
Gate Circuits with Feedback in Finite Algebras of Transients

Janusz Brzozowski

David R. Cheriton School of Computer Science

University of Waterloo

Waterloo, ON, Canada N2L 3G1

email: brzozo@uwaterloo.ca

Yuli Ye

Department of Computer Science

University of Toronto

Toronto, ON, Canada M5S 3G4

email: y3ye@cs.toronto.edu

October 19, 2006

Abstract

Simulation of gate circuits is an efficient method of detecting hazards and oscillations that
may occur in the presence of gate and wire delays. Ternary simulation, introduced by Eichel-
berger in 1965, consists of two algorithms, called A and B, and its results are well understood.
Ternary simulation has been generalized by Brzozowski and Ésik in 2003 to an infinite algebra
C and finite algebras Ck, k ≥ 2, where C2 is ternary algebra. Simulation in C has been studied
extensively for feedback-free circuits, for which Algorithm A always terminates and Algorithm B
is unnecessary. We study the simulation of gate circuits with feedback in finite algebras Ck, in
which Algorithms A and B always terminate. The Boolean functions of the gates are restricted
to a set G, where G = H ∪ H̃, H = {or, xor}, and H̃ is the set of functions obtained by
complementing any number of inputs and/or the output of functions from H. For gate func-
tions restricted to G, we prove that Algorithm B in Algebra Ck, for k > 2 provides no more
information than Algorithm B in ternary algebra.

1 Introduction

We study the following analysis problem for gate circuits. Suppose a circuit is started in a stable
state and some of its inputs change once, and are kept indefinitely at their final values. We call this

a transition of the circuit. We wait an appropriately long time [5] and observe the gate outputs.
Some gates may remain in their initial states, others may change one or more times, and still others
may oscillate, that is, they may take on the values 0 and 1 infinitely often.

Hazards are undesirable pulses that may occur during a transition under certain distributions of
gate and wire delays. A static hazard exists in a gate if the gate output is the same before and after
the transition, but takes on the complementary value temporarily during the transition. A dynamic
hazard exists if a gate is supposed to change from its initial value to the complementary value only
once, but changes several times instead. In general, hazards are undesirable, because they may
lead to computation errors. Usually oscillations are also undesirable.

It is possible to detect hazards and oscillations using binary analysis, that is, analysis based on
Boolean algebra [5]. However, such methods are exponential in the number of gates and wires.
Consequently, several algebras have been proposed over the years to find an efficient multi-valued
simulation method to detect these phenomena. For a recent survey of these algebras see [3].

The first algebra with more than two values used for hazard detection was ternary. Ternary
simulation was introduced by Eichelberger [6], and uses the “uncertain” value Φ in addition to the
binary values 0 and 1. It has two parts, called Algorithms A and B, which always terminate for any
circuit; the resulting states of the gates after the algorithms are denoted yA and yB , respectively.
Ternary simulation is well understood [5], as we now explain.

The circuit is started in a stable binary state and some inputs change. The changing inputs are set
to Φ in Algorithm A. The circuit is then analyzed in ternary algebra to determine whether some
gate outputs become Φ as well. If a gate retains its binary value in yA, then it does not change
during the transition. If it becomes Φ, then it is possible for it to change, depending on the relative
delays in the circuit.

In Algorithm B, the circuit starts in state yA, and the inputs that are Φ are set to their final binary
values. The circuit is again analyzed in ternary algebra. If a gate is Φ in yB , then it may have
a nontransient oscillation – one that can persist indefinitely. If a gate has the same value in the
initial state and in yB , but is Φ in yA, then it has a static hazard. Ternary simulation is unable to
detect dynamic hazards.

In 2003, ternary simulation was generalized by Brzozowski and Ésik [2] to an infinite algebra C and
finite algebras Ck, for k = 2, 3, These algebras, with and without small modifications, include
all the successful multi-valued algebras used in the past, and C2 is ternary algebra. Algebra C uses
the set of transients as the underlying set, where a transient is a nonempty word of alternating 0s
and 1s.

Simulation in Algebra C was studied for feedback-free circuits [2, 4, 7, 8]. Algorithm A in C always
terminates for these circuits, detects all hazards, permits us to count the number of signal changes

2

occurring under worst-case conditions, and is polynomial in the number of gates. The results of
the simulation are easily understood. For example, if a gate has the transient 1010 in yA, then the
gate’s initial value is 1, its final value is 0, and it may change three times during the transition.

For combinational circuits, simulation in Algebra C has been compared with binary analysis. It
was shown in [4] that transient simulation covers binary analysis, meaning that it predicts all the
changes that are possible in binary analysis. It is easy, however, to find examples of circuits in which
transient simulation predicts more changes than binary analysis. The first step towards proving a
converse of this result was made in [7], where it was shown that binary analysis covers simulation for
feedback-free circuits of 1- and 2-input gates, if wire delays are taken into account. A more general
result was proved in [8], where it was shown that binary analysis covers simulation for feedback-free
circuits constructed with gates from G, where G = H∪H̃, H = {or, xor}, H̃ is the set of functions
obtained by complementing any number of inputs and/or the output of functions from H, and or

and xor can have arbitrary numbers of inputs. Note that G includes all the Boolean functions of
two variables, except the two constant functions, as well as the commonly used and, nor, nand

and xnor functions with any numbers of inputs. It was also shown in [8] that there are Boolean
functions for which this result does not hold, if we add a constant number of delays per wire.

For a circuit with feedback, Algorithm A may not terminate, and Algorithm B is then not applicable.
However, it is possible to use an algebra Ck, for any k > 1, in which Algorithm A always terminates.
The underlying set of values for Ck is the set of all transients of length less that k, plus Φk, a value
that represents all the transients of length ≥ k. Thus Ck approximates C in the sense that it detects
all the transients up to length k − 1 precisely, and lumps all longer transients into Φk.

Since Algorithm A always terminates in Ck, Algorithm B is again applicable. In this paper we
characterize the results of Algorithm B in Algebra Ck, for k > 2. We prove that, for circuits
with gates from G, these results contain the same information as those obtained using the ternary
algebra C2.

2 Gate Networks

Gate networks are defined in terms of directed graphs and Boolean functions.

We base our terminology and notation about graphs on that of [1]. A digraph (directed graph) D is
an ordered triple D = (V,E, ψ), where V is a nonempty set of vertices, E is a set (disjoint from V)
of arcs, and ψ is an incidence function assigning to each arc of D an ordered pair of (not necessarily
distinct) vertices of D. If e ∈ E, u, v ∈ V , and ψ(e) = (u, v), then e joins u to v, t(e) = u is the
tail of e, and h(e) = v is the head .

3

For r ≥ 1, we define [r] = {1, . . . , r}. A directed walk in D is a finite, nonempty sequence W =
v0, e1, v1, . . . , er, vr, whose terms are alternately vertices and arcs, such that for each i ∈ [r], ei

joins vi−1 to vi; v0 is the origin of W , vr is its terminus, and v1, . . . , vr−1 are internal vertices.
The length of a walk W is r; note that v0 is a walk of length 0. A directed trail is a directed walk
in which all the arcs are distinct. A directed path is a directed trail in which all the vertices are
distinct. A directed walk is closed if r ≥ 1 and vr = v0. A directed cycle is a closed directed trail
whose origin and internal vertices are distinct.

Since we are dealing only with directed graphs, we simply use the terms walk, trail, path, cycle for
directed walk, etc.

Suppose D = (V,E, ψ) is a digraph. We assume that D has at least one vertex of indegree 0 and
at least one vertex of indegree > 0. The vertices with indegree 0 are (external) inputs, and are
labeled x1, . . . , xm; let Vx = {x1, . . . , xm}. The remaining vertices are labeled y1, . . . , yn and are
gates. Let Vy = {y1, . . . , yn}; then V = Vx ∪ Vy. Thus D = (Vx ∪ Vy, E, ψ), where Vx ∩ Vy = ∅.

Let B = {0, 1} be the set of the two binary values. A total state is an assignment s : V → B. A
particular total state is denoted by an (m + n)-tuple s = (s1, . . . , sm+n). The state si of vertex vi

in total state s is also denoted by s(vi). The state of an arc e from u to v in total state s is denoted
by s(e) and is defined as the state of vertex u, that is, s(e) = s(t(e)).

The arcs ei1 , . . . , eini
such that h(ei1) = . . . = h(eini

) = yi ∈ Vy are the ni inputs of gate yi, ni > 0;
these are all the arcs with head yi. We assign a Boolean function fi : Bni → B to each gate yi; this
is its excitation function.

A (gate) network N is a 4-tuple N = (Vx ∪Vy, E, ψ, f), where (Vx ∪Vy, E, ψ) is a digraph as above,
and f = (f1, . . . , fn) is the n-tuple of excitation functions.

We denote or by ∨, and by ∧, and complement by −.

3 Extensions of Boolean Functions

A transient [2] is a nonempty binary word of alternating 0s and 1s, that is, it is an element of
the set T = (01)∗ ∪ (10)∗ ∪ (01)∗0 ∪ (10)∗1. Transients are denoted by boldface letters. If x is a
transient, then α(x), and ω(x) are the first and last letters of x, respectively. Also z(x) and u(x)
are the numbers of 0s and 1s in x, respectively, and l(x) is the length of x.

We extend a Boolean function f : Bn → B to a Boolean function f : Tn → T as follows. For an
n-tuple x = (x1, . . . ,xn) of transients, the digraph F (x) of a Boolean function f has as vertices

4

all the n-tuples v = (v1, . . . ,vn) of transients, where vi is a nonempty prefix of xi, for all i ∈ [n].
There is an arc from vertex v = (v1, . . . ,vn) to vertex v′ = (v′

1, . . . ,v
′
n) if and only if v and v′ differ

in exactly one coordinate, say i, and v′
i = vic, where c ∈ B. Graph F (x) shows all possible orders

in which the n variables can change along paths from the initial vertex (α(x1), . . . , α(xn)) to the
final vertex (x1, . . . ,xn). Moreover, with each vertex v we associate an output f(ω(v1), . . . , ω(vn)).

A contraction of a binary word w is a transient obtained by replacing all sequences of consecutive
0s by a single 0 and all sequences of consecutive 1s by a single 1. For example, the contraction
of 011000111 is 0101. In the graph F (x) for a Boolean function f , the output of a path π is the
sequence of outputs of the vertices of π; it is denoted as w(π). The transient of a path π is the
contraction z(π) of w(π). The value of the extension f(x1, . . . ,xn) of f is the longest possible path
transient in F (x). It represents the longest transient that might occur during the input change
from (α(x1), . . . , α(xn)) to (x1, . . . ,xn).

3.1 The Role of Complements

Proposition 1 Suppose n ≥ 1 and f, g : Bn → B are Boolean functions. If, for all x1, . . . , xn ∈
Bn, f(x1, . . . , xi−1, xi, xi+1, . . . , xn) = g(x1, . . . , xi−1, xi, xi+1, . . . , xn), then, for all x1, . . . ,xn ∈ T,
f(x1, . . . ,xi−1,xi,xi+1, . . . ,xn) = g(x1, . . . ,xi−1,xi,xi+1, . . . ,xn).

Proof: Let x = (x1, . . . ,xi−1,xi,xi+1, . . . ,xn) and x′ = (x1, . . . ,xi−1,xi,xi+1, . . . ,xn). For each
path π in F (x) there is a path π′ in G(x′), obtained from π by complementing the ith component
in each vertex of π, such that w(π) = w(π ′), and vice versa. Thus f(x) = g(x′).

This proposition permits us to consider a gate realizing the function f as a composition of an
inverter for xi and a gate realizing g.

Proposition 2 Let n ≥ 1 and let f, g : Bn → B be Boolean functions. If, for all x1, . . . , xn ∈ Bn,
f(x1, . . . , xn) = g(x1, . . . , xn), then for all x1, . . . ,xn ∈ T, f(x1, . . . ,xn) = g(x1, . . . ,xn).

Proof: For each path π in F (x), the identical path π ′ in G(x) has the property that w(π) = w(π ′),
and vice versa. Thus f(x) = g(x).

This proposition permits us to consider a gate realizing the function f as a composition of a gate
realizing g followed by an inverter.

5

3.2 Dominant Input Values

Definition 1 Let n > 1 and let f : Bn → B be a Boolean function. A value d ∈ B of argument
xi of f is dominant for f if the value of f is independent of the other arguments when xi = d,
that is, if f(x1, . . . , xi−1, d, xi+1, . . . , xn) = f(x′1, . . . , x

′
i−1, d, x

′
i+1, . . . , x

′
n), for all xj , x

′
j ∈ Bn−1,

j ∈ [n], j 6= i. We denote the value of f when xi = d by fxi=d. If f is the extension of f , then
a transient value t of argument xi is dominant for f if the value of f is independent of the other
arguments when xi = t.

For example, if f(x1, x2) = x1 ∨ x2, then x1 = 0 and x2 = 1 are dominant.

Proposition 3 Let n ≥ 1, let f : Bn → B be a Boolean function that depends on each of its
arguments. If none of the xi is a single letter, then the length of f(x1, . . . ,xn) is at least the
maximum of the lengths of the xi.

Proposition 3 was proved in [2]; we now use it to prove the following result:

Proposition 4 Let n > 1, let f : Bn → B be a Boolean function that depends on each of its
arguments. A transient value xi = t is dominant for f if and only if it is binary, say t = d, and
xi = d is dominant for f . Also, if xi = d is dominant for f , then f

xi=d = fxi=d.

Proof: Suppose t 6∈ B is dominant for f ; then

f(x1, . . . ,xi−1, t,xi+1, . . . ,xn) = f(x′
1, . . . ,x

′
i−1, t,x

′
i+1, . . . ,x

′
n) = s,

for all (x1, . . . ,xi−1,xi+1, . . . ,xn), (x′
1, . . . ,x

′
i−1,x

′
i+1, . . . ,x

′
n) ∈ Tn−1, and some s ∈ T. In partic-

ular, this can occur when none of the arguments is a single letter and one argument, xj , j 6= i,
has length greater than l(s). By Proposition 3, the length of f(x1, . . . ,xn) must be greater than
l(s), which is a contradiction. Hence t must be binary: say t = b. Since f agrees with f on binary
values, it is clear that xi = b is dominant for f , and that f

xi=b = fxi=b is binary.

Conversely, suppose that xi = b is dominant for f . In every vertex (v1, . . . ,vi−1, b,vi+1, . . . ,vn) of
the digraph F (x1, . . . ,xi−1, b,xi+1, . . . ,xn) the ith component is b. Hence the value

f(ω(v1), . . . , ω(vi−1), ω(b), ω(vi+1), . . . , ω(vn))

of the output associated with every vertex is fxi=b. Thus every path in this graph has the transient
fxi=b of length 1, and hence f(x1, . . . ,xi−1, b,xi+1, . . . ,xn) = fxi=b. Therefore xi = b is dominant
for f .

6

Remark 1 Definition 1 and Proposition 4 can be extended to tuples of argument values. For
example, consider the function f(x1, x2, x3) = (x1 ∧ x3) ∨ (x2 ∧ x3), which is not in G. If x1 = 1
and x2 = 1; then f(1, 1, x3) = 1, independently of x3, but neither x1 = 1 nor x2 = 1 is dominant.

In general, for h < n, we define an h-tuple t of argument values of a Boolean function of n variables
to be dominant if the value of the function depends only on the values in the h-tuple, and no subtuple
of t has this property.

Note that the or function with two or more arguments has only dominant 1-tuples, namely, every
xi = 1 is a dominant value. The xor function with two or more arguments has no dominant tuples.
It follows that every function in G with two or more arguments has either no dominant tuples or
only dominant 1-tuples.

In what follows, for reasons that become clearer later, we single out one of the inputs, say xi, of a
function f : Tn → T, n > 1, as the main input, and the remaining inputs are called side inputs.
We study the relation between the length of xi and the length of f(x1, . . . ,xn) with the side inputs
as parameters.

3.3 Extension of the or Function

An or function of n variables is 1 if at least one of the variables is 1; thus a 1-argument or

function is the identity function. Recall [2] that, if f : Bn → B is the or function, n ≥ 1, then
y = f(x1, . . . ,xn) is the word in T determined by the conditions

α(y) = α(x1) ∨ . . . ∨ α(xn) (1)

ω(y) = ω(x1) ∨ . . . ∨ ω(xn) (2)

z(y) =

{

0 if ∃h ∈ [n] xh = 1
1 +

∑n
h=1

(z(xh) − 1) otherwise.
(3)

Lemma 1 If f : Bn → B, n > 1, is the or function, then

1. l(f(x1, . . . ,xn)) < l(xi), if and only if l(xi) > 1 and one of the side inputs is 1.

2. l(f(x1, . . . ,xn)) = l(xi), if and only if one of the following conditions holds:

(a) xi = 1.

(b) xi = 0 and one (or more) of the side inputs is 1.

(c) xi = 0 and all the side inputs are 0.

7

(d) xi = (01)i, i > 0, and all the side inputs are either 01 or 0.

(e) xi = (01)i0, i > 0, and all the side inputs are 0.

(f) xi = (10)i, i > 0, and all the side inputs are either 10 or 0.

(g) xi = (10)i1, i > 0, and all the side inputs are 101, 01, 10 or 0.

3. l(f(x1, . . . ,xn)) > l(xi) if and only if the conditions in Parts 1 and 2 are not satisfied.

Proof: See Appendix.

3.4 Extension of the xor Function

A xor function of n variables is 1 if an odd number of the variables is 1; thus a 1-argument xor

function is the identity function. Recall [2] that, if n ≥ 1 and f : Bn → B is the xor function,
then f(x1, . . . ,xn) is the word y in T satisfying the conditions

α(y) = f(α(x1), . . . , α(xn)) (4)

ω(y) = f(ω(x1), . . . , ω(xn)) (5)

l(y) = 1 +
n

∑

h=1

(l(xh) − 1). (6)

Lemma 2 If f : Bn → B, n > 1, is the xor function, then

1. l(f(x1, . . . ,xn)) = l(xi), if and only if all the side inputs are binary.

2. l(f(x1, . . . ,xn)) > l(xi) if and only if at least one side input is not binary.

Proof: This follows directly from Equation (6).

3.5 Extensions of Functions in G

By duality with the or function, if f : Bn → B is the and function, then y = f(x1, . . . ,xn) ∈ T is
given by

α(y) = α(x1) ∧ . . . ∧ α(xn) (7)

ω(y) = ω(x1) ∧ . . . ∧ ω(xn) (8)

u(y) =

{

0 if ∃i ∈ [n] xi = 0
1 +

∑n
i=1

(u(xi) − 1) otherwise.
(9)

8

The extension of the nor (nand, xnor) function of any number of arguments is the complement
of the extension of the or (and, xor) function. Note that function composition does not preserve
extensions in general [2].

The following results are consequences of Lemmas 1 and 2, and Propositions 1 and 2:

Proposition 5 If n > 1 and f : Bn → B is in G, then l(f(x1, . . . ,xn)) < l(xi) if and only if
l(xi) > 1 and one of the side-input values of f is dominant.

Corollary 1 Let n > 1, and let f : Bn → B be in G. If f has no dominant side-input values, and
l(xi) ≥ k > 1, then l(f(x1, . . . ,xn)) ≥ k.

4 Simulation in Algebra Ck

The change-counting algebra [2] (also called algebra of transients [4, 7]) is defined as

C = (T,∨,∧,− , 0, 1),

where ∨ is defined by Equations 1–3, ∧, by Equations 7–9, and the complement of a transient
t = c1 . . . cr, where ci ∈ B, is t = c1 . . . cr.

We now study the simulation of circuits constructed with gates from G in Algebra Ck. Recall [2]
that, for k ≥ 2, relation ∼k is defined on the set T of transients as follows: For x,x′ ∈ T, x ∼k x′

if either x = x′ or x and x′ are both of length ≥ k. This relation is a congruence on C, and the
quotient algebra Ck is defined over the set Tk = {[x] | l(x) < k}∪{Φk}, where Φk = {x | l(x) ≥ k}.
Since all the classes except Φk are singletons, we simply write Tk = {x | l(x) < k} ∪ {Φk}, and
refer to elements of Tk as transients.

Every function f : Tn → T in C is now also defined in Ck as follows:

f([x1], . . . , [xn]) = [f(x′
1, . . . ,x

′
n)],

where x′
i is any representative of the class [xi], for i ∈ [n].

We also define the prefix order ≤ on Tk: [x′] ≤ [x] if either (a) [x′] and [x] are singleton classes
and x′ is a prefix of x, or (b) [x] = Φk. The length l([x]) of a class [x] is l(x) if [x] = {x}, and
l(Φk) = k.

The suffix order � is defined similarly.

9

We define an operation ◦ as follows. For c, d ∈ B, if c = d, then c ◦ d = c. For c 6= d, if the
simulation is done in algebra C2, which is ternary algebra, then c ◦ d = d ◦ c = Φ2. Otherwise,
if c 6= c, and the simulation uses algebra C or algebra Ck with k > 2, then c ◦ d = cd, where cd
represents the concatenation of c and d. This notation is extended to tuples. If â = (â1, . . . , âm)
and a = (a1, . . . , am)

â ◦ a = (â1 ◦ a1, . . . , âm ◦ am).

For example, (1, 0, 0, 1) ◦ (1, 1, 0, 0) = (1,Φ2, 0,Φ2) in C2; otherwise, (1, 0, 0, 1) ◦ (1, 1, 0, 0) =
(1, 01, 0, 10).

A network is initially in the stable total state (â, b), that is, f(â, b) = b, and then the input m-tuple
â changes to a.

Algorithm A is shown below, where f : Tm+n
k → Tn

k is the tuple of excitation functions of the net-
work. Each gate variable is non-decreasing in the prefix order in this algorithm, and the algorithm
always terminates. Its result is denoted by yA. It follows from [2] that yA is the least fixed point
of the function f(a,x) over b with respect to the prefix order, i.e.,

f(a,yA) = yA, and (10)

y ≥ b & f(a,y) = y ⇒ yA ≤ y. (11)

Algorithm A

h := 0;
a := â ◦ a;
y0 := b;
repeat

h := h + 1;
yh := f(a,yh−1);

until yh = yh−1;

In Algorithm B below, each gate variable is non-increasing in the suffix order. The result of the
algorithm is denoted by yB . It follows from [2] that Algorithm B in Algebra Ck computes the
greatest fixed point of function f(a,x) below yA with respect to the suffix order, that is

f(a,yB) = yB , and (12)

y � yA & f(a,y) = y ⇒ yB � y. (13)

10

Algorithm B

h := 0;
y0 := yA;
repeat

h := h + 1;
yh := f(a,yh−1);

until yh = yh−1;

5 Active Paths and Cycles

In this section the total state of a network is an (m+n)-tuple s = (s1, . . . , sm+n) of transients. The
state of vertex vi in s is s(vi) = si, and the state of arc e from u to v is s(e) = s(t(e)).

In the sequel, we consider three stable total states: the initial state (â, b), the state (a,yA) at the
end of Algorithm A, and the state (a,yB) at the end of Algorithm B. To simplify the terminology
we refer to these as stable states b, yA and yB .

Let T = v0, e1, y1, . . . , er, yr be a path or cycle in a gate network, where v0 is an input or a gate,
and y1, . . . , yr are gates. Any arc joining some node w 6∈ {v0, y1, . . . , yr} to a node yi, 1 ≤ i ≤ r is
called an side input of gate yi. Let e′i = e′i1 , . . . , e

′
ini−1

be the (ni − 1)-tuple of side inputs of gate

yi; thus the inputs of gate yi are the side inputs together with the main input ei, which is the arc
from v0 to y1, if i = 1, and the arc from yi−1 to yi, otherwise. There is no loss of generality in
assuming that the main input is the last input of yi.

Definition 2 An arc e from u to v is active in stable state s if no side input to gate v is dominant
in s; otherwise, e is inactive. A path or cycle T = v0, e1, v1, . . . , er, vr is active in stable state s if
all of its arcs are active. We say that vertex vi activates vertex vj in stable state s if there is an
active path or cycle of length greater than 0 from vi to vj.

Clearly, ‘activates’ is a transitive relation. Note that an arc leading to an identity gate (1-input or

gate) or an inverter is always active, since such a gate has no side inputs. Also, an arc leading to
a xor gate is always active, since that gate has no dominant inputs.

Consider a cycle C = v0, e1, v1, . . . , er, v0; if the cycle is active in some state, then every vertex
activates itself, and ‘activates’ is reflexive. Also, if vi and vj are two vertices in a cycle, then vi

activates vj, and vice versa; thus ‘activates’ is also symmetric, and hence an equivalence relation.

11

Proposition 6 Let N be a network with excitation functions in G. If N is in a stable state s and
C is an active cycle, then all the vertices in C have transients of the same length.

Proof: If the length of a transient in the cycle increases at some vertex, then it must also decrease
at another vertex, since the cycle is finite. Proposition 5 shows that the length cannot decrease by
going from vertex vi−1 to vertex vi if vi is a gate without dominant side inputs. Hence the lengths
must be equal.

6 Interior Values

Let k ≥ 2; a value x ∈ Tk is exterior if x ∈ {0, 1,Φk}; otherwise, it is interior . In the case of
ternary algebra, k = 2 and there are no interior values.

Lemma 3 If a vertex has an interior value in yB, then it has the same value in yA.

Proof: Since Algorithm B is non-increasing in the suffix order, if a variable has a value si in yA

and a value ti in yB , then ti is a nonempty suffix of si. If yB(vi) is interior, and yA(vi) 6= yB(vi),
then the length of vi must decrease during Algorithm B. Thus suppose the value of vi is the same at
step j − 1 of Algorithm B as it is in yA, but the length of vi decreases in step j. By Proposition 5,
vi has a dominant input in step j − 1. But then vi also has that dominant input in yB , since a
binary value cannot change in Algorithm B. This would make yB(vi) binary, contradicting that
yB(vi) is interior. Thus the value of vi in yA must be the same as in yB .

Let I be the set of all vertices of a network N that have interior values in yB . For u, v ∈ I, let u ∼ v
if u = v or u activates v and v activates u. Clearly, ∼ is an equivalence relation on I. Equivalence
class [u] activates equivalence [v], if and only if u = v or u activates v. The relation ‘activates’ on
I/ ∼ is a partial order. An equivalence class [u] is primary in this partial order if [v] activates [u]
implies [v] = [u]. Since we are dealing with finite network graphs, there always exists at least one
primary class. A primary class cannot consist of a single state that does not appear in any cycle,
because such a vertex must depend only on the external network inputs, and its value is binary
in yB .

Theorem 1 For every k > 2, the result of Algorithm B is the same in Ck as in ternary simulation.

Proof: Let P be a primary equivalence class of interior values in yB . All the vertices of P are
binary in state b, but interior in yB and, by Lemma 3, also interior in yA. Suppose the values of

12

all the vertices in P are the same at step j − 1 of Algorithm A as they are in b, but vi is interior in
step j. Then at least one of the vertices, say ui 6∈ P , joined by an arc to vi must have an interior
value in step j − 1, and also in yA. (This value can’t be Φk, because then vi would be Φk in yA.)

Now yB(ui) cannot be Φk, for this would force the values in P to be Φk, by Corollary 1. It cannot
be interior, for then it would be in another equivalence class Q that activates P , contradicting that
P is primary. Thus yB(ui) must be binary. Since Algorithm B is non-increasing in the suffix order,
yA(ui) must end in yB(ui). Since Algorithm A is non-decreasing in the prefix order, yA(ui) must
begin with b(ui).

Suppose first that vi is an or gate. Because vi belongs to an active cycle in yB , we have yB(ui) = 0,
as shown in Fig. 1(c) and (f). (The gate may have other inputs that are not shown; all such inputs
must be 0 in yB .) Let the in-cycle predecessor of vi be vi−1; in case the cycle consists of a single
state, we have vi = vi−1. Clearly, vi−1 is also in P , and cannot be 1 in state b, because this would
prevent vi from changing. Therefore b(vi−1) = 0, as shown in Fig. 1(a) and (d).

Case 1: b(vi) = 0. Since (â, b) is stable, b(ui) = 0, as in Fig. 1(a). Since yA(ui) must begin with
b(ui), end with yB(ui) and be of length at least 2, yA(ui) has the form (01)h0, where h ≥ 1, as
in Fig. 1(b). Also, yA(vi−1) must begin with b(vi−1), and be of length at least 2; thus vi−1 begins
with 01. Since vi has no dominant inputs, Part 1 of Lemma 1 does not apply. Also, the inputs 01x
and (01)h0 do not fit any of the patterns of Part 2. Thus Part 3 applies, vi cannot be stable in yA,
and this case cannot occur.

(10)h

vi

ui

1
1

01x0
vi−1

(a,yB)(â, b) (a,yA)(d) (e) (f)

vi

ui

0
0

01x0
vi−1

(a,yB)(â, b) (a,yA)(a) (b) (c)

(01)h0 0

0

Figure 1: or gate in an interior cycle.

13

Case 2: b(vi) = 1. Then there is a vertex, say ui, connected to vi by a side-input arc, that is
initially 1 (there may be other such vertices) and is interior in step j − 1 (as must be the other
such vertices). Now yA(ui) begins with 1, ends with 0 and is of length at least 2; thus it has the
form (10)h, where h ≥ 1. As in Case 1, vi−1 must be of the form 01x. Part 1 of Lemma 1 does not
apply. If h > 1, then Part 2 does not apply. Thus vi cannot be stable in yA, and this case cannot
occur.

There remains the possibility that h = 1, that is, yA(ui) = 10. By Part 2 of Lemma 1, vi−1 must be
of the form (10)h or (10)h1, h ≥ 1, for in all other cases vi cannot be stable in yA. This contradicts
that vi−1 must begin with 0. Thus this case cannot occur.

In summary, the gate which changes first in Algorithm A cannot be an or gate.

Now suppose that vi is a xor gate; then it has no dominant inputs. Since yA(ui) is interior, by
Lemma 2, the cycle cannot be stable in yA. This is a contradiction.

The argument for other functions in G follows from Propositions 1 and 2.

Altogether, we have shown that no variable can have an interior value in yB . It is now easy to
verify that Algorithm B in C2 produces the same value for each variable as Algorithm B in Ck for
every k > 2.

7 An Example

To illustrate the simulation of circuits in Algebras Ck we give three simulations of the circuit of
Figure 2. The circuit has the following excitation equations:

f1 = x, f2 = x ∧ y1, f3 = x ∨ y2, f4 = y3 ∨ y4, f5 = y4, f6 = y4 ∧ y5, f7 = y6 ∨ y7.

y4

x y1

y7

y2
y3 y6

y5

Figure 2: Circuit 1.

The simulations in C2, C3, and C5 are shown in Tables 1—3. From Algorithm A of ternary simulation

14

we learn that each variable may change during the transition. From Algorithm B we know that y1

changes from 1 to 0 and y3 from 0 to 1, but we don’t know whether these changes contain dynamic
hazards. There is a static hazard in y2, and y4 to y7 may oscillate indefinitely.

Table 1: Simulation in C2.

x y1 y2 y3 y4 y5 y6 y7

initial state 0 1 0 0 0 1 0 0

Φ2 1 0 0 0 1 0 0
Φ2 Φ2 Φ2 Φ2 0 1 0 0
Φ2 Φ2 Φ2 Φ2 Φ2 1 0 0
Φ2 Φ2 Φ2 Φ2 Φ2 Φ2 Φ2 0

result A2 Φ2 Φ2 Φ2 Φ2 Φ2 Φ2 Φ2 Φ2

1 Φ2 Φ2 Φ2 Φ2 Φ2 Φ2 Φ2

1 0 Φ2 1 Φ2 Φ2 Φ2 Φ2

result B2 1 0 0 1 Φ2 Φ2 Φ2 Φ2

Table 2: Simulation in C3.

x y1 y2 y3 y4 y5 y6 y7

initial state 0 1 0 0 0 1 0 0

01 1 0 0 0 1 0 0
01 10 01 01 0 1 0 0
01 10 Φ3 01 01 1 0 0
01 10 Φ3 Φ3 01 10 01 0
01 10 Φ3 Φ3 Φ3 10 Φ3 01

result A3 01 10 Φ3 Φ3 Φ3 Φ3 Φ3 Φ3

1 10 Φ3 Φ3 Φ3 Φ3 Φ3 Φ3

1 0 10 1 Φ3 Φ3 Φ3 Φ3

result B3 1 0 0 1 Φ3 Φ3 Φ3 Φ3

From the simulation in C3, we obtain the new knowledge that the change in y1 is free of hazards,
whereas that in y3 has a dynamic hazard, but we don’t know how many changes take place.

Algorithm A in C5 gives the additional information that y2 changes exactly twice, and y5, exactly
three times.

15

Table 3: Simulation in C5.

x y1 y2 y3 y4 y5 y6 y7

initial state 0 1 0 0 0 1 0 0

01 1 0 0 0 1 0 0
01 10 01 01 0 1 0 0
01 10 010 01 01 1 0 0
01 10 010 0101 01 10 01 0
01 10 010 0101 0101 10 010 01
01 10 010 0101 Φ5 1010 Φ5 0101

result A5 01 10 010 0101 Φ5 Φ5 Φ5 Φ5

1 10 010 0101 Φ5 Φ5 Φ5 Φ5

1 0 10 1 Φ5 Φ5 Φ5 Φ5

result B5 1 0 0 1 Φ5 Φ5 Φ5 Φ5

8 Conclusions

It follows from Theorem 1 that only the following three types of simulation results are possible:

1. Algorithm A terminates in C; Algorithm B is unnecessary. There may be static and dynamic
hazards, but there are no oscillations possible. Every feedback-free circuit has this type of
behavior. Its behavior is combinational, meaning that, if one waits long enough, all the
variables will have binary values. Some variables may have a number of changes, but these
are just hazards and they are of bounded length.

2. Algorithm A does not terminate in C. For any k, after Algorithm A in Ck, Algorithm B results
in binary values only. This means the circuit has feedback, but the behavior is combinational,
that is, the feedback is degenerate in this case. Hazards may, of course, exist; in fact, they
may be of arbitrary length for the variables that are Φk in Algorithm B. To get a longer
hazard, just increase the k.

3. Algorithm A does not terminate in C. For any k, after Algorithm A in Ck, Algorithm B results
in at least one Φk. Thus, for some variables, the behavior may be as in Case 2 above, but at
least one variable is involved in a nontransient oscillation [5].

In the case of Algorithm B in C2, a value of Φ means that there exists a nontransient cycle [5] in
the binary analysis of the circuit if wire delays are taken into account. Our theorem shows that
no further comparison of simulation in Ck to binary analysis is needed, since ternary simulations
already covers all the cases.

16

9 Appendix

Proof of Lemma 1: All the input conditions are divided into three disjoint classes. If any given
input conditions do not hold in one part, then they hold in one of the other two parts. Thus it is
sufficient to prove only the “if” parts of the three claims.

1. If l(xi) > 1 and a side input is 1, then f(x1, . . . ,xn) = 1, and the claim follows.

2. (a) If xi = 1, then f(x1, . . . ,xn) = 1 and the lengths are equal.

(b) If xi = 0 and a side input is 1, then f(x1, . . . ,xn) = 1.

(c) If all inputs are 0 then f(x1, . . . ,xn) = 0.

Using Equations (1)—(3), it is easy to verify that the following hold:

(d) (01)i ∨ 01 ∨ 0 = (01)i.

(e) (01)i0 ∨ 0 = (01)i0.

(f) (10)i ∨ 10 ∨ 0 = (10)i.

(g) (10)i1 ∨ 101 ∨ 01 ∨ 10 ∨ 0 = (10)i1.

In each of the four cases above, the side inputs contribute nothing to the number of 0s in
the result, and to its initial and final letters; these are determined entirely by xi. Hence
the lengths are equal in all these cases.

3. By 2(a), we can assume that xi 6= 1. By 2(b) and (c), if xi = 0, then none of the inputs is 1
and not all inputs are 0, and l(f(x1, . . . ,xn)) > 1 = l(xi) by Equations (1)—(3).

We can now assume that l(xi) > 1, and thus that xi has one of the following forms: (01)i,
(01)i0, (10)i, or (10)i1, with i > 0. Also, by Part 1, we can assume that no side input is 1,
and hence that each side input has at least one 0, that is z(xj) > 0 for all j ∈ [n]. Since

z(f(x1, . . . ,xn)) = 1 +

n
∑

h=1

(z(xh) − 1)

= z(xi) + (z(xj) − 1) +

n
∑

h=1,h6=i,j

(z(xh) − 1),

we have
z(f(x1, . . . ,xn)) ≥ z(xi) + (z(xj) − 1). (14)

Suppose there exists a j ∈ [n] such that z(xj) > 1. Then f(x1, . . . ,xn) has more 0s than xi,
and any initial or final 1s of xi must also appear in f(x1, . . . ,xn). Thus we have our result.
There remain the words with one 0 to examine. The case where all the side inputs are 0 is
covered by 2(d)–(g). Thus we may assume that at least one input, say xj , has length > 1.

17

(a) If xi = (01)i, the only words with one 0 not considered in 2(d) are 10 and 101. Since
(01)i ∨ 10 = 1(01)i and (01)i ∨ 101 = 1(01)i, our claim follows.

(b) If xi = (01)i0, the only words with one 0 not considered in 2(e) are 01, 10 and 101.
Since (01)i0∨ 01 = (01)i+1, (01)i0∨ 10 = (10)i+1, and (01)i0∨ 101 = 1(01)i+1, our claim
follows.

(c) If xi = (10)i, the only words with one 0 not considered in 2(f) are 01 and 101. Since
(10)i ∨ 01 = 1(01)i and (10)i ∨ 101 = 1(01)i, our claim follows.

(d) All the words with one 0 are considered in 2(g).

Acknowledgement This research was supported by the Natural Sciences and Engineering Re-
search Council of Canada under grant No. OGP0000871 and under a Postgraduate Scholarship,
and by a Graduate Award from the Department of Computer Science, University of Toronto.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications American Elsevier, 1976.

[2] J. A. Brzozowski and Z. Eśik, “Hazard Algebras,” Formal Methods in System Design, 23(3),
pp. 223–256, 2003.

[3] J. A. Brzozowski, Z. Ésik, and Y. Iland, “Algebras for hazard detection,” Beyond Two - Theory
and Applications of Multiple-Valued Logic, M. Fitting, and E. Or lowska, eds., pp. 3–24 (Physica-
Verlag, 2003).

[4] J. A. Brzozowski and M. Gheorghiu, “Gate Circuits in the Algebra of Transients,” Theoretical
Informatics and Applications, 39, pp. 67–91, 2005.

[5] J. A. Brzozowski and C-J. H. Seger, Asynchronous Circuits, Springer, 1995.

[6] E. B. Eichelberger, “Hazard detection in combinational and sequential switching circuits,” IBM

J. Research and Development, 9, pp. 90–99, 1965.

[7] M. Gheorghiu and J. Brzozowski, “Simulation of feedback-free circuits in the algebra of tran-
sients,” Int. J. of Found. of Comp. Sci., 14(6), pp. 1033–1054, 2003.

[8] Y. Ye and J. A. Brzozowski, “Covering of Transient Simulation of Feedback-Free Circuits by
Binary Analysis,” Int. J. of Found. of Comp. Sci., 17(4), pp. 949-973, 2006.

18

