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Abstract. Trace assertions are abstract specifications of software mod-
ules – “black-box” models of the (finite or infinite) automata represent-
ing the modules. Traces are input words, every state is represented by
a canonical trace, and trace equivalence describes the transitions of the
automaton. Canonical traces and trace equivalence uniquely determine
the automaton. A rewriting system is used to transform any trace to
its canonical form. For modules defined by deterministic automata, we
present a simple algorithm for trace equivalence and the rewriting sys-
tem, once a set of canonical traces has been chosen. Constructing trace
equivalence amounts to finding a set of generators for state equivalence,
where two traces are state-equivalent if they lead to the same state. We
prove that the rewriting system is always confluent, and that it is Noethe-
rian if and only if the set of canonical traces is prefix-continuous. (A set
is prefix-continuous if whenever a word w and a prefix u of w are in the
set, then all the prefixes of w longer than u are also in the set.) We show
that each prefix-continuous canonical set corresponds to a spanning for-
est of the semiautomaton. We derive a complete set of trace assertions
directly from the module’s automaton. Several examples illustrate our
ideas.

1 Introduction

Formal methods are still not universally accepted in the design of commercial
software. On the other hand, “scenarios” or “use cases” have become quite pop-
ular; see, for example [22]. A scenario usually consists of an English description
of a sequence of events specifying a part of the behavior of a software module.
For example, a parking ticket machine might satisfy the following scenario: “If
a dollar is inserted in the coin slot and then the ticket button is pushed, the
machine issues a ticket valid for one hour.”
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Many software modules can be formally specified by automata. The trace
assertion method is based on automata, but is somewhat similar in nature to
the scenario approach, and introduces automata rather indirectly. Thus, instead
of defining the input and output alphabets, state set, transition and output
functions of an automaton, the trace-assertion method first identifies a set of
important traces (sequences of operations), called “canonical,” and then exam-
ines the remaining traces and declares them to be equivalent to the appropriate
canonical traces. Canonical traces are analogous to scenarios in that they pro-
vide a partial description of the automaton. The equivalences supply the missing
transitions. As a separate issue, outputs are added later. The proponents of trace
assertions hope that this approach will gain wider acceptance than the direct
use of automata.

Our work is motivated by a series of papers written by D. Parnas and his
collaborators, and other authors, over the past 25 years. The trace-assertion
method for specifying software modules was introduced in 1977 by Bartussek
and Parnas [1] (this paper was reprinted in 2001 [3], and a slightly modified ver-
sion appeared in 1978 [2]). The method has undergone several changes since the
original paper: see, for instance, [10–13,15, 18, 20, 21] for more details and addi-
tional references. The main inspiration for our work is the 1994 paper by Wang
and Parnas [21]. We generalize, clarify and simplify several concepts presented
there.

We provide a theory of deterministic trace-assertion specifications. Trace as-
sertions are abstract specifications of software modules. For such specifications,
it is assumed that modules are representable by (finite or infinite) automata.
Trace assertions then serve as “black-box” models of the automata. In fact, a
trace-assertion specification is a particular way of defining an automaton. A com-
plete trace-assertion specification consists of six parts: syntax, canonical traces,
trace equivalence, legality, values, and a rewriting system. Traces are sequences
of function calls of the module. The syntax part defines the domains and co-
domains of the functions; a canonical trace is a representative of the set of all
traces leading to the same state of the module; equivalence identifies the traces
leading to the same state; legality distinguishes normal from abnormal sequences
of calls; the “values” part defines the output values produced by certain function
calls; the rewriting system allows us to transform any trace to its canonical form
algorithmically.

In terms of automaton theory, traces are input words. From now on we use
“trace” and “word” interchangeably. Every state is represented by a canonical
word leading to that state, and trace equivalence describes the transitions of
the automaton. We do not restrict the automaton model to be finite, because
no advantage is gained by doing so. Our theory is first developed in terms of
semiautomata (automata without final states and without outputs), because
trace equivalence can be handled conveniently in these more general structures.
To obtain the complete trace-assertion specification we add outputs later.

Any word leading to a state can be chosen as the canonical word of that state.
We show that constructing trace equivalence amounts to finding a set of gener-
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ators for state equivalence, where two words are state-equivalent if they lead to
the same state. We describe a simple algorithm for constructing a set of gener-
ators. We prove that, given a set of canonical words and the trace equivalence,
one can reconstruct the original automaton uniquely up to isomorphism. This
shows that trace-assertion specifications are no more abstract than specifica-
tions by automata. To transform any word to its canonical form algorithmically,
we define a simple rewriting system directly from the generators of the trace
equivalence, and prove that this system is always confluent.

In general, our rewriting system may have infinite derivations. To remedy
this, we impose a condition on the set of canonical words. A set is prefix-
continuous if whenever a word w and a prefix u of w are in the set, then all
the prefixes of w longer than u are also in the set. Prefix-continuous sets include
prefix-closed sets (where every word in the set has all of its prefixes in the set)
and prefix codes (where no word in the set is a prefix of any other word in the
set) as special cases. We prove that the rewriting system is Noetherian if and
only if the set of canonical words is prefix-continuous.

We demonstrate how to derive a complete set of trace assertions directly
from an automaton. Finally, we derive automaton specifications (and hence also
trace-assertion specifications) for several modules, such as stacks, queues, linked
lists and sets.

The remainder of the paper is structured as follows. We give a brief sur-
vey of previous work on trace-assertion specifications in Section 2. Section 3
introduces our terminology and notation. Arbitrary sets of canonical words are
studied in Section 4. Prefix-continuous sets of canonical words are discussed in
Section 5. Our theory is illustrated in Section 6 with the simple example of a
unary counter. A more complete and more complex example, that of a stack, is
given in Section 7, where the “values” section of the specification is introduced
to handle outputs. In Section 8 we discuss the set module, which shows that the
trace-assertion method can be awkward in some applications. A bounded stack
is treated in Section 9, and Section 10 concludes the paper. Four somewhat more
challenging examples are presented in the appendices.

2 Background

The explicit goal of [1] was to make the specification of software modules in-
dependent of implementations, that is, to abstract from implementation and
operational issues. Bartussek and Parnas [1] use the concepts of syntax, legality,
equivalence, and values. Canonical traces are not used, but the concept appears
implicitly. It was noted there that it would be important for the formal verifica-
tion of module correctness that equivalence and legality be recursive. However,
using the approach proposed in [1] and several subsequent papers [2, 15, 18], it is
awkward to prove some equivalences, because the definitions of equivalence and
legality depend on each other, and the definition of equivalence, if used directly,
involves an infinite test.
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In 1984, McLean provided a model-theoretic framework for the trace spec-
ification method [15]. It is based on first-order logic with equality, and with
equivalence and legality defined as special predicates. Soundness and complete-
ness (in the sense of logic) are proved, that is, any statement about traces which
has a formal proof is semantically true and every semantically true statement
has a formal proof. The definitions of equivalence and legality still depend on
each other, and equivalence is still defined using an infinite test. It is assumed
that the empty trace is legal, any prefix of a legal trace is legal, and only legal
traces can return values.

In a 1992 paper [16], McLean retains the definitions of equivalence and le-
gality mentioned above, but points out that the definition of equivalence implies
that equivalence is a right congruence, and assumes that the empty trace is legal.
The right congruence property permits the proofs of equivalence of traces to be
more direct. We show that this property is sufficient, that is, the dependence of
equivalence on legality is unnecessary.

The interdependence of the definitions of equivalence and legality is removed
in the 1994 paper by Wang and Parnas [21] (see also [18]). They propose to
identify canonical traces as representatives of equivalence classes and a reduc-

tion function which will transform any trace to its canonical representative. In
that paper explicit reference is made to a state machine (deterministic and fi-
nite) representing the software module, and four assumptions, missing in the
earlier work, are introduced, namely: (1) the empty trace must be canonical; (2)
equivalence must be a right congruence; (3) the reduction function, when applied
to a canonical trace, returns that same trace; (4) reduction of a long trace can
be performed by first reducing a prefix of the trace and then reducing the result
with the remainder of the trace appended. No specific rule for the choice of the
canonical traces is given in [21] except assumption (1) above. We show below
that assumptions (1), (3) and (4) are not necessary.

To prove trace equivalence, [21] uses term rewriting systems. Given a trace,
one applies term rewriting rules to it to obtain the equivalent canonical trace.
This process is not necessarily convergent. A sufficient condition for convergence
is that the rewriting system be confluent and Noetherian. Wang and Parnas use
a heuristic called smart rewriting which leads to the canonical trace in many, but
not all, cases. Term rewriting introduces an unmanageable complexity into the
problem; this can be avoided by string rewriting over an infinite, but recursively
enumerable alphabet. In this paper we use only string rewriting, and call it
simply rewriting. We show below that, if string rewriting is used, confluence
always holds. Moreover, the rewriting system is Noetherian if and only if the set
of canonical traces is prefix-continuous. The work in [21] is restricted to finite
automata, whereas our methods apply to both finite and infinite automata.

After [21], all publications on the trace assertion method seem to rely on an
unexplained choice of the canonical traces. Because the “natural” or “intuitive”
choice often happens to lead to a provably confluent and Noetherian rewriting
system, this approach usually works.
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The work reported in [12] focusses to a large extent on the implementation of
the trace assertion method including its syntactic representation. In particular,
it provides a comprehensive view of the field as of 1997. In the definition of
equivalence, this work deviates from the original proposal of [1] in that two
equivalences are considered – a “true” one (called reduction equivalence) and
an “operational” one (called behavioural equivalence); this distinction is needed
only because the choice of canonical traces is arbitrary and, therefore, proving
trace equivalence may not terminate. In [12], one also has two notions of legality;
while this may be useful for applications, it does not add a new feature to the
mathematical theory.

In [13], among other items, the problems of non-deterministic modules and
their ramifications are investigated. We do not consider non-deterministic spec-
ifications in this paper.

The trace assertion method has also been used for time-dependent systems
like communication protocols [10]. Timing conditions were not a part of the
original proposal in [1]. The work in [10, 11] proposes a heuristic for chosing
canonical words. We prove in this paper that this heuristic is indeed appropriate
by providing a mathematical foundation for it. In [17], trace assertion methods
are used to study security issues in softwares systems.

For a survey of formal specification methods for software modules see [20].

3 Terminology and Notation

We denote by Z and P the sets of integers and nonnegative integers, respectively.
Purely for convenience, we use integers as the data that is stored in the various
modules we describe; there is no loss of generality in this assumption. If Σ is an
alphabet (finite or infinite), then Σ+ and Σ∗ denote the free semigroup and the
free monoid, respectively, generated by Σ. The empty word is ε. For w ∈ Σ∗,
|w| denotes the length of w. If w = uv, for some u, v ∈ Σ∗, then u is a prefix of
w. A set X ⊆ Σ∗ is a prefix code if no word of X is the prefix of any other word
of X . Note that, with this definition, the set {ε} is a prefix code, in contrast
to most of the commonly used definitions. A set X is prefix-closed if, for any
w ∈ X , every prefix of w is also in X . A set X is prefix-continuous if, whenever
x = uav is in X , a ∈ Σ, then u ∈ X implies ua ∈ X . Note that both prefix
codes and prefix-closed sets are prefix-continuous.

3.1 Semiautomata and Equivalences

By a deterministic initialized semiautomaton, or simply semiautomaton, we
mean a tuple A = (Σ, Q, δ, qε), where Σ is a nonempty input alphabet, Q is
a nonempty set of states, δ : Q × Σ → Q is the transition function, and qε ∈ Q

is the initial state. In general, we do not assume that Σ and Q are finite. As
usual, we extend the transition function to words by defining δ(q, ε) = q, for all
q ∈ Q, and δ(q, wa) = δ(δ(q, w), a)). A semiautomaton is connected if every state
is reachable from the initial state. We consider only connected semiautomata.
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Thus, for every q ∈ Q, there exists w ∈ Σ∗ such that δ(qε, w) = q. For any
w ∈ Σ∗, we define qw = δ(qε, w).

For a semiautomaton S = (Σ, Q, δ, qε), the state-equivalence relation ≡δ on
Σ∗ is defined by

w ≡δ w′ ⇔ qw = qw′ , (1)

for w, w′ ∈ Σ∗. Note that ≡δ is an equivalence relation, and also a right congru-

ence, that is, for all x ∈ Σ∗,

w ≡δ w′ ⇒ wx ≡δ w′x. (2)

Given any right congruence ∼ on Σ∗, we can construct a semiautomaton
S∼ = (Σ, Q∼, δ∼, q∼), as follows. For w ∈ Σ∗, let [w]∼ be the equivalence class
of w. Let Q∼ be the set of equivalence classes of ∼, let q∼ = [ε]∼, and, for a ∈ Σ,
let δ([w]∼, a) = [wa]∼. Note that S∼ is connected.

It is well-known that the semiautomaton S∼ is isomorphic to S when ∼ = ≡δ,
with the isomorphism mapping [w]∼ onto qw; see [8].

3.2 Automata

By a deterministic automaton, we mean a tuple A = (Σ, Q, δ, qε, F ), where
(Σ, Q, δ, qε) is a semiautomaton, and F ⊆ Q is the set of final states. A word
w ∈ Σ∗ is accepted by A if and only if qw ∈ F . The language accepted by A is
L(A) = {w | qw ∈ F}.

By a generalized Mealy automaton, or simply automaton, we mean a deter-
ministic automaton M with an output alphabet and an output function. More
precisely, M = (Σ, Q, δ, qε, F, Ω, ν), where (Σ, Q, δ, qε, F ) is a deterministic au-
tomaton, Ω is the output alphabet, and ν : Q × Σ → Ω is a partial function
called the output function. Note that a deterministic automaton is a generalized
Mealy automaton without outputs, and a generalized Mealy automaton is a nor-
mal Mealy automaton with accepting states. As before, L(M) = {w | qw ∈ F}.

If f and g are partial functions, by f(x) = g(y) we mean that either both
values are undefined, or they are defined and equal. The partial function ν :
Q×Σ → Ω uniquely determines a partial function ν ′ : Σ+ → Ω as follows: For
w ∈ Σ∗ and a ∈ Σ, ν′(wa) = ν(qw, a). In the sequel, we refer to ν ′ simply as ν.

The generalized Nerode equivalence relation ≡M on Σ∗ is defined as follows:
for w, w′ ∈ Σ∗, w ≡M w′ if and only if

∀u ∈ Σ∗, ∀a ∈ Σ, wu ∈ L(M) ⇔ w′u ∈ L(M) ∧ ν(wua) = ν(w′ua). (3)

Note that the following always holds: w ≡δ w′ ⇒ w ≡M w′. An automaton M

is reduced with respect to the equivalence ≡M if and only if w ≡M w′ ⇒ w ≡δ w′.

Thus, in a reduced automaton we always have ≡M = ≡δ.

In some of the literature on trace assertions the generalized Nerode equiva-
lence is referred to as observational equivalence.

For additional material on automata, see, for example, [8, 14, 19].
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3.3 Rewriting Systems

In this paper we are concerned with very special rewriting systems. More infor-
mation about general rewriting systems can be found in [4].

Let Σ be an alphabet (finite or infinite). A rewriting system over Σ consists
of a set T ⊆ Σ∗ × Σ∗ of transformations or rules . A transformation (u, v) ∈ T

is written as u |= v. Then |=∗ is the reflexive and transitive closure of |=. Thus,
w |=∗ w′ if and only if w = w0 |= w1 |= w2 |= · · · |= wn = w′ for some n, and
n is the length of this derivation of w′ from w. In the special cases considered
in this paper, the transformations have the pattern ux |= vx, where u, v ∈ Σ∗

are specific words and x is an arbitrary word in Σ∗. Systems with this type
of rules are known as regular canonical systems [5, 6], where “canonical” is a
term unrelated to our subsequent usage of the term “canonical.” Finite regular
canonical systems generate precisely the regular languages and have been studied
in detail by Büchi [5, 6]. These systems are equivalent to expansive systems in
which |u| ≤ |v|, whereas our systems do not have this property. In fact, in the
rewriting systems that we propose for use with trace-assertion specifications,
only a finite number of words can be derived from any given word. The second
important difference between our work and that of [5, 6] is that we have an
infinite number of rules, in general.

A rewriting system is confluent if, for any w, w1, w2 ∈ Σ∗ with w |=∗ w1 and
w |=∗ w2, there is w′ ∈ Σ∗ such that w1 |=∗ w′ and w2 |=∗ w′. It is Noetherian if
there is no word w from which a derivation of infinite length exists. A confluent
Noetherian system has two important properties:

1. For every word w ∈ Σ∗ there is a unique word τ(w), such that, for any
u ∈ Σ∗ with w |=∗ u, one has u |=∗ τ(w) and there is no word v ∈ Σ∗ with
τ(w) |= v.

2. |=∗ defines an equivalence ≡T as follows: w ≡T w′ if and only if τ(w) =
τ(w′).

Thus, for an effectively defined confluent Noetherian system, one can compute
τ(w) for every word w, and so decide ≡T-equivalence of words.

4 Arbitrary Sets of Canonical Words

In this section we make no assumptions about the nature of the set of canonical
words. First we present a simple algorithm for finding generators for the state-
equivalence relation of a given semiautomaton. Directly from the generators,
we determine a rewriting system which transforms any word to its canonical
representative. However, this system may have infinite derivations, a problem
which is addressed in Section 5.

Recall that we are dealing with connected semiautomata. Let S = (Σ, Q, δ, qε)
be a semiautomaton, and χ : Q → Σ∗, an arbitrary mapping assigning to state q

a word χ(q) such that δ(qε, χ(q)) = q. By definition χ is injective. Unless stated

otherwise, we assume that χ has been selected. For w ∈ Σ∗, we call the word
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χ(qw) the canonical word of state qw, and the canonical representative of word
w. Let the set of canonical words be X.

Definition 1. Relation ≡ on Σ∗ is the smallest right congruence containing the

set Ĝ = G ∪ {(ε, χ(qε))}, where G is the set of all ordered pairs (wa, χ(qwa)),
with w ∈ X, a ∈ Σ, and wa 6∈ X.

We refer to the pairs in G as basic equivalences . Note that the pairs are
ordered for reasons that will become clear later. The number of basic equivalences
is infinite in general; it is finite when Q and Σ are finite. In the sequel, we write
the pairs in G as equivalences, that is, wa ≡ χ(qwa); moreover, we label the
pairs by E1,E2, . . .

For finite semiautomata, we can calculate the number of equations in G as
follows.

Proposition 1. Let S be a finite semiautomaton with n states and k input

letters, and let X be a set of canonical words for S. Let n0 be the number of

words w ∈ X such that w = ua with a ∈ Σ and u ∈ X. Then the number of

equations in G is nk − n0.

Proof. Each equation in G corresponds to a distinct transition of S. There is a
total of nk transitions, since there are k transitions out of each state. If u is a
canonical word, transitions of the form δ(qu, a) = qua, where ua is canonical do
not contribute to G. The number of such transitions is n0. Every transition in
which ua is not canonical contributes one equation to G. ut

Note that 0 ≤ n0 ≤ n − 1. If X is a prefix code, then n0 = 0. At the other
extreme, if X is prefix-closed, then n0 = n − 1.

Lemma 1. ≡ ⊆ ≡δ.

Proof. By the construction of Ĝ, the words in each pair of Ĝ lead to the same
state, that is, Ĝ ⊆ ≡δ. By right congruence of ≡δ, the claim follows. ut

We show later that the converse containment also holds.

We now introduce a rewriting system T consisting of basic transformations

defined as follows: If Ei w ≡ w′ is a pair in G, then Ti wx |= w′x is the
corresponding basic transformation. In these transformations, w and w′ are fixed
words and x is any word.

Lemma 2. For all w, w′ ∈ Σ∗, w |=∗ w′ implies w ≡ w′ and therefore w ≡δ w′.

Proof. By definition, each transformation preserves ≡, and ≡ is transitive. By
Lemma 1, each transformation also preserves the state. ut
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Lemma 3. For w ∈ Σ∗, the following hold:

1. If no prefix of w is canonical, then w |=∗ w′ implies w′ = w.

2. If w has a canonical prefix and w |=∗ w′, then w′ has a canonical prefix.

3. w |=∗ χ(qw) if and only if w has a canonical prefix.

Proof. Suppose no prefix of w is canonical. Then no rule applies to w, because
all the rules are of the form ua ≡ χ(qua), where u is canonical. Consequently, w

can only derive itself, and it can do so, because |=∗ is reflexive.
For the second claim, suppose w has a canonical prefix. If w = w′, the claim

holds. If w |= w′, then w has the form w = uav, where u, v ∈ Σ∗, a ∈ Σ, u is
canonical and ua is not canonical. Then w′ = χ(qua)v, where χ(qua) is canonical.
Now the claim follows by transitivity.

For the third claim, suppose that w has a canonical prefix. We show by
induction on the length of w that w |=∗ χ(qw). If w = ε, then w can only have
one canonical prefix, namely itself. Thus ε |=∗ ε = χ(qε), since |=∗ is reflexive;
hence the claim holds for the basis case. Now suppose that every word of length
less than or equal to n that has a canonical prefix satisfies the claim. Consider
w = ua with |u| = n and a ∈ Σ, where w has a canonical prefix. If w itself is
canonical, then w |=∗ w = χ(qw). Otherwise, we know that u has a canonical
prefix. By the induction assumption, u |=∗ χ(qu), and so w = ua |=∗ χ(qu)a. If
χ(qu)a is canonical, then χ(qu)a = χ(qua) = χ(qw), and w |=∗ χ(qw). Otherwise,
χ(qu)a |= χ(qua) is a rule in T, and w = ua |=∗ χ(qu)a |= χ(qua).

Conversely, if w does not have a canonical prefix, then it can only derive
itself. Since w is not canonical, w 6= χ(qw). Therefore w cannot derive χ(qw). ut

1

q0qε

q1

0

0
1

0, 1

Fig. 1. Semiautomaton S1

Example 1. Consider the semiautomaton of Fig. 1. The initial state is indicated
by an incoming arrow, and each transition between two states is labelled by the
input causing the transition.

Suppose χ(qε) = ε, χ(q0) = 01, and χ(q1) = 1. Then we have the following
basic equivalences and corresponding basic transformations for all x ∈ Σ∗:

E1 0 ≡ 01, E2 10 ≡ 1, E3 11 ≡ 1, E4 010 ≡ ε, E5 011 ≡ 01.

T1 0x |= 01x, T2 10x |= 1x, T3 11x |= 1x, T4 010x |= x, T5 011x |= 01x.
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On the other hand, let χ(qε) = 00, χ(q0) = 0, and χ(q1) = 1. Then we have
the following:

E1 01 ≡ 0, E2 10 ≡ 1, E3 11 ≡ 1, E4 000 ≡ 0, E5 001 ≡ 1.

T1 01x |= 0x, T2 10x |= 1x, T3 11x |= 1x, T4 000x |= 0x, T5 001x |= 1x.

Note that ε cannot derive χ(qε) = 00; this illustrates Lemma 3 (3). ut

Theorem 1. The rewriting system T of basic transformations is confluent.

Proof. Suppose w ∈ Σ∗. If w has no canonical prefix, then w can only derive
itself, by Lemma 3 (1). Hence w cannot possibly contradict the confluence prop-
erty. On the other hand, if w does possess a canonical prefix, and w |=∗ w1 and
w |=∗ w2, then w1 and w2 also have canonical prefixes, by Lemma 3 (2). By
Lemma 3 (3), w1 |=∗ χ(qw1

), and w2 |=∗ χ(qw2
). By Lemma 2, qw = qw1

= qw2
.

Hence w1 |=∗ χ(qw1
) = χ(qw), w2 |=∗ χ(qw2

) = χ(qw), and T is confluent. ut

Definition 2. Given a set X of canonical words, we define the following subsets:

– W = Σ∗ \XΣ∗ is the set of acanonical words.

– X0 = X \XΣ+ is the set of minimal canonical words.

– Y = X0Σ
+ is the set of post-canonical words.

Set W consists of all the words that do not have a canonical prefix; clearly,
W is prefix-closed. Set X0 is the set of canonical words w such that w has no
canonical prefix other than w. This set is a prefix code. Set Y is the set of all
words w such that w has at least one canonical prefix and is not in X0. Note that
both Y and X0 ∪Y are prefix-continuous. The triple (W,X0,Y) is a partition
of Σ∗. In general, all three sets may be infinite.

Theorem 2. ≡ = ≡δ.

Proof. By Lemma 1, ≡ ⊆ ≡δ. To prove the converse, we show that qw = qw′

implies w ≡ w′, for all w, w′ ∈ Σ∗. We do this by showing that each word w

is equivalent to its canonical representative. From qw = qw′ it then follows that
w ≡ χ(qw) = χ(qw′) ≡ w′.

We first claim that each acanonical word is equivalent to its canonical rep-
resentative. If w is acanonical, then ε is also acanonical. Since the pair (ε, χ(qε))

is in Ĝ, ε ≡ χ(qε). So the claim holds for the acanonical word of length 0. Now
suppose that the claim holds for all acanonical words of length less than or equal
to h, h ≥ 0. Consider acanonical wa, where |w| = h, and a ∈ Σ. By the induction
hypothesis, w ≡ χ(qw). Since ≡ is a right congruence, we have wa ≡ χ(qw)a.
If χ(qw)a is canonical, then χ(qw)a = χ(qwa), and wa ≡ χ(qwa). Otherwise, by
construction of G, the pair (χ(qw)a, χ(qwa)) is in G, and our claim follows by
transitivity of ≡.

Next, consider a word w in X0 ∪ Y. By Lemma 3 (3), w |=∗ χ(qw). By
Lemma 2, w ≡ χ(qw). This completes the proof. ut

It is a disadvantage of the rewriting system T that an acanonical word cannot
derive its canonical representative. To remedy this, we augment T as follows:
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Definition 3. T̂ = T ∪ {w |= χ(qε)w | w ∈ W}.

We call the added rules acanonical . Note that acanonical rule w |= χ(qε)w can
be applied only to the acanonical word w, and to no other word. After this rule
is applied, the result is a post-canonical word. By Lemma 3 (2), no acanonical
rule is applicable after the first step.

Theorem 3. Every w ∈ Σ∗ derives its canonical representative χ(qw) in T̂,

and T̂ is confluent.

Proof. By Lemma 3 (3), the first claim is true for all post-canonical and canonical
words. Now consider an acanonical word w. If w = ε, then ε |= χ(qε)ε = χ(qε)

in T̂. Now suppose that w 6= ε. By using the rule w |= χ(qε)w, we convert
the acanonical word w to the post-canonical word χ(qε)w, which then derives
in T the canonical representative χ(qχ(qε)w) of χ(qε)w. Thus w |=∗ χ(qχ(qε)w)

in T̂. Since ε ≡ χ(qε), we have w ≡ χ(qε)w, and qw = qχ(qε)w. Hence χ(qw) =

χ(qχ(qε)w), and so w |=∗ χ(qw) in T̂.
For the second claim, if a derivation starts with an acanonical word w, only

the rule w |= χ(qε)w is applicable. The resulting word χ(qε)w is post-canonical,
and only the rules of T apply to it. In view of Theorem 1, this derivation, like any
derivation starting with a post-canonical word, cannot violate confluence. ut

Theorem 4. For any w, w′ ∈ Σ∗, we have χ(qw) = χ(qw′) if and only if w ≡ w′.

Proof. Suppose χ(qw) = χ(qw′). Since χ is injective, qw = qw′ . By Theorem 2,
w ≡ w′. Conversely, if w ≡ w′, then qw = qw′ . Hence χ(qw) = χ(qw′). ut

One can reconstruct a semiautomaton from its canonical words and equiv-
alences. In fact, let S = (Σ, Q, δ, qε) be a semiautomaton, let X be a set of

canonical words, and let Ĝ be the set of equivalences derived from S. Let
SX = (Σ,X, δX, χ(qε)), where, for all w ∈ X, a ∈ Σ, δX(w, a) = wa if wa ∈ X,
and δ(w, a) = χ(qwa), if (wa, χ(qwa)) ∈ G.

Proposition 2. The semiautomata S = (Σ, Q, δ, qε) and SX = (Σ,X, δX, χ(qε))
are isomorphic, with the isomorphism mapping state q ∈ Q to canonical word

χ(q) ∈ X.

Proof. By Theorem 2, the right congruence generated by Ĝ is precisely ≡δ. ut

In summary, the information contained in a specification by canonical words
and equivalences is precisely the same as that in the semiautomaton in which
the canonical words have been selected. Consequently, one can view the semi-
automaton as the specification, and the various sets of canonical words and
the corresponding equivalences as implementations , in the following sense. In
a specification by a semiautomaton, the state labels can be picked arbitrarily,
and changed at will, without affecting the semiautomaton. In a specification by
canonical words and equivalences one makes a commitment to a particular set
of canonical words.
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All the results of this section hold for arbitrary canonical sets. Equivalence of
two words w and w′ is provable in the following sense. By Theorem 3, there exist
(finite) derivations w |=∗ χ(qw) and w′ |=∗ χ(qw′). By Theorem 4, w ≡ w′ if and
only if χ(qw) = χ(qw′). However, we still have the problem that the rewriting
system may permit infinite derivations. This problem is addressed in the next
section.

5 Prefix-Continuous Sets of Canonical Words

We now show that, if X is prefix-continuous, the process of reducing a word to
its canonical representative by a derivation in T̂ is deterministic. Equivalence of
two words is then proved by reducing them to their canonical representatives,
and comparing the representatives. Without prefix-continuity, however, T̂ may
allow infinite derivations, as in the next example.

Example 2. Return to the semiautomaton of Fig. 1, with χ(qε) = ε, χ(q0) = 01,
and χ(q1) = 1, and the corresponding rules:

T1 0x |= 01x, T2 10x |= 1x, T3 11x |= 1x, T4 010x |= x, T5 011x |= 01x.

We have the following derivation starting at 0 and leading to its canonical
representative:

0
T1

|= 01.

Note, however, that rule T1 can be applied repeatedly, leading to the derivation

0
T1

|= 01
T1

|= 011
T1

|= 0111
T1

|= . . . ,

which never terminates. There is yet another derivation

0
T1

|= 01
T1

|= 011
T5

|= 01
T1

|= 011
T5

|= 01 . . . ,

which is also infinite. ut

We now overcome the problem of infinite derivations by adding the condition
of prefix-continuity.

Lemma 4. If X is prefix-continuous, the set L of all left-hand sides of the gen-

erating equivalences in G is a prefix code. If X is finite, the converse also holds.

Proof. Suppose there exist words w, w′ ∈ X and letters a, a′ ∈ Σ, such that wa

and w′a′ in L, wa 6= w′a′, and wa is a prefix of w′a′. Then wa is a prefix of w′.
But then, wa must be canonical, since w and w′ are canonical, w is a prefix of
w′, and X is prefix-continuous. This contradicts the fact that wa is the left-hand
side of an equivalence. Hence L is a prefix code.

Conversely, suppose that X is finite but not prefix-continuous, and L is a
prefix code. Then there exists w = uav ∈ X such that u ∈ X, and ua 6∈
X. Consider the infinite set of words wΣ∗. Since X is finite, all these words
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cannot be canonical. Hence there exists some extension wxb of w such that wx

is canonical and wxb is not. Therefore G contains the equivalences ua ≡ χ(qua)
and uaxb ≡ χ(quaxb), showing that ua, uaxb ∈ L. Therefore L cannot be a prefix
code. ut

The next example shows that the converse of Lemma 4 does not hold in
general.

Example 3. In the semiautomaton of Fig. 2, the states are labeled with their
canonical representatives. From state 00 on to the right the semiautomaton
consists of an infinite binary tree. The set of canonical words is {ε, 1} ∪ 00Σ∗,
which is not prefix continuous. The set of basic equivalences is {0 ≡ 1, 10 ≡
00, 11 ≡ 00}. The set L = {0, 10, 11} of left-hand sides is a prefix code. ut

0011

0, 10, 1
00ε 1

1

1

0

0

0

1

000

001

0000

0001

0010

Fig. 2. Semiautomaton illustrating that the converse of Lemma 4 is false

Lemma 5. At most one rule of T̂ applies to any word if and only if L is a prefix

code.

Proof. If w is acanonical, the acanonical rule w |= χ(qw) is the only rule that

applies. If w is minimal canonical, then no rule of T̂ applies to w. If w is post-
canonical, then only the rules of T can be applicable. If L is a prefix code, at
most one rule applies.

Conversely, if L is not a prefix code, then there exists a post-canonical word
to which two rules apply. ut

Lemma 6. If X is prefix-continuous and w ∈ X, no rule of T̂ applies to w.

Proof. As X is prefix-continuous, w cannot have a canonical prefix u and a non-
canonical prefix ua. Hence, by the definition of T, no prefix of w is in L, and no
rule applies. Also, no acanonical rule can apply to w ∈ X. ut

Theorem 5. The rewriting system T̂ is Noetherian if and only if the set X of

canonical words is prefix-continuous.
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Proof. Suppose X is prefix-continuous. By Lemma 4, L is a prefix code. By
Lemma 5, at most one rule applies to any word. Hence the rewriting process is
deterministic. By Theorem 3, each word derives its canonical representative, from
which no further derivation is possible, by Lemma 6. Therefore T̂ is Noetherian.

Conversely, suppose that X is not prefix-continuous. Then there exists x =
uav ∈ X such that u ∈ X, but ua 6∈ X. Therefore (ua, χ(qua)) ∈ G, and
x = uav |= χ(qua)v. By Lemma 2, x and χ(qua)v lead to the same state. By
Lemma 3 (3), χ(qua)v |=∗ χ(qx) = x. Thus x |= χ(qua)v |=∗ x, and the rewriting
system is not Noetherian. ut

Theorem 6. If X is prefix-continuous, then Ĝ is irredundant in the following

sense:

– If ε 6∈ X, then G does not generate ≡δ.

– For any pair p = (ua, χ(qua)) ∈ G, the set Ĝ \ p does not generate ≡δ.

Proof. Removing a pair from Ĝ is equivalent to removing the corresponding rule
from T̂.

If ε 6∈ X and (ε, χ(qε)) is removed, then the equivalence class of ≡ containing
ε must be a singleton, since ε cannot appear on either side of any rule in T,
and the equivalence ε ≡ χ(qε) cannot be derived from any other equivalence by
applying the right-congruence property.

Now suppose that (ua, χ(qua)) is removed from G. By Lemma 6, no rule
applies to χ(qua). On the other hand, ua cannot appear as either side of any

other pair in G. By Lemma 5, at most one rule of T̂ applies to any word. Since
the only rule applicable to ua has been removed, nothing else is applicable. Hence
ua and χ(qua) must be in different equivalence classes. ut

The next example shows that the theorem does not hold in general.

Example 4. Consider the semiautomaton of Fig. 3, where the canonical traces
are shown as state labels. Here, X = {ε, 1, 00, 100} is not prefix-continuous. The
set of basic equivalences is

{0 ≡ 1, 10 ≡ 00, 11 ≡ 00, 000 ≡ 100, 001 ≡ 100, 1000 ≡ 100, 1001 ≡ 100}.

The equivalence 0 ≡ 1 implies 000 ≡ 100 by right congruence. Hence 000 ≡ 100
is redundant. ut

0, 1
0, 1 0, 10, 1

00 100ε 1

Fig. 3. Semiautomaton with redundant equivalence

Prefix-continuous canonical sets can be found with the aid of certain graph-
theoretic concepts. Recall that a directed graph is a pair G = (V, E), where V
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is the set of vertices of G and E ⊆ V × V is the set of (directed) edges of G.
A spanning forest of a directed graph G = (V, E) is a set of pairwise disjoint
trees, such that V is the union of all the vertices in the trees. A spanning tree is
a spanning forest consisting of a single tree.

To find a prefix-continuous canonical set for a semiautomaton S, we can
use a spanning forest. Given such a forest of disjoint trees, for the root r of a
tree, choose an arbitrary word wr leading to state r from the initial state of S.
Proceeding by induction, if state q has been assigned word wq and state q′ is a
child of q reached from q by applying input a, then state q′ is assigned word wqa.
In this way we associate a word with each state of S. The set of these words is
then the canonical set for S, and it is prefix-continuous.

Example 5. Consider the semiautomaton of Fig. 1, and the forest of three one-
vertex trees {qε}, {q0} and {q1}. We can choose 00, 01, and 1 for the roots {qε},
{q0} and {q1}, respectively, resulting in the set {00, 01, 1} of canonical words.
This set is a prefix code. The acanonical words are ε and 0, and the set of
post-canonical words is {00, 01, 1}Σ+.

On the other hand, we can choose the trees with vertices {q1} and {qε, q0}.
If we pick q1 and q0 as roots, and assign 1 to q1, and 0 to q0, then qε is assigned
00, and X = {1, 0, 00}.

We can also choose a single tree with vertices {qε, q0, q1} rooted at q0. If we
assign 0 to the root, then qε and q1 are assigned 00 and 001, respectively. ut

Conversely, given a prefix-continuous canonical set X, we can construct a
spanning forest for S. The states reached from the initial state by the minimal
canonical words are the roots of the forest. Continuing by induction, if word
u ∈ X corresponds to state q, and if a ∈ Σ and ua ∈ X, then qua is a child of q

under input a. Thus to each word in X we associate a vertex in the forest; this
is possible because X is prefix-continuous.

The family of prefix-continuous canonical sets contains two extreme special
cases: prefix-closed sets and prefix codes. Prefix-closed sets are widely applicable,
as our later examples show.

To find a prefix-closed set of canonical words we can use a spanning tree of
the state graph of the semiautomaton S, with qε as root, and χ(qε) = ε.

Example 6. Consider the semiautomaton S2 of Fig. 4. We show three spanning
trees for S2. The basic equivalences corresponding to the three spanning trees
are, by rows,

E1 01 ≡ 1, E2 10 ≡ 00, E3 11 ≡ 1, E4 000 ≡ 1, E5 001 ≡ 0.

E1 1 ≡ 01, E2 00 ≡ 010, E3 011 ≡ 01, E4 0100 ≡ 01, E5 0101 ≡ 0.

E1 00 ≡ 10, E2 01 ≡ 1, E3 11 ≡ 1, E4 100 ≡ 1, E5 101 ≡ 0.

Note that all three spanning trees define the same number of basic equivalences,
as guaranteed by Proposition 1. ut

Our next example illustrates the usefulness of prefix codes as canonical sets.
A similar example was suggested to us by David Parnas; the specific semiau-
tomaton we use here is its simplified and modified version.
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0

q1qε

q0 q2

0 1 0

0

1

1

0

1

0

0

0

0

0

1

1 1

Fig. 4. Semiautomaton S2 and spanning trees

1

0 0
01

1

0

1

0

y2

x

y1

11

10

01

00

0

Fig. 5. 2-bit shift register

Example 7. Consider the 2-bit shift register of Fig. 5, started in state (y1, y2) =
(0, 0), with binary input x. The register contents are shifted to the left, with
the value of x shifted to y2 and the value of y2 shifted to y1. Assume that the
shifts occur at integral values of time: 1, 2, . . . t, . . . Thus, at time t + 1, we have
y2(t+1) = x(t) and y1(t+1) = y2(t). The semiautomaton of the shift register is
shown in the figure, with parentheses and commas omitted from the state tuples
for simplicity.

A possible representation for the states of the register is shown in the figure,
where each state represents the register contents. The set of basic equivalences
is:

{000 ≡ 00, 001 ≡ 01, 010 ≡ 10, 011 ≡ 11, 110 ≡ 10, 111 ≡ 11, 100 ≡ 00, 101 ≡ 01}.

The set {00, 01, 10, 11} of canonical words has the advantage of using the nat-
ural state representation, and has much symmetry. For example, all the eight
rewriting rules can be summarized in one statement:

abc ≡ bc, for all a, b, c ∈ Σ.

This symmetry is lost if a prefix-closed set is used. ut
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6 Unary Counter

We now present our first example of an infinite semiautomaton, and the concept
of legality. This concept was introduced in [1] to distinguish the normal operation
of a module from its behavior when abnormal conditions occur. In later works
on trace-assertion specifications (for example, [21]) this concept was abandoned.
We prefer to retain it, however, as an optional feature of a specification. Legal-
ity provides a convenient example of the use of final (accepting) and non-final
(rejecting) states of an automaton to separate two types of behavior. In general,
one may use a Moore output with more than two values to partition the states
into several classes of behaviors. A Moore output is a mapping µ : Q → Θ, where
Θ is some output alphabet. In the remainder of the paper we use only binary
Moore outputs, which are normally represented by final and non-final states.

6.1 Counter with Empty Initial State

A unary counter is a pushdown stack, which is initially empty. Only two oper-
ations are possible: PUSH and POP. If the stack is empty, POP is illegal and
leads to a special illegal state.1 In any legal state it is possible to PUSH the
integer 1 on top of the stack. If the stack contains (n + 1) entries, where n ≥ 0,
POP is legal; it removes the top 1 from the stack, leaving n entries. The count is
represented by the number of entries on the stack. For convenience, we represent
PUSH by 1 and POP, by 0.

Definition 4. The counter automaton is A = (Σ, Q, δ, qε, F ), where Σ = {0, 1},
Q = P ∪ {∞}, qε = 0, F = P , and δ is defined below.2

C1′ δ(n, 1) = n + 1, ∀n ∈ P,

C2′ δ(0, 0) = ∞,

N1′ δ(∞, a) = ∞, ∀a ∈ Σ,

N2′ δ(n + 1, 0) = n, ∀n ∈ P.

The state graph of A is shown in Fig. 6 (a), where veritices drawn with thick
lines indicate final states. It should be clear that the automaton corresponds to
our informal specification.

It seems reasonable that a specification of a module by an automaton should
use a reduced automaton. Otherwise, unnecessary states and transitions are
introduced. In a reduced automaton every two distinct states are in different
classes of the Nerode equivalence, that is, they are observationally inequivalent.
The reader should note, however, that our theory applies equally well to non-
reduced automata.

1 In general, one could have several illegal states representing various error conditions,
as shown in Section 9.

2 The reason for the particular numbering of items will become apparent later.
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· · ·
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· · ·
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· · ·
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Fig. 6. Counter automaton and canonical words

Proposition 3. The counter automaton is reduced.

Proof. State ∞ is distinguishable from every other state, because it is the only
rejecting state. To distinguish state n from state m > n, use the word 0m. Then
δ(n, 0m) = ∞ 6∈ F and δ(m, 0m) = 0 ∈ F . ut

The first step in constructing a trace-assertion specification is to select canon-
ical words. In the case of our counter, there is only one spanning tree, resulting
in canonical word 1n for the state with n entries, and in 0 for state ∞. Of course,
the set {1}∗ ∪ {0} is prefix closed. This step is illustrated in Fig. 6 (b).

The second step consists of finding the set G of basic equivalences. These
equivalences provide the missing transitions in Fig. 6 (b), resulting in Fig. 6 (c).

The basic equivalences and the corresponding basic transformations are

E1′ 00 ≡ 0, E2′ 01 ≡ 0, E3′ 10 ≡ ε, E4′ 110 ≡ 1, . . .

T1′ 00x |= 0x, T2′ 01x |= 0x, T3′ 10x |= x, T4′ 110x |= 1x, . . .

The set of equivalences is, of course, infinite. However, we can represent this
infinite set by two typical elements:

E1 0a ≡ 0, ∀a ∈ Σ,

E2 1n+10 ≡ 1n, ∀n ∈ P.
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In fact, if we relabel the states with their canonical representatives, the definition
of δ becomes

C1 δ(1n, 1) = 1n+1, ∀n ∈ P,

C2 δ(ε, 0) = 0,

N1 δ(0, a) = 0, ∀a ∈ Σ,

N2 δ(1n+1, 0) = 1n, ∀n ∈ P.

Now there is a 1-1 correspondence between the Ni and the Ei. Rules Ni corre-
spond to noncanonical extensions of canonical words by letters. Rules Ci corre-
spond to canonical extensions of canonical words by letters; hence they do not
contribute to the equivalences.

We are now in a position to state the complete set of trace assertions for the
counter. Following [1], we add syntax and legality sections. The syntax assertions
are type declarations. Each operation, that is, each element of Σ, results in a
state transition; thus it maps type 〈counter〉 into type 〈counter〉.

For w ∈ Σ∗, the assertion “λ(w) = true” means that w is a legal word. All
the canonical words in {1}∗ are declared legal by L1 below, and they correspond
to the final states of the automaton. The remaining legal words are obtained by
the assertion:

L0 u ≡ v ⇒ λ(u) = λ(v), ∀u, v ∈ Σ∗,

which is assumed to hold in every trace-assertions specification. Finally, no word
is legal, unless its being so is a consequence of L0 and L1. Thus the set of
legal words is the smallest set containing the legal canonical words, and closed
under L0.

Combining all the parts, we obtain the specification:

Syntax:

0, 1 : 〈counter〉 → 〈counter〉.

Canonical words:

{1}∗ ∪ {0}

Equivalence:

E1 0a ≡ 0, ∀a ∈ Σ,

E2 1n+10 ≡ 1n, ∀n ∈ P.

Legality:

L1 λ(1n) = true, ∀n ∈ P.

Transformations:
T1 0ax |= 0x, ∀a ∈ Σ, x ∈ Σ∗

T2 1n+10x |= 1nx, ∀n ∈ P, x ∈ Σ∗.

There is no “values” part, since there are no output producing operations
in our counter. Outputs will be handled in the next section. Note also that
transformation T1 can be simplified to 0x |= 0, for all x ∈ Σ+.
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6.2 Counter with Nonempty Initial State

Suppose that, for some reason, we wanted to change the initial state from the
empty state to the state that contains two 1s. In the specification by automaton,
this operation is entirely trivial. For example, in the automaton of Fig. 6 (a),
instead of A = (Σ, Q, δ, 0, F ), we now use A = (Σ, Q, δ, 2, F ), and, for Fig. 6 (c),
instead of A = (Σ,X, δX, ε, A∗), we have A = (Σ,X, δX, 11, A∗). In the trace
assertion specification, however, we need to find a new spanning forest, and
recalculate the equivalences.

In Fig. 7 (a), we show the solution using the spanning tree corresponding to
the canonical set {ε, 0, 00, 000, 1, 11, 111, . . .}. This solution has the disadvantage
that the state label no longer corresponds to the stack contents. Also, we must
calculate a new set of equivalences, in this case:

E1 01 ≡ ε,

E2 001 ≡ 0,

E3 000a ≡ 000, ∀a ∈ Σ,

E4 1n+10 ≡ 1n, ∀n ∈ P.

A second solution is shown in Fig. 7 (b), where we use the two trees corre-
sponding to two sets of canonical words: {00, 000, 001} and {11, 111, . . .}. The
advantage of this solution is that, except for three states, the state label denotes
the contents of the counter. Now the equivalences are

E1 110 ≡ 001,

E2 0011 ≡ 11,

E3 0010 ≡ 00,

E4 000a ≡ 000, ∀a ∈ Σ,

E5 1n+10 ≡ 1n, ∀n ≥ 2.

(b)

(a)

0

0

0

1
0

1
· · · 1n

000

00 ε

0

1
11

1
· · · 1n

1
00 001

000

Fig. 7. Counter automaton with changed initial state
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To complete the specification, we must add the rule ε ≡ 11 to take care
of the new initial state. The acanonical words are ε ∪ 0 ∪ 1 ∪ (01 ∪ 10)Σ∗. To
find the canonical representative of any nonempty acanonical word w, we use
the right congruence property: ε ≡ 11 implies w ≡ 11w, and then apply the
transformation rules from T to 11w, which is post-canonical. This approach
would require us to test the given word for membership in the set of acanonical
words. Alternately, one can put χ(qε) in front of any word, and then derive the
canonical representative as above, thus avoiding the membership test, at the cost
of one extra step in the derivation.

7 Stack

In this section we introduce a more general module, one that has an infinite
alphabet, and output operations called “value functions” in [1].

The stack is initially empty. We can push any integer z onto the stack using
operation PUSH(z), denoted by z. The POP operation p, legal only if the stack
is nonempty, removes the top integer from the stack. The TOP operation t, legal
only if the stack is nonempty, returns the value of the top integer. If the stack
is empty, p and t lead to the illegal state. The DEPTH operation d returns the
number of integers stored on the stack, when it is in any legal state.

We use the stack contents q = z1 . . . zn, with zn as top, as the representation
of a legal state.3 A natural choice for the canonical word of a state q ∈ Z∗ is q

itself. Let p be the canonical word for the illegal state. Clearly, Z∗∪{p} is prefix
closed.

Definition 5. The stack automaton is a generalized Mealy automaton M =
(Σ, Q, δ, qε, F, Ω, ν), where Σ = {d, p, t} ∪ Z, Q = Z∗ ∪ {p}, qε = ε, F = Z∗,

Ω = Z, and δ and ν are defined below. Note that ν = ν(q, a) is defined only if

q ∈ Z∗ and a = d, or q ∈ Z+ and a = t.

C1 δ(q, z) = qz, ∀q ∈ Z∗, z ∈ Z,

C2 δ(ε, p) = p,

N1 δ(ε, t) = p

N2 δ(q, d) = q, ∀q ∈ Z∗,

N3 δ(p, a) = p, ∀a ∈ Σ,

N4 δ(qz, t) = qz, ∀q ∈ Z∗, z ∈ Z,

N5 δ(qz, p) = q, ∀q ∈ Z∗, z ∈ Z,

O1 ν(q, d) = |q|, ∀q ∈ Z∗,

O2 ν(qz, t) = z, ∀q ∈ Z∗, z ∈ Z.

The stack automaton is illustrated in Fig. 8. For state q and input a, the
transition from q under a is labelled by a, if there is no output. If there is an
output b, the transition is labelled by (a, b). Of course, we can only illustrate a
few of the transitions, since both Q and Σ are infinite. There is one transition

3 In the figure, we use the notation q = (z1, . . . , zn) to avoid confusion.
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from each state for each of d, p, and t, and for each integer z. Note that d

never changes the state, and t changes it only if illegally applied. For q ∈ Z∗,
ν(q, d) = |q| is the number of integers on the stack, and ν(qz, t) = z is the top
integer.

(3, 1)

3

p

5

p, t 1

p
ε

p

p

(d, 0) (d, 1), (t, 3) (d, 2), (t, 5)

(3)

d, t, p, z (d, 2), (t, 1)

(3, 5)

Fig. 8. Stack automaton

Proposition 4. The stack automaton is reduced.

Proof. State p is a rejecting state and all the states in Z∗ are accepting. Among
the accepting states, if i < j, then any state q of length i is distinguishable from
a state q′ of length j by the word pj . Suppose now that q and q′ 6= q are of equal
length, and their longest common suffix is qi+1 . . . qn; then qi 6= q′i. Now q and
q′ are distinguishable by pn−it. ut

The basic equivalences are shown below as part of the complete trace-assertion
specification. Equivalence ≡ is the right congruence generated by the rules E1–

E5. These rules are obtained as follows. The empty word is canonical. Hence we
examine all the words of the form εa = a, with a ∈ Σ. If a = z, the extension is
canonical; hence, there is no contribution to the equivalences from C1. If a = p,
again the extension is canonical, and there is no contribution from C2. If a = t,
we have the equivalence E1 t ≡ p. If a = d, we obtain d ≡ ε. However, this case
can be handled with all the other cases of the form wd ≡ w, since the transition
function has the value δ(q, d) = q, for all q ∈ Z∗. Thus we obtain E2. For the
illegal state, we obtain E3 from N3. For all the canonical states of the form qz,
we again examine all the extensions by letters. The extension by another integer
is already covered by C1. The extension by d is covered by E2. For t, we have
E4, and for p, E5. Again, there is an obvious 1-1 correspondence between the
Ni and the Ei.

Since the set of accepting states of M is F = Z∗, all the canonical words
in Z∗ are declared legal by L1 below. The remaining legal words are obtained
by L0.

Until now, we have ignored the output values produced by operations t and
d. With the aid of O1 and O2, we specify the values for canonical legal words,
and then make the values applicable to all words by the assertion
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V0 : w ≡ w′ ⇒ ν(wa) = ν(w′a), ∀w, w′ ∈ Σ∗, a ∈ Σ.

We now state the complete set of trace assertions for the stack. Each element
of Σ results in a state transition. Moreover, inputs d and t produce an output;
those inputs map type 〈stack〉 into type 〈stack〉 × 〈integer〉. Since the syntax
assertions are straightforward, we leave them to the reader from now on.

Syntax:

p, z : 〈stack〉 → 〈stack〉, ∀z ∈ Z,

d, t : 〈stack〉 → 〈stack〉 × 〈integer〉.
Equivalence:

E1 t ≡ p,

E2 wd ≡ w,

E3 pa ≡ p, ∀a ∈ Σ,

E4 wzt ≡ wz, ∀w ∈ Z∗, z ∈ Z,

E5 wzp ≡ w, ∀w ∈ Z∗, z ∈ Z.
Legality:

L1 λ(w) = true, ∀w ∈ Z∗.

Values:
V1 ν(wd) = |w|, ∀w ∈ Z∗,

V2 ν(wzt) = z, ∀z ∈ Z, w ∈ Z∗.

Transformations:
T1 tx |= px,

T2 wdx |= wx,

T3 pax |= px, ∀a ∈ Σ,

T4 wztx |= wzx, ∀w ∈ Z∗, z ∈ Z,

T5 wzpx |= wx, ∀w ∈ Z∗, z ∈ Z.

By construction, this trace-assertion specification of the stack is correct with
respect to the stack automaton.

Note: In the rest of our examples in the paper and its appendix we give only
the annotated automaton definitions. The interested reader may then easily con-
struct the corresponding trace-assertion specifications. Also, from now on we use
generalized Mealy automata.

We include these examples to illustrate the construction of specifications of
modules by automata. In this process, we find it very useful to draw partial state
graphs for the examples we study. To further simplify the figures, we omit the
outputs and show only the transitions of the underlying semiautomata. These
help in deriving the formal definitions and in checking whether all cases have
been considered.

8 Set

This example is derived from the “intset” example of [9], discussed also in [20].
We start with an empty set S. We can add any integer z to S using INSERT(z),
denoted by z; it does not change S if z ∈ S. DELETE(z), denoted by z̄, removes
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z from S, and does nothing if z 6∈ S. MEMBER(z), denoted by ż, returns false
if z 6∈ S, and true if z ∈ S.

Let Z̄ = {z̄ | z ∈ Z}, and Ż = {ż | z ∈ Z}. The obvious definition of a set
automaton uses all finite sets of integers as states.

The set semiautomaton is illustrated in Fig. 9.

{2, 6, 7}

{7}
7

7̄ 2̄

2 4

1̄1

11

7, 7̇, 1̄, . . .7, 7̇, 1̄, . . . 7, 7̇, 1̄, . . .

6

7

7̄

6 6

2

2̄

{6}
11

1̄1

6, 7̇, 1̄, . . .

6̄ 6̄ 6̄

4̄

1̄, 7̄, 1̇, 7̇, . . .

{2, 7}∅

{6, 7}

{2, 4, 7}

Fig. 9. Set semiautomaton

Definition 6. The set automaton is M ′ = (Σ, Q′, δ′, q′ε, F
′, Ω, ν′), where Σ =

Z ∪ Z̄ ∪ Ż, Q′ is the set of all finite subsets of Z, q′ε = ∅, F ′ = Q′, Ω =
{true, false}, and

M1 δ′(q′, z) = q′ ∪ {z}, ∀q′ ∈ Q′, z ∈ Z,

M2 δ′(q′, z̄) = q′ \ {z} ∀q′ ∈ Q′, z ∈ Z,

M3 δ′(q′, ż) = q′, ∀q′ ∈ Q′, z ∈ Z,

O ν′(q′, ż) = z ∈ q′, ∀q′ ∈ Q′, z ∈ Z.

This definition is not in our standard form, since the representative of a state
is not a word in Σ∗. Furthermore, rule M1 represents both the case where the
extension leads to a new canonical state, and the case where the state does not
change. To obtain a standard form we need to choose a new state representation.

Define the function setsort : Q′ → Z∗ as follows: setsort(∅) = ε, and if
q′ = {z1, . . . , zn} ∈ Q′, setsort(q′) is the word that consists of z1, . . . , zn arranged
in decreasing order. Note that the image setsort(Q′) is the set of all sorted
words without repeated letters. Define function set : Z∗ → Q′ as follows. If
w = z1 . . . zn ∈ Z∗, then set(w) = {z1, . . . , zn}. Define function sort : Z∗ → Z∗

as follows: sort(ε) = ε, and if w = z1 . . . zn is any word in Z+, sort(w) is the
word that consists of the integers z1, . . . , zn arranged in non-increasing order. For
example, sort(1, 3, 3, 7, 6, ) = (7, 6, 3, 3, 1). Let sort(Z∗) = {sort(z) | z ∈ Z∗}.

For w ∈ Z∗ and z ∈ Z, we write z ∈ w if letter z appears in word w. We
now represent states by words in Q = sort(Z∗). This set is prefix closed. For the
canonical word of state q′ ∈ Q′, we now choose setsort(q′). All words are legal.
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Fig. 10. Bounded stack semiautomaton

Definition 7. The standard set automaton is M = (Σ, Q, δ, qε, F, Ω, ν), where

Σ = Z ∪ Z̄ ∪ Ż, Q = setsort(Q′), qε = ε, F = Q, Ω = {true, false}, and

C1 δ(q, z) = setsort(set(q) ∪ {z}), ∀q ∈ Q, z ∈ Z, z 6∈ q,

N1 δ(q, z) = q, ∀q ∈ Q, z ∈ Z, z ∈ q,

N2 δ(q, z̄) = setsort(set(q) \ {z}), ∀q ∈ Q, z ∈ Z,

N3 δ(q, ż) = q, ∀q ∈ Q, z ∈ Z,

O1 ν(q, ż) = false, ∀q ∈ Q, z ∈ Z, z 6∈ q,

O2 ν(q, ż) = true, ∀q ∈ Q, z ∈ Z, z ∈ q.

One verifies that the two automata are isomorphic and reduced.
This example illustrates that, in some cases, the representation of states by

canonical words, although always possible, can be quite awkward.

9 Bounded Stacks

In practice, stacks are finite in two senses. First, the size of the stack is limited
by some maximum capacity n. Second, the size of the integer is limited to some
maximum value b.

Let B = {z | 0 ≤ z ≤ b}, and let Bn =
⋃n

i=0 Bi. It is illegal to push an integer
if either that integer is not in B, or the stack is full, that is, has depth n. The
stack automaton of Section 7 needs to be modified. For canonical representatives
of legal states we choose q ∈ Bn, and for the illegal state we pick p.

The bounded stack semiautomaton is illustrated in Fig. 10, with n = 2, and
B = {0, 1}.

Definition 8. The bounded stack automaton is a generalized Mealy automaton

M = (Σ, Q, δ, qε, F, Ω, ν), where Σ = {d, p, t}∪Z, Q = Bn∪{p}, qε = ε, F = Bn,

Ω = B ∪ {p}, and
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C1 δ(q, z) = qz, ∀q ∈ Bn−1, z ∈ B,

C2 δ(ε, p) = p,

N1 δ(q, z) = p, if q ∈ Bn or z ∈ Z \ B,

N2 δ(ε, t) = p

N3 δ(q, d) = q, ∀q ∈ Bn,

N4 δ(p, a) = p, ∀a ∈ Σ,

N4 δ(qz, t) = qz, ∀q ∈ Bn−1, z ∈ B,

N5 δ(qz, p) = q, ∀q ∈ Bn−1, z ∈ B,

O1 ν(q, d) = |q|, ∀q ∈ Bn,

O2 ν(qz, t) = z, ∀q ∈ Bn−1, z ∈ B.

It is clear that such simple modifications can also be made in the other
modules we have described to handle the bounded cases.

As a second example, we illustrate how different errors can be handled. Sup-
pose we wish to distinguish the following cases:

– “stack empty”: operation is illegal because the stack is empty,

– “illegal input”: operation is illegal because input data is out of bounds,

– “stack full”: operation is illegal because the stack is full.

We split the illegal state p above into three states: a state, also called p,
corresponding to the empty stack violation; state −1, representing all illegal in-
tegers; and state 0n+1, representing stack overflow. The modified stack definition
is given below. There are no inherent difficulties in handling such error condi-
tions, except for the larger number of cases that need to be distinguished. When
an attempt is made to push an illegal integer onto a full stack, we arbitrarily
decide to provide the error message “illegal input”.

Definition 9. The error-handling stack automaton is a Mealy automaton M =
(Σ, Q, δ, qε, F, Ω, ν), where Σ = {d, p, t} ∪ Z, Q = Bn ∪ {p,−1, 0n+1}, qε = ε,

F = Bn, Ω = B ∪ { stack empty, illegal input, stack full }, and

C1 δ(q, z) = qz, ∀q ∈ Bn−1, z ∈ B,

C2 δ(ε, p) = p,

C3 δ(ε, z) = −1, ∀z ∈ Z \ B,

C4 δ(q, z) = 0n+1, ∀q ∈ Bn, z ∈ B,

N1 δ(q, z) = −1, ∀q ∈ Bn \ {ε}, z ∈ Z \ B,

N2 δ(ε, t) = p,

N3 δ(q, d) = q, ∀q ∈ Bn,

N4 δ(p, a) = p, ∀a ∈ Σ,

N5 δ(−1, a) = −1, ∀a ∈ Σ,

N6 δ(0n+1, a) = 0n+1, ∀a ∈ Σ,

N7 δ(qz, t) = qz, ∀q ∈ Bn−1, z ∈ B,

N8 δ(qz, p) = q, ∀q ∈ Bn−1, z ∈ B,
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O1 ν(q, d) = |q|, ∀q ∈ Bn,

O2 ν(qz, t) = z, ∀q ∈ Bn−1, z ∈ B,

O3 ν(ε, p) = stack empty,
O4 ν(ε, t) = stack empty,
O5 ν(q, z) = illegal input, ∀q ∈ Bn, z ∈ Z \ B,

O6 ν(q, z) = stack full, ∀q ∈ Bn, z ∈ B.

10 Conclusions

We have shown that the problem of finding equivalence assertions for a module
amounts to finding a generating set for its semiautomaton, and we have presented
a simple algorithm for finding this set. In contrast to many previous approaches,
our method produces the trace equivalence relation completely independently
of the concept of legality. Directly from the equivalence assertions, we derive a
rewriting system which allows us to transform any trace to its canonical form.
This rewriting system has no infinite derivations if and only if the canonical set is
prefix-continuous. The set of equivalences is then irredundant. Prefix-continuous
sets include both prefix codes and prefix-closed languages as special cases, and
can be found with the aid of spanning forests of the semiautomata.

We point out that a specification should use a reduced automaton. The
canonical traces are then pairwise observationally inequivalent.

Our results hold for finite and infinite automata. Since canonical traces are
representations of the states of the automaton of the module, constructing the
trace-assertion specification is equivalent to constructing the automaton.

Finally, we provide automaton specifications, and hence trace-assertion spec-
ifications, for several common modules.
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Appendices: Additional Examples

A Queue

This example is from [1]. A queue is either empty or contains a list (z1, . . . , zn) of
integers, where n > 0. In the latter case, z1 is the front of the queue and zn, its
tail . If n = 1, z1 is both the front and the tail. If the queue is nonempty, operation
REMOVE, denoted by r, removes z1 and the queue now contains (z2, . . . , zn).
Also, if the queue is nonempty, operation FRONT, denoted by f , returns z1

without changing the queue. For each z ∈ Z, operation ADD(z), denoted by z,
adds z at the tail of the queue, resulting in (z1, . . . , zn, z). If the queue is empty,
r and f are illegal.

We choose q ∈ Z∗ to represent the state of the automaton when the queue
contains the word q = z1 . . . zn, and r for the illegal state. The canonical word
for any state is then the state itself. The set Z∗ ∪ {r} is prefix-closed.

The queue semiautomaton is illustrated in Fig. 11.

z2z3

z1

r

z2 z3 z4

z2

z1z2z1ε

f, r

z2 r

f f f

fff

a ∈ Σ

r

r r

z4z3

z1z2z3

z2z3z4

Fig. 11. Queue semiautomaton

Definition 10. The queue automaton is M = (Σ, Q, δ, qε, F, Ω, ν), where Σ =
{f, r} ∪ Z, Q = Z∗ ∪ {r}, qε = ε, F = Z∗, Ω = Z, and δ and ν are defined

below. Note that ν = ν(q, a) is defined only if q ∈ Z+ and a = f .

C1 δ(q, z) = qz, ∀q ∈ Z∗, z ∈ Z,

C2 δ(ε, r) = r,

N1 δ(ε, f) = r,

N2 δ(r, a) = r, ∀a ∈ Σ,

N3 δ(zq, f) = zq, ∀q ∈ Z∗, z ∈ Z.

N4 : δ(zq, r) = q, ∀q ∈ Z∗, z ∈ Z,
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O1 : ν(zq, f) = z, ∀q ∈ Z∗, z ∈ Z.

Proposition 5. The queue automaton is reduced.

Proof. State r is rejecting and all the states in Z∗ are accepting. Among the
accepting states, if i < j, then any state q of length i is distinguishable from q′

of length j by rj . Suppose now that q and q′ 6= q are of equal length, and their
longest common prefix is q1 . . . qi−1; then qi 6= q′i. Now q and q′ are distinguish-
able by rn−if . ut

B Maximal-Element Module

This example is derived from [1] from the example of the “sorting queue.” A mem

(maximal-element module) is either empty or is a multiset (bag) of integers
(duplicates are permitted). If the mem is nonempty, REMOVE, denoted by r,
removes one occurrence of the largest integer in the mem. Otherwise, REMOVE
is illegal. If the mem is nonempty, MAX, denoted by m, returns the largest
integer in the mem without changing it. For each integer z ∈ Z, INSERT(z),
denoted by z, inserts z in the mem.

A multiset of integers is a mapping σ : Z → P such that, for every z ∈ Z,
σ(z) denotes the number of occurrences (multiplicity) of z in the multiset. We
represent σ as the formal power series

σ = . . . + σ(−2)x−2 + σ(−1)x−1 + σ(0)x0 + σ(1)x1 + σ(2)x2 + . . .

where x is a new symbol. The carrier of σ is the set

carrier(σ) = {xz | σ(z) 6= 0}.

A multiset σ is said to be finite or empty, if carrier(σ) is finite or empty, respec-
tively. For multisets, addition is defined component-wise. Subtraction is also
component-wise, but is defined only when no co-efficient becomes less than 0.

For a finite, non-empty multiset σ over Z, let

max σ = max {z | xz ∈ carrier(σ)} .

Let 0 denote the empty multiset, that is,

0 = . . . + 0x−2 + 0x−1 + 0x0 + 0x1 + 0x2 + . . . .

If σ 6= 0, r removes a largest element of carrier(σ), resulting in σ−xmax σ, and
m returns maxσ and leaves σ unchanged. For each z ∈ Z, operation z inserts
an additional occurrence of z, resulting in σ + xz .

The mem semiautomaton is illustrated in Fig. 12.

Definition 11. The mem automaton is M = (Σ, Q, δ, qε, F, Ω, ν), where Σ =
{m, r} ∪ Z, Q = Q′ ∪ {∞}, Q′ is the set of all finite multisets over Z, qε = 0,

F = Q′, Ω = Z, and
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Fig. 12. Mem semiautomaton

M1 δ(σ, z) = σ + xz , ∀σ ∈ Q′, z ∈ Z,

M2 δ(0, r) = ∞,

M3 δ(0, m) = ∞,

M4 δ(∞, a) = ∞, ∀a ∈ Σ,

M5 δ(xz + σ, m) = xz + σ, ∀σ ∈ Q′, z ∈ Z,

M6 δ(xz + σ, r) = xz + σ − xmax(xz+σ), ∀σ ∈ Q′, z ∈ Z,

O ν(xz + σ, m) = max(xz + σ), ∀σ ∈ Q′, z ∈ Z.

This definition is not in “standard form” because the states are not repre-
sented by canonical words. We remedy this next. Define function sort : Z∗ → Z∗

as we did for the set module.
Legal states are of the form q ∈ sort(Z∗), and the illegal state is ∞. The

natural choice for the canonical word of q is q itself. Let r be the canonical
word for ∞. The set of canonical words is prefix-closed. We now construct the
automaton from these canonical words.

Definition 12. The standard mem automaton is M = (Σ, Q, δ, qε, F, Ω, ν),
where Σ = {m, r} ∪ Z, Q = sort(Z∗) ∪ r, qε = ε, F = sort(Z∗), Ω = Z,

and

C1 δ(q, z) = sort(qz), ∀q ∈ sort(Z∗), z ∈ Z,

C2 δ(ε, r) = r,

N1 δ(ε, m) = r,

N2 δ(r, a) = r, ∀a ∈ Σ,

N3 δ(zq, m) = zq, ∀zq ∈ sort(Z∗), z ∈ Z.

N4 δ(zq, r) = q, ∀zq ∈ sort(Z∗), z ∈ Z,

O1 ν(zq, m) = z, ∀zq ∈ sort(Z∗), z ∈ Z.

This automaton is reduced; the proof is very similar to that for the queue.
Moreover, the standard mem automaton is isomorphic to the mem automaton of
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Definition 11. In fact, the seven parts of each definition are in 1-1 correspondence.
It is clear that the standard mem automaton is a particular implementation of
the more abstract mem automaton.

C Linked List

This example is similar to the Table/List of [1]. A linked list, which we call llist , is
initially empty. When nonempty, the llist contains a list of integers and a pointer
to the current element in the llist. For example, the notation z4z1z3ż1z2 means
that the llist now contains (z4, z1, z3, z1, z2), and the current pointer points to
the fourth element in the list. The INSERT(z) operation, denoted by z, inserts
z to the left of the current element, and z becomes the current element. Thus,
the new llist is z4z1z3żz1z2. Operations LEFT and RIGHT, denoted l and r,
move the current pointer to the left and right, respectively. Operation DELETE
removes the current element and the element to its right becomes current. It
is possible to move to the right past the last element in the llist, but not any
further.4 It is not possible to move to the left past the first element. For example,
the trace z3z2rrz1lldd produces the following consecutive llists, starting with the
empty llist, ε:

ε, ż3, ż2z3, z2ż3, z2z3, z2z3ż1, z2ż3z1, ż2z3z1, ż3z1, ż1.

In the list z2z3 the pointer is just to the right of the last element. Another move
to the right is illegal. In ż3 a move to the left is illegal.

The llist also has operation CURRENT, denoted by c, which returns the
value of the current integer, if there is one, and is illegal, otherwise.

For our first definition, in our state representation we use a pair (u, v) of
words, and the current pointer is assumed to be on the first letter of v.

The llist semiautomaton is illustrated in Fig. 13.

Definition 13. The llist automaton is M = (Σ, Q′, δ, q′ε, F
′, Ω, ν′), where Σ =

{c, d, l, r} ∪ Z, Q′ = (Z∗ × Z∗) ∪ {∞}, q′ε = (ε, ε), F ′ = (Z∗ × Z∗), Ω = Z, and

M1 δ′((u, v), z) = (u, zv), ∀u, v ∈ Z∗, z ∈ Z,

M2 δ′((u, zv), r) = (uz, v), ∀u, v ∈ Z∗, z ∈ Z,

M3 δ′((u, ε), c) = ∞, ∀u ∈ Z∗,

M4 δ′((u, ε), d) = ∞, ∀u ∈ Z∗,

M5 δ′((u, ε), r) = ∞, ∀u ∈ Z∗,

M6 δ′((ε, v), l) = ∞, ∀v ∈ Z∗,

M7 δ′(∞, a) = ∞, ∀a ∈ Σ,

M8 δ′((u, zv), d) = (u, v), ∀u, v ∈ Z∗, z ∈ Z,

M9 δ′((uz, v), l) = (u, zv), ∀u, v ∈ Z∗, z ∈ Z,

M10 δ′((u, zv), c) = (u, zv), ∀u, v ∈ Z∗, z ∈ Z,

O ν′((u, zv), c) = z, ∀u, v ∈ Z∗, z ∈ Z.

4 In an implementation, one would require another pointer or a doubly linked list.
However these issues are not of interest to the specification.
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Fig. 13. Llist semiautomaton

While this is a reasonable choice for the state representation, it does not give
us a standard automaton because the state representatives are not words in Σ∗.

For w ∈ Σ∗, let wρ be the reversal of w. For the canonical trace leading to
state (u, v) we choose (uv)ρr|u|, and we pick c for ∞. This set is prefix-closed.
Thus, legal canonical traces are all of the form w = z1 . . . znrk, where 0 ≤ k ≤ n.
We introduce the following notation: if i ≤ j, then w|ji = zi . . . zj . Observe that,
when w = z1 . . . zn is applied, the resulting state is (ε, zn . . . z1). If r is now
applied n times, the result is (zn . . . z1, ε). In any such state, operations c, d, and
r are illegal, while l results in (zn . . . z2, z1), and z yields (zn . . . z1, z). In case
k < n, the final state is (zn . . . zn−k+1, zn−k . . . z1). Operations c, d, r and z are
legal, and l is legal provided k > 0. We are now ready to state our standard
definition.

Definition 14. The standard llist automaton is M = (Σ, Q, δ, qε, F, Ω, ν), where

Σ = {c, d, l, r} ∪ Z, F = {wrk | w ∈ Z∗, 0 ≤ k ≤ |w|}, Q = F ∪ {∞}, qε = ε,

Ω = Z, and, for w = z1 . . . zn,

C1 δ(wrk , z) = w|n−k
1 zw|nn−k+1r

k , ∀w ∈ Z∗, k ≤ n = |w|,
C2 δ(wrk , r) = wrk+1 , ∀w ∈ Z+, k < n = |w|,
C3 δ(ε, c) = c,

N1 δ(wr|w|, c) = c, ∀w ∈ Z+,

N2 δ(wr|w|, d) = c, ∀w ∈ Z∗,

N3 δ(wr|w|, r) = c, ∀w ∈ Z∗,

N4 δ(w, l) = c, ∀w ∈ Z∗,

N5 δ(c, a) = c, ∀a ∈ Σ,

N6 δ(wrk , d) = w|n−k−1
1 w|nn−k+1r

k, ∀w ∈ Z+, k < n = |w|,
N7 δ(wrk , l) = wrk−1, ∀w ∈ Z+, 0 < k < n = |w|,
N8 δ(wrk , c) = wrk , ∀w ∈ Z+, k < n = |w|,
O1 ν(wrk , c) = zn−k, ∀w ∈ Z+, k < n = |w|.
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Note that the following are corresponding pairs: (M1, C1), (M2, C2), (M4,

N2), (M5, N3), (M6, N4), (M7, N5), (M8, N6), (M9, N7), (M10, N8), and
(O, O1). Rules C3 and N1 combined correspond to M3. One verifies that this
automaton is reduced, and isomorphic to the automaton in our first definition.

D Traversing Stack

This example, taken from [11], has some features of both the stack of Section 7
and the linked list of Section C.

A traversing stack, which we call tstack , is initially empty. When nonempty,
the tstack contains a list of integers and a pointer to the current element in the
tstack. For example, the notation z4z1z3ż1z2 means that the tstack now contains
(z4, z1, z3, z1, z2), and the current pointer points to the fourth element in the list.
The PUSH(z) operation, denoted by z, is permitted only if either the tstack is
empty, or the current pointer points to its leftmost element, which is the top
of the tstack. When legal, operation PUSH(z) inserts z to the left of the top
element, and z becomes the new top. Operation POP, denoted by p, is legal
only if the stack is nonempty and the top element is the current one. Operation
RIGHT (called “down” in [11]), denoted r, moves the current pointer to the
right, provided there is at least one element to the right of the current one.
Operation TOP, legal when the tstack is nonempty, moves the current pointer
to the top element. Operation CURRENT, denoted by c, returns the value of
the current element.

As in the case of the llist, in our first definition of the tstack we represent each
legal state by a pair (u, v) of words. Either both u and v are empty, or v 6= ε and
the current pointer is assumed to be on the first letter of v. Let R = {ε} × Z+

and S = Z+ × Z+.
The tstack semiautomaton is illustrated in Fig. 14.
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Fig. 14. Tstack semiautomaton
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Definition 15. The tstack automaton is M = (Σ, Q′, δ, q′ε, F
′, Ω, ν′), where

Σ = {c, p, r, t} ∪ Z, Q′ = R ∪ S ∪ {(ε, ε),∞}, q′ε = (ε, ε), F ′ = Q′ \ ∞, Ω = Z,

and

M1 δ′((ε, v), z) = (ε, zv), ∀v ∈ Z∗, z ∈ Z,

M2 δ′((u, zz′v), r) = (uz, z′v), ∀u, v ∈ Z∗, z, z′ ∈ Z,

M3 δ′((ε, ε), c) = ∞,

M4 δ′((ε, ε), p) = ∞,

M5 δ′((ε, ε), r) = ∞,

M6 δ′((ε, ε), t) = ∞,

M7 δ′(∞, a) = ∞, ∀a ∈ Σ,

M8 δ′(q, c) = q, ∀q ∈ R ∪ S,

M9 δ′((ε, zv), p) = (ε, v), ∀v ∈ Z∗, z ∈ Z,

M10 δ′(q, p) = ∞, ∀q ∈ S,

M11 δ′((u, a), r) = ∞, ∀u ∈ Z∗, a ∈ Σ,

M12 δ′((u, v), t) = (ε, uv), ∀u ∈ Z∗, v ∈ Z+,

M13 δ′((u, v), z) = ∞, ∀u, v ∈ Z+, z ∈ Z,

O ν′((u, zv), c) = z, ∀u, v ∈ Z∗, z ∈ Z.

For the canonical trace leading to state (u, v) we choose (uv)ρr|u|, and we pick
c for ∞. This set is prefix-closed. Thus, legal canonical traces are all of the form
w = z1 . . . znrk, where 0 ≤ k < n. When w = z1 . . . zn is applied, the resulting
state is (ε, zn . . . z1). If r is applied (n − 1) times, the result is (zn . . . z2, z1). In
any such state, operations p, r, and z are illegal, while c does not change the
state, and t moves the state back to (ε, zn . . . z1). In case 1 < k < n−1, the final
state is (zn . . . zn−k+1, zn−k . . . z1). Operations c, r and t are legal, but p and z

are illegal. We are now ready to state our standard definition.

Definition 16. The standard tstack automaton is M = (Σ, Q, δ, qε, F, Ω, ν),
where Σ = {c, p, r, t} ∪ Z, F = {wrk | w ∈ Z∗, 0 ≤ k < |w|}, Q = F ∪ {∞},
qε = ε, Ω = Z, and, for w = z1 . . . zn,

C1 δ(u, z) = uz, ∀u ∈ Z∗, z ∈ Z,

C2 δ(wrk , r) = wrk+1, ∀w ∈ Z∗, k < |w| − 1,

C3 δ(ε, c) = c,

N1 δ(ε, p) = c,

N2 δ(ε, r) = c,

N3 δ(ε, t) = c,

N4 δ(c, a) = c, ∀a ∈ Σ,

N5 δ(wrk , c) = wrk , ∀w ∈ Z+, k < |w| − 1,

N6 δ(wz, p) = w, ∀w ∈ Z∗, z ∈ Z,

N7 δ(wrk , p) = c, ∀w ∈ Z+, 0 < k,

N8 δ(wrk , r) = c, ∀w ∈ Z+, k = |w| − 1,

N9 δ(wrk , t) = w, ∀w ∈ Z+, 0 ≤ k < |w|,
N10 δ(wrk , z) = c, ∀w ∈ Z+, 0 < k < |w|,
O1 ν(wrk , c) = zn−k, ∀w ∈ Z+, n = |w|.

One verifies that this automaton is reduced, and isomorphic to the automaton
in our first definition.


