unstable; therefore

only they can change in the first step of Ã, and of A. One easily verifies that E� � + � � .
Induction step. For any

" # ��� , if � is an input-gate variable then �� + � � � � and

E��� + E� � � � , because in both algorithms the input-gate variables do not change after
the first step. By the induction hypothesis, we have �
� + E��� . If � is not an input-gate
variable, then it is initially stable in both algorithms, and its excitation does not depend
on the input tuple, i.e., � �F2�4 �I!!+ � � � 4 �I! , for any (internal) state tuple � . Then
��� + � �F2J4��� � � ! + � N� � 4 E���
� � ! + E��� . Hence E��� + ��� , for all

" # ��� . �

6 Covering of Binary Analysis by Simulation

Given the two networks � and � modeling a gate circuit, we perform the binary anal-
ysis for � and Algorithm A for � , both with the same starting total state 2%4 / . The
binary analysis results in graph ��Z ��/�! . Let the state sequence resulting from Algorithm
A be � � ��� � ������� ����� ������� , where ��� +�� ��� � �����* ������� ������ ! # � � , for all

	 � 	 .
We now show that binary analysis is covered by Algorithm A. Take any path from

the initial state / in graph �VZ �;/�! . Suppose the length of the path is
	

. For each state
variable % we consider the transient that shows the changes of that variable along the
path. We show that this transient is a prefix of the value �
� that variable � takes in the	

-th iteration of Algorithm A.

Example 7. Consider the binary counterpart of the transient network in Fig. 6 with
0 � + �%*.� 0-* + � � � % � � 0�, + %+*�� 0 � + %+* � %�, � In � �� � ��	�� �+! , with the same
initial total state as in Example 4, we find a path � + ��	�� ��� � � � ����	�� � ����	 	.	 � of length	 + �

. If we follow state variable %�, , for example, it changes from � to 	 along this
path, so the corresponding transient is ��	 . The value of �+, in the third step of Algorithm
A is � ,, + ��	�� , which has ��	 as a prefix. In fact, this holds for all variables, since
� ��	/� 	 ��	 � ��	/���+! � ����	 ��	���	/�.��	��.����	 � 	$! .
Definition 2. Let � + % � ����������%�� be a path of length

	 � 	 in �VZ �;/�! . Recall that each
% & #�� Z has the form � % & � ������� ��% & � ! . For any

" # � �) , we denote by ��� the transient�
% � ����� % � , which shows the changes of the

"
-th state variable along path � . We refer to

it as the history of variable % along the path. We also define � � to be
�� , where

� +
0 �F2�4 % � ! 0 �&2�4 % � ! ����� 0 �&2�4 % � ! , and we call it the excitation history of variable % along
path � . The histories of all variables along � constitute tuple ��� + �	�
� � �����������
�� ! . The
histories of all excitations along � form tuple � � + ��� � � ������� �� �� ! .
Note that � � and � � are not always the same. If % is unstable initially, they are obvi-
ously different, since their first characters are different, that is % � S+ 0 �&2V4�% � ! . Even if
the variable is stable initially, ��� and � � can still be different.

9

Example 8. An example of a path in graph �P��+� ��	�� �+! of the previous example, on
which a variable changes fewer times than its excitation is path � + ��	 � ����	�� � �.� 	 	/� ���
where �
�, + � , whereas � �, + ��	 � .

Let ��� be the state produced by Algorithm A after
	

steps, and let � + % � ������� � %��
be a path of length

	 � 	 in � Z ��/�! , with % � +H/ . We prove that ��� � ��� .

Proposition 2. Let ��+ % � ������� ��%�����%��KA � be a path in � Z �;/�! , and let � � + % � ������� � %�� .
Then, �
� � �
�

� � 0L�F2�4.%�� ! .
Proof: For any variable % we have one of the following cases.
Case I, % changes during the transition from %� to %��+A � . Then % must be unstable
in state %�� , i.e., 0 �F2%4 %�� ! S+-%�� , and % �+A � +-0 �&2%4 %��U! , by the definition of binary

analysis. Hence ��� +
�

% � �����'% � % �+A � +
�
% � ����� % � � % �KA � + �
�

�
 � 0 �F2J4.%�� ! �

Case II, % does not change during the transition from %
� to %��+A � . Then % �+A � + %�� ,

by the definition of binary analysis. Then � � +
�

% � ����� % � % �+A � +
�
% � ����� % � + �
�

�
 �

�
�
�
 � 0 �&2J4.%�� ! . Thus, our claim holds. �

Corollary 1. For any path � +-% � ������� ��%��/� %��+A � in � Z ��/�! , with � � +-% � ������� � %�� we
have �
� � % � � � �

�
.

Proof: ��� � �
�
� � 0L�&2T4 %�� ! � � �����K� � % � � 0L�&2T4.% � !N! � 0"�F2%4 % � !N! � ����� ! � 0L�&2T4 %�� ! +

% � � � 0L�&2T4 % � ! � 0"�F2T4 % � ! � ����� � 0L�F2�4.%�� ! ! + % � � � �
�
. �

Proposition 3. For any path � + % � ������� � %�� in � Z ��/�! , � � � � �F2J4 �
� ! .
Proof: Let � & + % � ������� � % & , for all (such that 	 � (� 	

. Then ����� � �
� 5 � ����� �
�
� . Thus 2L4 � ��� � 2L4�� � 5 � ����� � 2L4�� � , which means that 2"4 ��� ����2"4 � � 5 ������� ��2L4�� �
is a subsequence � of nodes on a path � from 2V4	� � � � � ! ������� �	� �� ! +	2T4 % � +	2J4 �
� �
to 2P4 ��� in the graph � �F2%4 ���U! . For any

" # � �) , we consider the labeling of graph
� �&2-4 � � ! with Boolean excitation 0 . Let � be the sequence of labels of � . The sequence
of labels on � is

� + 0 ��&2V4�% � ! � 0 �F2J4�% � !��������'� 0 ��&2J4�%�� ! . Since � is a subsequence of
� ,
� � � �� . By the definition of extended Boolean functions, � �F2%4 �
� ! is the longest

transient obtained by the contraction of the label sequences of paths from 2�4 � ��� to
2T4 �
� in graph � �F2%4 �
� ! . Hence �� � � �F2%4 �
� ! . By the definition of the excitation
history, � � +

� � . It follows that � � � � N�F2T4 �
� ! . �

Theorem 2. For all paths � + % � ������� � % � in � Z ��/�! , with % � +H/ , � � � � � � where � � is
the � 	 0 �K! st state in the sequence resulting from Algorithm A.

Proof: We prove the theorem by induction on
	 � 	 .

Basis,
	 + 	 . We have � + % � +9/$+ � � ; hence �
� + % � + � � , so the claim holds.

Induction hypothesis. The claim holds for some
	 � 	 , i.e., for all paths � of length

	

from / in � Z �;/�! , we have �
� � ��� .
Induction step. Let � + % � ������� � %�� ��%��+A � be a path of length

	 0 � from / in ��Z ��/�! .
Then � + % � ������� � %�� is a path of length

	
, and we have

10

�
� � % � � � � � Cor. 1 �� / � � �&2V4 �
� ! � % � + / and Prop. 3 �� / � � �&2V4����! � induction hypothesis, monotonicity of excitations,

and property of � �
+ ���+A � � definition of Algorithm A � .

�

Corollary 2. If Algorithm A terminates with state �
�

, then for any path � from / in
� Z ��/�! , �
� � �

�
.

Proof: Suppose there exists a path � from / in ��Z �;/�! that satisfies �
� � �
�

 , for some" # ��� . Let
	

be the length of � . If
	 ���

, Theorem 2 shows that � � � ��� . We also
have ��� � �

�
, by Prop. 1. So ��� � �

�
, and in particular ��� � �

�

 , which contradicts
our supposition. If

	 � � , then Theorem 2 states that � � � ��� . By our convention,
��� + �

�
. So, again we have ��� � �

�

 , which is a contradiction. �

7 Conclusions

We have proved that all the changes that occur in binary analysis are also detected by
simulation. In a companion paper [8] we prove a partial converse of this result.

Acknowledgments: This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada under grant No. OGP0000871.

References

1. Brzozowski, J. A., Ésik, Z.: Hazard algebras. Maveric Res. Report 00–2, University of Wa-
terloo, ON, Canada, http://maveric.uwaterloo.ca (2000; revised 2001)

2. Brzozowski, J. A., Ésik, Z., Iland, Y.: Algebras for hazard detection. Proc. 31st Int. Symp.
Multiple-Valued Logic, IEEE Comp. Soc. (2001) 3–12

3. Brzozowski, J. A., Seger, C.-J. H.: Asynchronous circuits. Springer-Verlag (1995)
4. Coates, W. S., Lexau, J. K., Jones, I. W., Fairbanks, S. M., Sutherland, I. E.: A FIFO data

switch design experiment. Proc. ASYNC ’98, IEEE Comp. Soc. (1998) 4–16
5. Eichelberger, E. B.: Hazard detection in combinational and sequential circuits. IBM J. Res.

and Dev. 9 (1965) 90–99
6. Garside, J. D.: AMULET3 revealed. Proc. ASYNC ’99, IEEE Comp. Soc. (1999) 51–59
7. Gheorghiu, M.: Circuit simulation using a hazard algebra. MMath Thesis, Department of

Computer Science, University of Waterloo, Waterloo, ON, Canada (2001)
8. Gheorghiu, M., Brzozowski, J. A.: Feedback-free circuits in the algebra of transients.

Maveric Res. Report 02–3, University of Waterloo, ON, Canada, http://maveric.uwaterloo.ca
(2002)

9. Kessels, J., Marston, P.: Designing asynchronous standby circuits for a low-power pager.
Proc. ASYNC ’97, IEEE Comp. Soc. (1997) 268–278

10. Muller, D. E., Bartky, W. C.: A theory of asynchronous circuits. Proc. Int. Symp. on Theory
of Switching, Annals of Comp. Lab., Harvard University 29 (1959) 204–243

