Simulation of Gate Circuits with Feedback

serdegIA beuleV-itluIVI ni

Janusz Brzozowski University of Waterloo

Yuli Ye University of Toronto

Oslo, May 15, 2007

outline

- Efficient detection of hazards and oscillations in gate circuits
- Simulation in multivalued algebras C_2 , C_3 , ..., C_k , ...
- C_2 3 values, C_3 5 values, C_k ... (2k 1) values, ...
- Algorithm A in C_k shows worst-case sequences of changes
- Algorithm B in C_k shows final values, possibly uncertain
- Results of Algorithms A and B detect hazards and oscillations

as Algorithm B in algebra $\mathbf{C}_{\mathbf{k}}, \mathbf{k} > 2$, gives the same results as Algorithm B in algebra $\mathbf{C}_{\mathbf{k}}, \mathbf{k} > 2$, gives the same results

Hazards: 010 - static, 0101 - dynamic

final state

Words for waveforms

- $\{\dots, 1010, 101, 010, 01, 10, 10, 10\} = \mathbf{T} :$ stnaients: •
- Gates process transients
- Extend gate functions:
- INVERTER complement each bit
- $1010 = \overline{0101} -$

- Transients 0 and 1:
- $\mathbf{1} = \mathbf{1} \vee \mathbf{1} = \mathbf{1} \vee \mathbf{1} \mathbf{1}$

 $t = t \vee 0 = 0 \vee t -$

- Longer transients:
- first letter: OR of first letters

- last letter: OR of last letters

- I sumine so to sumbers of 0s minus numbers of 0s minus -
- Examples:
- $f = 0101 \lor 1 -$

 $0101 = 0101 \lor 0$ -

 $-010101 = 0101 \vee 010 -$

• AND function is dual: count 1s instead of 0s

- Initial binary state: $\mathbf{s}^0 = b = (b_1, \dots, b_n)$
- Binary inputs initial: $\hat{a} = (\hat{a}_1, \dots, \hat{a}_m)$ final: $a = (a_1, \dots, a_m)$
- $b \circ \hat{b} = (m \mathbf{s}, \dots, \mathbf{s}) = \mathbf{s}$:tuqni noitslumi $\mathbf{S} \bullet$
- $\mathbf{f}=\mathbf{f}\circ\mathbf{f}\quad 0\mathbf{f}=\mathbf{0}\circ\mathbf{f}\quad \mathbf{f}\mathbf{0}=\mathbf{f}\circ\mathbf{0}\quad \mathbf{0}=\mathbf{0}\circ\mathbf{0}$ –
- $(n\mathbf{I}, \dots, n\mathbf{I}) = \mathbf{I}$ $(n\mathbf{T} \leftarrow n+m\mathbf{T} : \mathbf{I}$: another a constraint of the second se

A motion A A motion A h := 0; $a := \hat{a} \circ a;$ b := b; h := h + 1; b := h + 1;

Result of Simulation of a Feedback-Free Circuit

For feedback-free circuits, Algorithm A always terminates in Algebra C

Circuit with Feedback

Result of Simulation in Algebra C

- Algorithm A does not terminate
- NAND transient keeps growing

- Simulation does not terminate
- NAND gate oscillates if OR gate is slow to change
- Eventually OR gate and then INVERTER change
- When inverter decomes 0, nand gate decomes 1

- Relation \sim_k in algebra $C = (\mathbf{T}, \vee, \wedge, \mathbf{T}) = O$ subslate \mathcal{O} is not expressed on the two sets \mathcal{O} is the set of the two sets \mathcal{O} is the two s
- $\operatorname{Jis} _{\mathcal{A}} \sim \mathfrak{I} \bullet$
- s = t -
- or t and s are both of length $\geq k.$
- ${f T}$ no noitslər əpnəurgnop
s si $_{\cal A}\sim$ ullet
- Quotient algebra $C_k = (\mathbf{T}_k, \vee, \wedge, \overset{-}{,} \mathbf{T})$
- Example: k=3

10

- $\{\dots, 01010, 0101, 1010, 101, 010\} = {}_{\mathcal{E}}\Phi$
- 1 10

0

OR Gate in Algebra C₃

Ţ	Ţ	Ţ	Ţ	Ţ	Ţ
I	10	Φ^3	Φ^3	10	10
I	Φ^3	Φ^3	Φ^3	Φ^3	Φ^3
I	Φ^3	Φ^3	10	10	10
T	10	Φ^3	10	0	0
Ţ	10	Φ^3	10	0	\wedge

- Gate functions must be modified appropriately
- Transients of length $\geq k$ become Φ_k

Algorithm A: same as before, but use Algebra C_k instead of C

 $\{{}^{A}\mathbf{s} \text{ tluss} \} \qquad ; {}^{1-h}\mathbf{s} = {}^{h}\mathbf{s} \text{ lituu}$ $\mathbf{s}^{h} := \mathbf{f}(\mathbf{a}, \mathbf{s}^{h-1});$ $\vdots \mathbf{1} + \mathbf{y} =: \mathbf{y}$ repeat $p_0 := p^*$ $\mathbf{a} := \hat{a} \circ a;$ 0 = v

 $\{\mathbf{Result}\,\mathbf{t}^{\mathrm{B}} = \mathbf{t}^{\mathrm{A}-1}; \qquad \{\mathbf{Result}\,\mathbf{t}^{\mathrm{B}}\}$

Algorithm B: use final binary input a, and result shorthm A as initial state

$$\mathbf{t}^{h} := 0;$$

$$\mathbf{t}^{h} := \mathbf{f}(a, \mathbf{t}^{h-1});$$

$$\mathbf{t}^{0} := \mathbf{h} + 1;$$

$$\mathbf{t}^{0} := \mathbf{f}(a, \mathbf{t}^{h-1});$$

Algorithm A in Algebra C_3 - State s^0

• Change input OR and NAND unstable

¹s **91812** - ⁸O **srd9glA ni A mdir0glA**

Algorithm A in Algebra C_3 - State $s^2 = s^A$

• Change INVERTER and NAND Circuit is stable

Algorithm B in Algebra C_3 - State t^0

Algorithm B in Algebra C₃ - State t¹

Algorithm B in Algebra C₃ - State t²

Algorithm B in Algebra C_3 - State $t^3 = t^B$

• Change NAND Circuit is stable with correct final values

suffix order for C_4

• Algorithm A is monotonically increasing in the prefix order

 $- \ b = \mathbf{s}^0 \leq \mathbf{s}^1 \leq \mathbf{s}^2 \leq \ldots \leq \mathbf{s}^A$

prefix order for C_4

• Always terminates

• Algorithm B is monotonically decreasing in the suffix order
-
$$\mathbf{s}^A = \mathbf{t}^0 \succeq \mathbf{t}^1 \succeq \mathbf{t}^1 \succeq \ldots \succeq \mathbf{t}^B$$

• Always terminates

Relation among Stable States

 $b \preceq \mathbf{6} \ge \hat{b}$

Graph Model of a Circuit

- Circuit is a directed graph with Boolean functions
- Input nodes indegree 0; gate nodes indegree > 0
- Gate excitation functions

$$f_1 = X_1; \quad f_2 = X_2 \land y_1 \land y_4; \quad f_3 = y_1; \quad f_4 = \overline{y_2}; \quad f_5 = y_3 \lor y_4.$$

- $\mathcal{H} = \{ \text{ or, xor } \}$
- One-input OR gate is an identity gate
- \mathcal{H} is the set of functions obtained by complementing any number of

 ${\mathcal H}$ mort and/or the output of functions from ${\mathcal H}$

- $\mathcal{H} \cap \mathcal{H} = \mathcal{J} \bullet$
- All functions of two variables included
- Multi-input AND, NAND, NOR, XNOR included

- 0, 1, and Φ_k are exterior values
- 01, 10, 010, 101, ..., up to but not including Φ_k are interior
- There are no interior values in C_2 ; $T_2 = \{0, 1, \Phi_2\}$
- We show there are no interior values in result of Algorithm B in \mathcal{C}_k
- This implies our main result

stuqnI-sbiS bns nisM

• Dominant Inputs:

• Property of Dominant Inputs:

length(output) < length(main input)

Ήī

length(main-input) > 1, and one side-input is dominant

• Activation is a transitive relation in a chain

- Activation is an equivalence relation in a cycle
- All transients in an active cycle in a stable state have the same length

• A graph showing activation

Equivalence Class

• Equivalence class

Maximal set of gates that activate each other

• Primary equivalence class

No gate in another class activates a gate in a primary class

Primary Equivalence Class

- Suppose a gate has an interior value in \mathbf{y}^B
- Then it belongs to an equivalence class of activation relation
- $\bullet\,$ Then there is a primary equivalence class in \mathbf{y}^B
- If a gate has an interior value in \mathbf{y}^B , then it has the same value in \mathbf{y}^A
- \bullet Main argument is done for OR and XOR, then extended to $\mathcal G$
- \bullet Primary equivalence class cannot have interior values in \mathbf{y}^A
- Therefore, we cannot have equivalence class of interior values in \mathbf{y}^B

- Do Algorithm A in C_k
- Reduce results to C_2
- Do Algorithm B in C_2
- Algorithms B in C_2 and in C_k contain the same information
- $\bullet \ \Phi_k$ means nontransient oscillation; otherwise, result is binary
- Complexity can be reduced from $O(n^2k\log k)$ to $O(n^2)$