
Representation of a Class of Nondeterministic

Semiautomata by Canonical Words

Janusz Brzozowski

School of Computer Science, University of Waterloo, Waterloo, ON,
Canada N2L 3G1

brzozo@uwaterloo.ca http://maveric.uwaterloo.ca

July 14, 2005

Abstract. It has been shown recently that deterministic semiautomata
can be represented by canonical words and equivalences; that work was
motivated by the trace-assertion method for specifying software mod-
ules. Here we generalize these ideas to a class of nondeterministic semi-
automata. A semiautomaton is settable if, for every state q, there exists
a word wq such that q can be reached from some initial state by a path
spelling wq, and no other state can be reached from an initial state by
a path spelling wq. We extend many results from the deterministic case
to settable nondeterministic semiautomata. Each word now has a num-
ber of canonical representatives. We show that a prefix-rewriting system
exists for transforming any word to any of its representatives. In case
the set of canonical words is prefix-continuous (meaning that, if a word
w and a prefix u of w are in the set, then all prefixes of w longer than
u are also in the set), the rewriting system has no infinite derivations.
Examples of specifications of nondeterministic modules are given.

1 Introduction

A software or hardware module can often be conveniently described by an au-
tomaton. In the trace-assertion methodology, certain important input words
(traces), called “canonical,” are first identified and used to represent the states of
the automaton. Each of the remaining words is declared equivalent to a canonical
word; this equivalence relation in effect specifies the transitions of the automaton.
A rewriting system is used to transform any word to its canonical representative.
Outputs are first defined for canonical words, and the definition is then extended
to arbitrary words.

Trace-assertion specifications of software modules were introduced by Bar-
tussek and Parnas in 1977 [1], and later studied by many authors; see [3] for
a recent discussion of the literature on this topic. It turns out that the im-
portant issues, of selecting appropriate canonical traces, constructing assertions
about equivalence, and finding a suitable rewriting system, can all be treated
in the framework of semiautomata (automata without outputs). Relations be-
tween trace-assertion specifications and deterministic semiautomata were re-
cently studied in [4]. The additional features associated with outputs, and also
applications to practical modules were examined in [3].

2

Nondeterministic trace-assertion specifications were first considered in [8, 9].
The model of module used in [8], however, is considerably more complex than
ours. Among other differences, [8] deals with multi-object modules, whereas we
deal exclusively with simple semiautomata. The model used in [9] is also quite
different from ours. It admits as traces so-called “step sequences,” which are
sets of words, whereas, in the present work, traces are words. Also, we consider
only words over the input alphabet of a module, whereas [9] allows also input-
output pairs as members of the alphabet. Neither [8] nor [9] deals with rewriting
systems, which constitute a major concern in the present paper.

The remainder of the paper is organized as follows. Basic notions about
nondeterministic semiautomata are defined in Section 2, whereas Section 3 deals
with the class of nondeterministic semiautomata, introduced by Janicki and
Sekerinski [9], which we call “settable.” Prefix-rewriting systems are discussed in
Seaction 4 and applied to settable semiautomata in Section 5. Special properties
of the rewriting systems, in the case where the set of canonical words is prefix-
continuous, are studied in Section 6. Section 7 extends the rewriting system to
words that do not have canonical prefixes. In Section 8 we consider complete
semiautomata. Finally, several examples of specifications of nondeterministic
modules are presented in Section 9.

2 Semiautomata

We base our notation for functions and semiautomata on that of Eilenberg [7].

If f : X → Y (also denoted X
f
→ Y) is a function, we write xf for the value

of f at x. If g : Y → Z is another function, then xfg is unambiguous without
parethenses. Also, the element x ∈ X can be interpreted as a function x : I → X ,
where I is some singleton, and the value of this function is x. Then xfg is the

composition of functions I
x
→ X

f
→ Y

g
→ Z.

If Σ is an alphabet (finite or infinite), then Σ+ and Σ∗ denote the free
semigroup and the free monoid, respectively, generated by Σ. The empty word
is 1. For w ∈ Σ∗, |w| denotes the length of w. If w = uv, for some u, v ∈ Σ∗,
then u is a prefix of w. A set X ⊆ Σ∗ is prefix-free if no word of X is the prefix
of any other word of X . A set X is prefix-closed if, for any w ∈ X , every prefix
of w is also in X . A set X is prefix-continuous [4] if, whenever x = uav ∈ X and
a ∈ Σ, then u ∈ X implies ua ∈ X . Both prefix-free and prefix-closed sets are
prefix-continuous.

A semiautomaton [6] S = (Σ, Q, I, E) consists of an alphabet Σ, a set Q of
states, a set I ⊆ Q of initial states, and a set E of edges of the form (p, a, q),
where p, q ∈ Q and a ∈ Σ. In general, these sets may be finite or infinite. An
edge (p, a, q) begins at p, ends at q, and has label a. It is also denoted as p

a
→ q.

A path π is a finite sequence

π = (q0, a1, q1)(q1, a2, q2) . . . (qk−1, ak, qk)

3

of consecutive edges, k > 0 being its length, q0, its beginning, qk, its end , and
word w = a1 . . . ak, its label . We also write q0

w
→ qk for π. Each state q has a

null path 1q from q to q with label 1.
If P ⊆ Q and w ∈ Σ∗, then

Pw = {q ∈ Q | p
w
→ q, for some p ∈ P}. (1)

Note that, for all P ⊆ Q, u, v ∈ Σ∗,

(Pu)v = P (uv). (2)

If P = {p}, we write pw for Pw; if Pw = {q}, we write Pw = q.
A semiautomaton S is accessible if, for every state q, there exists i ∈ I, w ∈

Σ∗ such that there is a path i
w
→ q.

For a semiautomaton S = (Σ, Q, I, E) we define the language |S| of S as the
set of all words that are labels of paths starting in initial states in S, that is

|S| = {w ∈ Σ∗ | Iw 6= ∅}. (3)

Observe that |S| is prefix-closed; in particular, 1 ∈ |S|.
A semiautomaton is complete if I 6= ∅ and, for every q ∈ Q and a ∈ Σ, there

is an edge (q, a, p) ∈ E, for some p ∈ Q. In a complete semiautomaton, qw 6= ∅,
for all q ∈ Q, w ∈ Σ∗. The language of a complete semiautomaton is Σ∗.

A semiautomaton S is deterministic if it has at most one initial state, and for
every q ∈ Q, a ∈ Σ, there is at most one edge (q, a, p). In case S is deterministic
and has initial state i, we write S = (Σ, Q, i, E).

In a semiautomaton S = (Σ, Q, I, E), we define Lq, the language of state
q ∈ Q, as follows:

Lq = {w ∈ Σ∗ | q ∈ Iw}. (4)

Clearly, if S is complete, each w ∈ Σ∗ belongs to at least one language Lq.

3 Settable Semiautomata

A semiautomaton is settable to state q if there exists a word w ∈ Σ∗ such that
Iw = q, and S is settable1, if it is settable to q for every q ∈ Q. Clearly, every
settable semiautomaton is accessible. Settability can be tested by examining the
accessible deterministic semiautomaton S∆ obtained from S by the well known
subset construction [7]. It is clear that S is settable to q if and only if {q} is a
state accessible from the initial state I in S∆.

From now on we consider only settable semiautomata. Let S = (Σ, Q, I, E)
be a settable semiautomaton, and let Rq = {w ∈ Σ∗ | Iw = q} be the set of all
words that set S to q. Note that Rq ⊆ Lq . Also, let RQ = ∪q∈QRq be the set
of setting words of S. Note that, if S is settable, then, for all p, q ∈ Q, Lp = Lq

implies p = q.

1 This notion was introduced by Janicki and Sekerinski [9] under the name “canonical
trace property” for nondeterministic automata with one initial state.

4

Let χ : Q → RQ be an arbitrary mapping assigning to q a word wq ∈ Rq .
Note that χ is injective. If P is a subset of Q, then Pχ = {pχ | p ∈ P}. The set
X = Qχ of words assigned to Q is the set of canonical words of S.

Unless stated otherwise, we assume that χ has been selected; we call the word
qχ the canonical word of state q. Furthermore, if w ∈ Σ∗ is such that q ∈ Iw, then
qχ is a canonical representative of w. The set of all canonical representatives of w

is denoted by Cw. Note that w may have more than one canonical representative,
or none at all; if w is canonical, however, then Cw = {w}. Note also that if 1 is
a setting word, then I is a singleton.

Using X and E, define a binary relation G ⊆ XΣ × X as follows:

G = {(ua, v) | u, v ∈ X, a ∈ Σ, (uχ−1, a, vχ−1) ∈ E, ua 6∈ X}. (5)

Using G, define a ternary relation H ⊆ X × Σ × X :

H = {(u, a, v) | (ua, v) ∈ G} (6)

= {(u, a, v) | u, v ∈ X, a ∈ Σ, (uχ−1, a, vχ−1) ∈ E, ua 6∈ X}. (7)

Using X , define a ternary relation K ⊆ X × Σ × X :

K = {(u, a, ua) | u, ua ∈ X, a ∈ Σ} (8)

Note that, if X is prefix-free, then K = ∅.

Proposition 1. If a ∈ Σ and u, ua ∈ X, then there is exactly one edge in E

leaving uχ−1 and labeled a, namely, (uχ−1, a, (ua)χ−1).

Proof. Suppose u, ua ∈ X and Iu = uχ−1 = p, I(ua) = (ua)χ−1 = q, for

p, q ∈ Q. Then, for some i ∈ I , there exists a path i
ua
→ q, and hence a path

i
u
→ r, for some r ∈ Q, and an edge (r, a, q) ∈ E. But Iu = p, by assumption;

hence we must have r = p. ut

Proposition 2. K = K ′, where

K ′ = {(u, a, v) | u, v ∈ X, a ∈ Σ, (uχ−1, a, vχ−1) ∈ E, ua ∈ X}. (9)

Proof. Suppose (u, a, v) ∈ K. Then v = ua, and u, v = ua ∈ X , a ∈ Σ. By
Proposition 1, there is an edge (uχ−1, a, (ua)χ−1). Hence (u, a, v) ∈ K ′. Con-
versely, suppose (u, a, v) ∈ K ′. Then ua ∈ X , and (uχ−1, a, vχ−1) ∈ E is an edge.
By Proposition 1, there is only one edge leaving uχ−1 and labeled a, namely,
(uχ−1, a, (ua)χ−1). Hence, we must have vχ−1 = (ua)χ−1, and v = ua, showing
that (u, a, v) ∈ K. ut

Let Sχ = (Σ, X, I ′, E′) be the semiautomaton in which I ′ = {iχ | i ∈ I} is
the set of canonical words of the initial states in I , and

E′ = H ∪ K ′ = H ∪ K (10)

= {(u, a, v) | u, v ∈ X, a ∈ Σ, (uχ−1, a, vχ−1) ∈ E}. (11)

5

Proposition 3. Semiautomata S and Sχ are isomorphic.

Proof. The mapping χ : Q → X = Qχ is bijective, and there is a one-to one
correspondence between the states in I and those in I ′. By (11), there is a one-
to-one correspondence between E and E ′. Consequently, χ is an isomorphism.

ut

a a

b

b

a

(a) (b)

ba

b

baa bi1

i2

q

a

b

b
b

a

a

Fig. 1. Semiautomaton S1

b{i1, i2}

a

a

b
{i2, q}{i1, q} {i1, i2, q}

{i2}

a

b

b

a
a

b

a, ba, ba

b ∅ {q}{i1}

Fig. 2. Semiautomaton S1∆

Example 1. Semiautomaton S1 of Fig. 1(a) is settable; suppose i2χ = b, i1χ =
ba, and qχ = baa. Relations G, H , and K are:

G = {(bb, b), (baaa, b), (baab, ba), (baab, baa)},

H = {(b, b, b), (baa, a, b), (baa, b, ba), (baa, b, baa)},

K = {(b, a, ba), (ba, a, baa)}.

Semiautomaton S1χ is shown in Fig. 1(b), where the two edges in K are shown
by thicker lines.

6

The deterministic semiautomaton S1∆ defined by the subset construction is
shown in Fig. 2.

We have I1 = {i1, i2} and C1 = {b, ba}; Ib = i2 and Cb = {b}; Ibab = ∅ and
Cbab = ∅; Iaaba = {i1, i2, q} and Caaba = {b, ba, baa}; etc.

Word baab is in Lq, but it is not in Rq , since Ibaab = {i1, q}. ut

4 Prefix-Rewriting Systems

Let Σ be an alphabet (finite or infinite). Let R ⊆ Σ∗ ×Σ∗ be a binary relation
on Σ∗. The pairs in R are called rewriting rules and R is a prefix-rewriting sys-
tem [10]. Prefix-rewriting systems can also be viewed as ground-term-rewriting
systems, and we use some terminology from [11]. Given any w, w′ ∈ Σ∗, we say
that w rewrites to w′, written w |= w′, if there is some (y, v) ∈ R such that
w = yx and w′ = vx. We say then that rule (y, v) applies to w.

The reflexive and transitive closure of |= is denoted by |=∗. Thus, w |=∗ w′

if and only if w = w0 |= w1 |= w2 |= · · · |= wn = w′ for some n, and n is the
length of this derivation of w′ from w. In case w derives w′ in n steps, we also
write w |=n w′; note that w |=0 w′ if and only if w = w′.

A word w ∈ Σ∗ is irreducible by R (or simply irreducible if R is understood),
if there is no w′ ∈ Σ∗, such that w |= w′, that is, if no rule applies to w. System
R is right-reduced if, for every pair (y, v) in R, v is irreducible by R.

A prefix-rewriting system is Noetherian if there is no word w from which a
derivation of infinite length exists.

Suppose w = ux ∈ Σ∗. We call x a key suffix of w if (u, v) ∈ R, for some
v ∈ Σ∗.

The following result, proved in [11] for ground-term-rewriting systems, ap-
plies also to prefix-rewriting systems. For completeness, we provide a proof of
this theorem modified to prefix-rewriting systems.

Theorem 1. If R is right-reduced, then it is Noetherian.

Proof. Suppose R is right-reduced. If w |= w′, then w = ux and w′ = vx, for
some u, v, x ∈ Σ∗, where (u, v) ∈ R. Suppose next that w′ = vx = u′x′ |= v′x′ =
w′′. Since R is right-reduced, no rule applies to v; hence v must be a proper
prefix of u′, and key suffix x′ is shorter than key suffix x. If the key suffix is
x′ = 1, the derivation stops. Since the key suffix decreases with each step, R is
Noetherian. ut

Let L = {u | (u, v) ∈ R} be the set of all left-hand sides of the pairs in R.

Proposition 4. Every word w ∈ Σ∗ has at most one key suffix if and only if L

is prefix-free.

Proof. Suppose L is prefix-free, and w ∈ Σ∗ has two key suffixes, x and x′, that
is, w = ux = u′x′, where x 6= x′. Then either u is a prefix of u′ or vice versa. This
contradicts the fact that L is prefix-free. Hence w has at most one key suffix.

7

Conversely, suppose every word has at most one key suffix and L is not prefix-
free. Then there exist u and u′ in L such that u′ = ux, for some u, u′ ∈ Σ∗,
x ∈ Σ+. Then u′ has key suffixes x and 1, which is a contradiction. Thus L must
be prefix-free. ut

Proposition 4 states that, if L is prefix-free and several rules apply to a word
w, they all apply to the same prefix of w.

5 Prefix-Rewriting in Settable Semiautomata

Our objective is to define a rewriting system that allows us to transform any word
to any one of its canonical representatives. Let S = (Σ, Q, I, E) be a settable
semiautomaton, and let X be a set of canonical words for S. We use the set G

defined by (5) as a prefix rewriting system. Thus, if (y, v) is a pair in G, then
yx |= vx for all x ∈ Σ∗.

Proposition 5. If w |=∗ w′, then Iw′ ⊆ Iw.

Proof. First, if (ua, v) ∈ G, then Iu = p, Iv = q, for some p, q ∈ Q, and
(p, a, q) ∈ E. Thus q ∈ Iua, and Iv ⊆ Iua.

Second, if w = uax |= vx = w′, then (ua, v) ∈ G, and Iv ⊆ Iua. Conse-
quently, Iw′ = Ivx ⊆ Iuax = Iw.

Finally, if w |=0 w′, then w = w′, and the proposition holds trivially. Now
suppose that w |=n w′ implies Iw′ ⊆ Iw, and consider w′′ such that w′ |= w′′.
Then Iw′′ ⊆ Iw′, the induction step goes through, and the claim holds. ut

The following result is a generalization of Lemma 3 of [4].

Lemma 1. For w ∈ Σ∗, the following hold:

1. If no prefix of w is canonical, then w |=∗ w′ implies w′ = w.
2. If w has a canonical prefix and w |=∗ w′, then w′ has a canonical prefix.
3. Let w′ be any canonical representative of w. Then w |=∗ w′ if and only if w

has a canonical prefix.

Proof. Suppose no prefix of w is canonical. Then no rule applies to w, because
all the rules are of the form (ua, v), where u is canonical. Consequently, w can
only derive itself, and it can do so, because |=∗ is reflexive.

For the second claim, suppose w has a canonical prefix and w |=∗ w′. If
w |=0 w′, then w = w′, and the claim holds. Assume now that w |= w′. Then
w has the form w = uax, where u, x ∈ Σ∗, a ∈ Σ, u is canonical and ua is not.
Also w′ = vx, where v is canonical, and so w′ has a canonical prefix. The claim
now follows by transitivity.

For the third claim, suppose that w has a canonical prefix. We first show by
induction on the length of w that w |=∗ w′ for all w′ ∈ Cw.

If w = 1, then w can have only one canonical prefix, namely itself, and I

is a singleton, say, I = {i}. Thus I1 = {i}1 = i, and 1 has only one canonical
representative, namely, itself. Since 1 |=0 1, the claim holds for the basis case.

8

Now suppose that every word of length less than or equal to n that has a
canonical prefix satisfies the claim. Consider w = ua with |u| = n and a ∈ Σ,
where w has a canonical prefix. If w itself is canonical, then it has only one
canonical representative, namely itself, and w |=0 w. If w is not canonical, then
u has a canonical prefix, and the induction assumption applies to u. Consider a
canonical representative w′ ∈ Cw of w. We want to show that w |=∗ w′.

Since w′ is a canonical representative of w = ua, there exist i, i′ ∈ I , p, q ∈ Q,

paths i
u
→ p, i′

w′

→ q, and edge (p, a, q), such that Iw′ = q and q ∈ Iw. By the
induction assumption, u derives every one of its canonical representatives. In
particular u |=∗ u′ where Iu′ = p. Then also ua |=∗ u′a. If u′a is canonical,
then u′a = w′, w = ua |=∗ u′a = w′, and we’re done. Otherwise, since (p, a, q)
is an edge of S, there is a rule (u′a, w′) in G, and w = ua |=∗ u′a |= w′, as
required. Thus the induction step goes through, showing that every word having
a canonical prefix derives all of its canonical representatives.

Conversely, if w does not have a canonical prefix, then it is not canonical,
and can only derive itself. Hence w cannot derive any canonical word. ut

Example 2. Return to the semiautomaton S1 of Fig. 1(a), and suppose the
canonical words are i1χ = baaaa, i2χ = b, and qχ = baa. Here K = ∅ and

G = {(ba, baaaa)1, (bb, b)2, (baaa, b)3, (baab, baa)4, (baab, baaaa)5, (baaaaa, baa)6},

where the pairs of G are numbered by subscripts for convenience.
Consider word baabab; since Ibaabab = Q, word baabab has three canonical

representatives, derived as follows:

baabab
4

|= baaab
3

|= bb
2

|= b,

baabab
5

|= baaaaab
3

|= baab
4

|= baa,

baabab
5

|= baaaaab
3

|= baab
5

|= baaaa.

Repeated use of Rule 1 leads to an infinite derivation. Hence this system is
not Noetherian. Note also that canonical words may be reducible. For example,

baa
1

|= baaaaa
6

|= baa. ut

6 Prefix-Continuous Canonical Sets

If a semiautomaton has a prefix-continuous canonical set, the rewriting system
G is better behaved, as we shall see. However, not all semiautomata have such
canonical sets. For example, consider the settable semiautomaton S2 of Fig. 3.
The canonical word of state i must be 1, and the canonical words of states p and
q must be of length at least 2. Hence, there is no prefix-continuous canonical set.

The following result is Lemma 4 of [4].

9

a

q

b

c

a

i

p

Fig. 3. Semiautomaton S2

Lemma 2. If X is prefix-continuous, then L is prefix-free. If X (and therefore
also the semiautomaton) is finite, the converse also holds.

It is shown in [4] that there is a counterexample to the converse of Lemma 2
if X is infinite.

From Lemma 2 and Proposition 4 we have:

Corollary 1. If X is prefix-continuous, every word w ∈ Σ∗ has at most one
key suffix.

Definition 1. Given a set X of canonical words, we define the following subsets:

– W = Σ∗ \ XΣ∗ is the set of acanonical words.
– X0 = X \ XΣ+ is the set of minimal canonical words.
– Y = X0Σ

+ is the set of post-canonical words.

Note that (W, X0, Y) is a partition of Σ∗.
The following result is implied by Lemma 6 of [4].

Lemma 3. If X is prefix-continuous and w ∈ X, then w is irreducible by G.

The following result is a generalization of Theorem 4 of [4].

Theorem 2. The rewriting system G is Noetherian if and only if the set X of
canonical words is prefix-continuous.

Proof. If X is prefix-continuous, and w ∈ X , then w is irreducible by G, by
Lemma 3. Since the right member of every pair in G is in X , G is right-reduced,
and therefore Noetherian, by Theorem 1.

Conversely, suppose that X is not prefix-continuous. Then there exists w =
uax ∈ X such that u ∈ X , but ua 6∈ X . Since w is canonical, there exists some
i ∈ I and a path i

w
→ q, where qχ = w. Since w = uax, this path consists of path

i
u
→ r, where rχ = u, edge (r, a, p), for some p ∈ Q and a path p

x
→ q.

Since ua is not canonical and p ∈ Iua, there is a canonical word v such that
Iv = p, and (ua, v) is a rule in G. Thus w = uax |= vx. Since q ∈ px, we
also have q ∈ Ivx. Thus Ivx 6= ∅. By Proposition 5, Ivx ⊆ Iuax = Iw. Since

10

Ivx ⊆ Iw, and Iw = q, then also Ivx = q, and w is the canonical representative
of vx.

By Lemma 1 (3), vx derives all of its canonical representatives. Hence vx |=∗

w. Altogether, w |= vx |=∗ w, we have an infinite derivation, and the rewriting
system is not Noetherian. ut

Proposition 6. If X is prefix-continuous, then (Σ∗, |=∗) is a partially ordered
set.

Proof. By definition, |=∗ is reflexive and transitive. If w |=∗ w′, w′ |=∗ w, and
w 6= w′, then G is not Noetherian, contradicting Theorem 2. Hence |=∗ is anti-
symmetric, and hence a partial order. Clearly, irreducible words are minimal. ut

We use the convention that w′ is “below” w, if w |=∗ w′. In the partially
ordered set (Σ∗, |=∗) the irreducible words are minimal.

By Lemma 1(1), all acanonical words are irreducible. In the prefix-continuous
case, all the words that can be derived from a word that is not acanonical can
be found using Algorithm Derive below.

Algorithm 1 Derive (w ∈ X0Σ
∗)

1: D← {w}
2: u← longest canonical prefix of w

3: if u 6= w then

4: {w has the form uax where a ∈ Σ, x ∈ Σ∗}
5: p← Iu

6: for all q ∈ Q such that (p, a, q) ∈ E do

7: v ← qχ

8: D ← D ∪Derive(vx)
9: end for

10: end if

11: return D

Example 3. Return to the semiautomaton of Example 1(a) with i2χ = b, i1χ =
ba, and qχ = baa. The set {b, ba, baa} is prefix-continuous. The rewriting rules
are

(bb, b)1, (baaa, b)2, (baab, ba)3, (baab, baa)4.

The set of acanonical words is 1 + aΣ∗, word b is the only minimal canonical
word, and the set of post-canonical words is bΣ+.

We now evaluate Derive(baabba). The longest canonical prefix of baabba is
baa, and p = q. There are two edges: (q, b, i1) and (q, b, q). We use (q, b, i1) first,
that is, apply Rule 3; then v = i1χ,

baabba |= baba,

11

and vx = baba is irreducible, since there are no edges from (ba)χ−1 = i1 labeled
b. Thus Derive(baba) = baba, and D = {baabba, baba}.

We use (q, b, q) next, that is, apply Rule 4; then v = qχ,

baabba |= baaba,

vx = baaba and D = {baabba, baba} ∪ Derive(baaba).
To find Derive(baaba), Rules 3 and 4 are again applicable, yielding

baaba |= baa,

where baa is irreducible, and

baaba |= baaa,

which leads to
baaa |= b,

by Rule 2.
Altogether, Derive(baabba) = {baabba, baba, baaba, baa, baaa, b}.The deriva-

tions are shown in Fig. 4.

b

baba baaba

baabba

baa baaa

4

43

3

2

Fig. 4. Derive(baaba)

The irreducible words are the two canonical words b and baa, and word baba

which is not in the language of the semiautomaton. ut

7 Rewriting Systems for All Words

As in [4], we wish to be able to derive the canonical representatives of acanonical
words. To accomplish this, we define the following acanonical rewriting rules:

A = {(1, iχ) | i ∈ I}.

These rules are used differently than the rules of G. A rule of A is used as
a pre-processing step for an acanonical word w. By applying such a rule, we
rewrite w as iχw, and we now have a post-canonical word iχw. We then use

12

only the prefix-rewriting rules of G to transform iχw to any one of its canonical
representatives, thus obtaining all canonical representatives of w.

Let rewriting system Ĝ be defined as Ĝ = G ∪ A, with the restriction that
an acanonical rule can be applied only once to an acanonical word, and then the
rules of G are used. In this section, w |=∗ w′ means that w′ is derivable from w

in the rewriting system Ĝ. The next theorem summarizes the properties of Ĝ;
these claims are easily verified.

Theorem 3. Let S be a settable semiautomaton with canonical set X. Then

– Every word derives in Ĝ all of its canonical representatives.

– Ĝ is Noetherian if and only if X is prefix-continuous.

– The acanonical words are maximal in the partial order (Σ∗, |=∗).

Example 4. For the canonical word assignment of Example 5, the set of acanon-
ical rules is:

A = {(1, b), (1, ba)}.

To derive the canonical representatives of the acanonical word 1, it suffices to
use the two acanonical rules 1 |= b and 1 |= ba. Similarly, for a, we have a |= ba

and a |= baa. For aa we have aa |= baa, where baa is canonical, and aa |= baaa.
In the second case, we then use Rule 2 of G to obtain baaa |= b, thus finding the
second canonical representative of aa. In the case of ab, we have ab |= bab, from
which no further derivation is possible; note that bab is not in the language of
the semiautomaton S1. We also have ab |= baab, and we can then derive the two
canonical representatives of ab by using the rules baab |= ba and baab |= baa. ut

8 Complete Semiautomata

In the case of complete semiautomata, we have the following result:

Theorem 4. Let S = (Σ, Q, I, E) be a complete settable semiautomaton with
X as the set of canonical words. If X is prefix-continuous, a word is irreducible
in Ĝ if and only if it is canonical.

Proof. By Lemma 3, if X is prefix-continuous and w is canonical, then it is
irreducible. Conversely, if S is complete, then Iw 6= ∅ for every word w, and
every w has at least one canonical representative. If w is post-canonical but not
canonical, then it derives all of its canonical representatives by Lemma 1 (3), and
hence is reducible. Therefore, if w is post-canonical and irreducible, it must be
canonical. If w is acanonical, then it is reducible to a post-canonical word w′ by
its acanonical rules. Finally, if w is neither post-canonical nor acanonical, then it
must be minimal canonical, and hence canonical. Altogether, if w is irreducible,
it must be canonical. ut

13

b a

b

b

a

(a) (b)

ba

b

baa bi1

i2

q

b

b
b

a

a

ab a

Fig. 5. Semiautomaton S3

Example 5. The semiautomaton of Fig. 5 is complete. Suppose i2χ = b, i1χ = ba,
and qχ = baa. The set {b, ba, baa} is prefix-continuous. The rewriting rules are

G = {(bb, b)1, (bab, b)2, (baaa, b)3, (baab, ba)4, (baab, baa)5}

and
A = {(1, b)6, (1, ba)7}.

The set of acanonical words is 1 + aΣ∗, word b is the only minimal canonical
word, and the set of post-canonical words is bΣ+.

The derivations of the canonical words from w = baabba are:

1. baabba
4

|= baba
2

|= ba,

2. baabba
5

|= baaba
4

|= baa,

3. baabba
5

|= baaba
5

|= baaa
3

|= b. ut

9 Examples of Nondeterministic Modules

A trace-assertion specification [4] of a complete deterministic semiautomaton
S = (Σ, Q, i, E) consists of a set X ⊆ Σ∗ of canonical words, an initial canonical
word x0 ∈ X , and a relation Ĝ ⊆ Σ∗ ×Σ∗, which permits us to reconstruct the
edges of the semiautomaton, and also defines a prefix-rewriting system allowing
us to rewrite any word as its canonical representative. In the deterministic case,
a word y can appear as the left-hand side of a pair (y, v) in Ĝ at most once. The
smallest right congruence containing Ĝ is precisely the state-equivalence relation
≡, where w ≡ w′ if and only if iw = iw′.

In the case of a nondeterministic settable semiautomaton, we have a set
X ⊆ Σ∗ of canonical words, a set X0 ⊆ X of initial canonical words, and a
relation Ĝ ⊆ Σ∗ × Σ∗. The smallest right congruence containing Ĝ is no longer
an equivalence relation, but it is a compatibility , meaning that it is reflexive and
symmetric. In general, Ĝ allows us to derive from any word all of its canonical
representatives. Moreover, if X is prefix-continuous, then the rewriting system
has no infinite derivations.

14

9.1 Primitive Arbiter

The semiautomaton of a primitive arbiter [5] is shown in Fig. 6. The input
alphabet is Σ = {0, a, b, 2}. If the input is 0, there are no requests. If the input
is a (respectively b), user a (respectively b) is requesting service, whereas both
users are asking for service when the input is 2. In state 0 no requests are
being served, whereas in state a (respectively b), user a (respectively b) is being
served. If there are two requests in state 0, either user a or user b is selected
nondeterministically. If user a is picked, then user a continues to be served if the
request continues, or if both users are asking for service. If there are no requests
in state a, the arbiter returns to state 0. If user a now removes its request and
user b puts in a request at the same time, the arbiter first resets to state 0, and
then offers service to user b. The transitions from state b are symmetric.

b, 2a

0

b

b, 2

0, b

a, 2

0, a

0

a, 2

Fig. 6. Simple arbiter

The arbiter semiautomaton is settable and complete. Suppose 0χ = 1, aχ =
a, and bχ = b; this is a prefix-closed set, and there are no acanonical rules. Here,
X = {1, a, b}, X0 = {1}, and

G = {(0, 1), (2, a), (2, b), (a0, 1), (aa, a), (ab, 1), (a2, a), (b0, 1), (ba, 1), (bb, b), (b2, b)}.

Word 02a20a has the following derivations:

02a20a |= 2a20a |= aa20a |= a20a |= a0a |= a,

02a20a |= 2a20a |= ba20a |= 20a |= a0a |= a,

02a20a |= 2a20a |= ba20a |= 20a |= b0a |= a.

9.2 An Urn

An urn, called “unique integer module” in [9], contains two balls labeled 1 and
2. The operation g (get) randomly selects one of the balls and removes it from
the urn. The second get operation removes the second ball.

15

The automaton of the urn is shown in Fig. 7. If we ignore the outputs, the
resulting semiautomaton is settable to state {1, 2} by 1, and to state ∅, by gg.
However, it is not settable to state {1} or {2}, and our theory is not applicable.

If we consider the semiautomaton input to be the pair (g, j), where j ∈
{1, 2}, then the resulting semiautomaton is deterministic, and our theory ap-
plies. Let (g, j) be represented by gj , for j = 1, 2. Then we can use the canon-
ical set {1, g1, g2, g1g2}, initial canonical set {1}, G = {(g2g1, g1g2)}, and K =
{(1, g1, g1), (1, g2, g2), (g1, g2, g1g2)}.

{1}

{1, 2} ∅

g, 2

g, 1g, 2

g, 1 {2}

Fig. 7. An urn

9.3 Drunk counter

This example is a simplified version of the “drunk stack” module described
in [9]; see also [4]. The counter is initially 0. It has two operations: a (add),
which adds 1 to the present count, and s (subtract), which, if the count is ≥ 2,
nondeterministically subtracts either 1 or 2 from the present count. If the present
count is 1, then s subtracts 1, and if the count is 0, s does not change the count.

s

a

s

a

s s

a
0 1 2

a
· · · n

s

s s

Fig. 8. A drunk counter

The counter semiautomaton of Fig. 8 is complete and settable. An obvious
set of canonical words for this counter is X = {1, a, aa, aaa. . . .}, with X0 = {1}.
Here X is prefix closed, and there are no acanonical words. Relation G is infinite
of course, but it is finitely representable as follows:

G = {(s, 1), (as, 1)} ∪ {(ans, an−1), (ans, an−2) | n ≥ 2}.

16

The counter that one would model on the “very drunk stack” of [9] would
have an add operation which would nondeterministically choose to add either 1
or 2 to the counter contents. One verifies that this semiautomaton is not settable.

Acknowledgment This research was supported by the Natural Sciences and
Engineering Research Council of Canada under grant No. OGP0000871. I am
very grateful to Elad Lahav for suggesting several important improvements to
this paper.

References

1. Bartussek, W. and Parnas, D.: Using Assertions About Traces to Write Abstract
Specifications for Software Modules. Report No. TR77-012, University of North
Carolina at Chapel Hill, December (1977) 26 pp. Reprinted in Software Funda-
mentals (Collected Works by D. L. Parnas), D. M. Hoffman and D. M. Weiss, eds.,
Addison-Wesley (2001) 9–28

2. Book, R. V. and Otto, F.: String-Rewriting Systems. Springer-Verlag, Berlin (1993)
3. Brzozowski, J. A. and Jürgensen, H.: Theory of Deterministic Trace-

Assertion Specifications. Technical Report CS-2004-30, School of Com-
puter Science, University of Waterloo, Waterloo, ON, Canada, May 2004:
http://www.cs.uwaterloo.ca/cs-archive/CS-2004/CS-2004.shtml

4. Brzozowski, J. A. and Jürgensen, H.: Representation of Semiautomata by Canoni-
cal Words and Equivalences, Pre-Proceedings, Descriptional Complexity of Formal
Systems, 6th Workshop, London, ON, Canada, July 26–28, 2004
To appear in Int. J. of Foundations of Computer Science

5. Brzozowski, J. A. and Zhang, H.: Delay-Insensitivity and Semi-Modularity, Formal
Methods in System Design 16 (2000) 191–218

6. Ginzburg, A.: Algebraic Theory of Automata, Academic Press, New York (1968)
7. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, New York

(1974)
8. Iglewski, M., Kubica, M. and Madey, J.: Trace Specifications of Non-deterministic

Multi-object Modules. Technical Report TR 95-05 (205), Institute of Informatics,
Warsaw University, Warsaw, Poland, March 1995

9. Janicki, R. and Sekerinski, E.: Foundations of the Trace Assertion Method of
Module Interface Specifications. IEEE Trans. Software Engineering, vol. 27, no. 7,
(2001), 577–598

10. Kuhn, N. and Madlener, K.: A Method for Enumerating Cosets of a Group Pre-
sented by a Canonical System. Proc. ACM-SIGSAM Int. Symp. on Symbolic and
Algebraic Computation (1989) 338–350

11. Snyder, W.: Efficient Ground Completion: An O(n log n) Algorithm for Generating
Reduced Sets of Ground Rewrite Rules Equivalent to a Set of Ground Equations
E. In Dershowitz, N. (ed.), Rewriting Techniques and Applications. Proc. RTA-89,
LNCS 355 (1989) 419–433

