
C8, a Study in Evolutionary Design in

Programming Languages

by

Rodolfo Gabriel Esteves Jaramillo

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Master of Mathematis

in

Computer Siene

Waterloo, Ontario, Canada, 2004

 Rodolfo Gabriel Esteves Jaramillo 2004

I hereby delare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of sholarly researh.

I further authorize the University of Waterloo to reprodue this thesis by pho-

toopying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of sholarly researh.

ii

The University of Waterloo requires the signatures of all persons using or pho-

toopying this thesis. Please sign below, and give address and date.

iii

Abstrat

New programming languages appear onstantly. Many of them are based on ex-

isting ones but di�er suÆiently so they are inompatible (e.g., C/C++ and Java).

Building on the C8 language (Dith�eld [47℄ and Bilson [16℄), this thesis ontinues

the C8 \evolutionary" approah to programming language design based upon the

very suessful C programming language, preserving its syntax and semantis while

extending it with features that onsiderably enhane its expressiveness. The evo-

lutionary approah allows for the introdution of powerful abstration mehanisms

with minimal disruption to legay ode, truly \making the future safe for the past"

[20℄.

The new features added to C8 �x existing problems in C and add features that

onsiderably ease the onstrution and maintenane of C programs. C's delara-

tions and swith statement are modi�ed to �x well-known problems. New features

in the form of tuples, exeptions and attributes are added to enhane program-

ming and inrease robustness. Possible soures of inompatibility are identi�ed

and empirially studied.

iv

Aknowledgments

I am muh indebted to my supervisor, Dr. Peter A. Buhr for his support,

patiene, and enthusiasm. Not only did he suggested an interesting thesis topi, but

he is a onstant soure of inspiration in his ommitment to teah and in his onstant

searh for knowledge. I am also very grateful to Rihard C. Bilson, whose lear

thinking often pointed out my mistakes in oneption, and whose ommand of both

natural and programming languages frequently solved my problems of expression.

I owe Glen Dith�eld many thanks, for his initial design of C8, whih resulted in

a beautiful ore language. Thanks also go to my readers, Dr. Charles Clarke and

Dr. Gordon Cormak, whose suggestions make this a better work.

Waterloo and the Programming Language Group Lab are great plaes to work

at, and I am very happy to have had the opportunity to do so. Many thanks go to

the members of this group, espeially Egidio, David, Jiongxiong, Ashif and Tom.

They forever remind me of the pleasure there is in searhing for answers, espeially

when it implies �nding more questions. For a limitless supply of happiness, and a

similarly well stoked soure of aggravation, I would like to thank Zheng, Kim and

Will. God bless you, guys.

Part of this work was funded by the mexian National Counil of Siene of

Tehnology (Consejo Naional de Cienia y Tenolog��a), whom I gratefully a-

knowledge.

v

Dediation

To my parents.

vi

Contents

1 Introdution 1

1.1 C programming language . 3

1.2 C language evolution . 6

1.2.1 Suess of C . 8

1.2.2 C and C++ . 11

1.3 C's shortomings . 11

1.4 C8 projet . 14

1.4.1 Related work . 18

1.5 C8 translator . 19

1.5.1 Blak box view . 19

1.5.2 Funtional desription . 19

2 Delaration Syntax 21

2.1 C Delaration Syntax . 23

2.2 C8 Delarations . 27

2.3 Related work . 30

vii

3 Control Strutures 31

3.1 Multi-level exits . 31

3.2 Seletion statements . 35

3.2.1 Case labels . 38

3.2.2 hoose statement . 42

3.3 Exeption handling . 43

3.3.1 EHM design spae . 46

3.3.2 C8 Exeption Handling Model 53

3.3.3 Implementation . 56

3.4 Related work . 60

4 Tuples 63

4.1 Multi-valued Funtions . 64

4.1.1 Importane of MVR funtions 71

4.2 C8 Tuples . 73

4.2.1 Tuple Assignment . 75

4.2.2 Multiple Assignment . 75

4.2.3 MVR funtions in C8 . 77

4.2.4 Named parameters . 79

4.2.5 Reords and Tuples . 84

4.3 Implementation . 85

4.3.1 Tuple expression analysis . 85

4.3.2 Tuple ode generation . 86

4.4 Related work . 92

viii

5 Attributes 95

5.1 Reetion . 98

5.2 Introspetion . 100

5.3 C8 attributes . 103

5.3.1 Idioms and onventions . 104

5.3.2 Attribute mehanism . 105

5.4 Related Work . 109

6 C language ompatibility 111

6.1 Experimental setup . 111

6.2 Corpus . 113

6.3 Code Analysis Infrastruture . 116

6.3.1 Noise-introduing fators . 118

6.4 Searh patterns . 119

6.5 Results . 120

6.6 Related work . 122

7 Conlusions 123

7.1 Future Work . 125

A Miselaneous failities 143

A.1 Numeri Literals . 143

A.2 Initializers . 144

ix

List of Figures

1.1 The evolution of C and its major inuenes 9

1.2 Notable inuenes on C8 . 15

3.1 Multilevel exit in Bliss . 32

3.2 Multilevel break . 33

3.3 Multilevel exit in C8(left) and C translation (right) 34

3.4 Du�'s devie . 38

3.5 Delaration hoisting in seletion statements 39

3.6 Use of ranges and its translation. 41

3.7 Translation of the hoose statement. 43

3.8 Exeption handling . 51

3.9 Exeption handling translation. 59

4.1 Name driven mathing . 83

4.2 Code generation for a multiple assignment statement 88

4.3 Code generation for \swap" statement 88

4.4 Generated ode for a mass assignment statement 89

4.5 Generated ode for a mass assignment statement 89

5.1 Example of C++ trait lasses . 102

xi

5.2 C8 attributes grammar . 106

6.1 Soure ode analysis system . 118

xii

List of Tables

3.1 Control Struture Taxonomy . 49

5.1 Built-in attributes in C8 . 108

6.1 Seleted pakages . 115

6.2 Results . 121

xiii

Chapter 1

Introdution

In 1962, the historian and philosopher of siene, T.S. Kuhn laimed in his inuen-

tial book The Struture of Sienti� Revolutions [84℄ that aquisition of sienti�

knowledge does not proeed by aretion but rather by revolution: one theory

supereding its forerunner by dramatially hanging the latter's model of reality.

It would seem that a similar situation ours to the theory of programming,

where new tools and tehniques superede and render the old obsolete. Every year

a wealth of new, mutually inompatible programming languages make their ap-

pearene, eah with its own notion of what omputation is (on the theoretial side),

how partiular hardware resoures should be presented to the end programmer (on

the pratial side), and what abstrations need be provided to model problems (on

the appliation side). In other words, eah programming language interprets the

task of programming in di�erent, inompatible ways. Like Kuhn's theories, every

new programming language presents a di�erent view of reality.

However, when it omes to the raft of programming, pratitioners are muh

more resistant to adopting new tools. This phenomenon is illustrated by the fat

that, among programming languages, the oldest ones are still alive and thriving.

When, for whatever reasons, a new language does make its way into the program-

mers' set of tools, old ideas may need to be expressed in (potentially radially)

di�erent notation, if not altogether di�erent notions than before, and require re-

learning. Moreover, whatever orpus of ode is written in prior languages is ren-

1

dered useless.

This ontradition between the status quo of existing programming languages

and the omplete hange assoiated with new languages is largely unneessary, sine

most languages di�er from one another in relatively small ways. Languages evolve

from others languages either by extension, adding features the original laks or pro-

vides in inonvenient ways (e.g., original C++ and its C substrate); by abstration,

when one or several features of the language are found to be instanes of an ab-

stration mehanism (e.g., the namespae system in C++ is abstrated by pakages

in Java and assemblies in C#); by duli�ation, when a ommonly used onstrut

in a language is given espeial syntax (e.g., a selet statement in C subsumes a

hain of if -then-else hain in Algol 60); by preemption, when a feature previously

left to the programmer's disretion beomes �xed in the language (e.g., di�erent

approahes in memory management of C++ and Java); or by subtration, removing

problemati or dangerous features in the original language (e.g., stati versus dy-

nami binding in Sheme from {early{ Lisp, or Java removing multiple inheritane

from C++). Not all these forms of modi�ation (in fat, only the last two) imply

the inompatibility of the resulting language with its anestor. Unfortunately, none

implies ompatibility.

It is my impression that the art of programming language design lies not so

muh in providing new language onstruts and mehanisms, but in integrating

desired features in suh a way that they present a onvenient notation and onsistent

model of omputation to the end programmer, while allowing for a reasonably fast

translation into eÆient mahine ode. This thesis desribes the urrent stage of

a projet fousing on language evolution in all the forms desribed above (exept

preemption), that uses the C programming language as a departure point.

The remainder of the hapter explains the motivation behind C as the substrate

and other projets that have undertaken a similar goal. It also gives an overview

of the C8 projet and its objetives. Finally, it presents the C8 language transla-

tor arhiteture, that serves as a testbed for the implementation of the extensions

desribed in later hapters. These extensions inlude an alternative delaration

syntax for C objets (hapter 2), modi�ations to C's ontrol strutures (hapter

3) and tuples as a data struturing mehanism, the impliations of having suh a

2

mehanism weaved into the polymorphi fabri of the language and notational ben-

e�ts (hapter 4). Chapter 5 desribes a mehanism for ode annotations that allow

the programmer limited aess to the strutures and information the translation

system has generated about the program. In hapter 6, a soure ode analysis sys-

tem is desribed and used to gather evidene as to the relevane of the extensions

presented in previous hapters, and estimate the impat of the remaining inom-

patibilities between C and C8 on existing ode. Finally, hapter 7 presents the

onlusions derived from this work and the identi�ed areas of further study. The

appendies desribe a number of minor additional failities in the language (e.g.,

extended numerial literals and omposite literals for initialization). Examples of

C8 usage and a summary of inompatibilities with C are also appended.

A remark about the typesetting style used in the thesis. A large number of lan-

guages are mentioned in this work for onstrasting purposes. The names of some

of these languages have no standard spelling, so this work adopts the onvention

of spelling their names in all apitals if pronouned by enumerating their letters

(APL, SQL, et.), and mixed ase otherwise (Fortran, Algol, Cobol). Their de�n-

ing doument ited in the bibliography as their standard, the user manual of the

referene implementation, or, failing those, the paper in whih the language was

�rst presented. Also, some e�ort has been made to typeset the ode in these lan-

guages aording to the usual praties in indentation and prettyprinting as applies

to the partiular language. This might be at times onfusing (for example when a

token marked as a keyword in one appears as a normal identi�er in another), but

I thought it preferable to the alternative of a single, uniform, typesetting style.

1.1 C programming language

The C programming language is enormously popular and inuential. It has, how-

ever a number of troublespots despite several rounds of language revision and stan-

dardization. This thesis desribes the way a new programming language, C8, ad-

dresses and orrets some of the most insidious of these troublespots, while main-

taining almost omplete bakwards ompatibility. This hapter presents some of

C's unfortunate design hoies and omissions presented in the ontext of the C

3

programming language evolution. As well, an overview is given for some of the C8

solutions to these problems.

\Why extend C?" is, oddly enough, a question that is asked both by the C

programming language detrators and advoates alike. For the former, C's rule has

run its ourse: the inremental re�nement proess of the language has gone as far

as it an and the burden of bakward ompatibility is too grievous to arry. It is

more produtive to start from a lean slate, inorporating the lessons learned in

the 30-plus years C has been in use. After all, surely the programming projets

now being undertaken are di�erent enough from those programmers had to deal

with 30 years ago to warrant a new language. For the latter, C is good as it is,

autiously evolving via the usage-ditated hanges introdued by the standardiza-

tion ommittee. More radial hanges run the risk of not only failing to ure C's

maladies but of introduing new ones in the proess. This risk is evidened by

the fat that, for every suessful spino� of C, like C++, ountless other dialets

have been forgotten. Paraphrasing a quip by C.A.R. Hoare, \C is not only a great

improvement over its predeessors, but over most of its suessors as well" [66℄.

However, C remains a proven, reliable, preisely de�ned workhorse, still remark-

ably healthy and used by many more programmers than C++ or Java. Furthermore,

the use of C ontinues to grow, espeially in internationalization projets. One look

at the expanding Open Soure ommunity provides ample evidene

1

; for example,

lose to 30% of the projets listed in freshmeat.om use C as their development

language, as opposed to the 13% that use C++, 13% that use Java, or 25% that use

some an sripting language (Perl, Python, Ruby and Tl ombined)

2

. Besides, C is

the target language of hoie for a number of tools, ranging from parser generators

to programming language translators. C has been desribed as a \universal inter-

mediate representation" [4℄, or less haritably, a \mahine-independent assembly

language". C's popularity has made it a frequent means for transmitting knowledge

to programmers of every level of expertise. It is ommon for a programmer these

1

It has been ommented that the Open Soure ommunity's marked preferene for C is, up to a

point, a result of the lak of an available C++ ompiler. However, this de�ieny is being reti�ed

with the release of g 3.x.

2

Sample taken at the end of Marh 2004. The remainder of the projets hosted by freshmeat are

written in other languages.

4

days to have C as their �rst (and sometimes only) programming language.

It is in this ontext that voies of protest start mixing with those singing the

praises of C. Its unsuitability as a �rst language, and as a vehile for teahing basi

programming onepts is onsistently pointed out and has been extensively studied

[92℄. This does not mean that beginners are the only vitims to the language's

idiosynrasies; not at all, some of its features and idioms still bite the most sea-

soned of programmers from time to time [82, 101℄. As well, C is often desribed

as de�ient when it omes to modern language features. The abstration meha-

nisms

1

present in C are very simple (and omparatively not very far from the ones

provided by the original Fortran): variables, funtions, and preproessor maros.

The omission of more advaned abstration mehanisms make language support

for modern programming praties minimal while making user-de�ned language

extensions hard to write and harder to maintain. This in a world where language

extensibility by the user is inreasingly high in importane among most program-

ming language developers [119℄. Furthermore, programming onepts unfamiliar in

the 70s have been explored and have been proven to enhane desirable properties

of software, like reliability, maintainability or seurity.

When a language has stayed in the mainstream as long as C, it is natural to

expet a number of attempts to engineer new features while preserving working ode

and leveraging user expertise. A long string of suessors (not as long as Pasal's,

but long enough) and a protrated standardization proess

2

attest to this. None of

these projets has aomplished these goals, but people keep trying and with good

reason. Rihard Gabriel [57℄ lists \being similar to existing languages" as one of

the harateristis that a programming language should have to inrease its hanes

of suess. Given C's popularity, it is not surprising that so many designers have

used it as a (at least syntati) basis for their own reations (e.g., C# and Java).

1

An abstration or de�nitional mehanism is the set of failities a programming language provides

to give a name to a partiular entity (e.g., address of storage, address of an instrution, family of

funtions, desriptions of types) for later reuse.

2

While the goals of the standards ommittee inlude �xing the language as one of its many ob-

jetives, �rst and foremost, their e�ort has been to stritly de�ne and then odify best praties,

preserving as muh working legay ode as possible. Taking this into aount, it is understandable

that �xing the language did not rank high in their list of priorities.

5

If the new language in question is not only \similar" but ompatible, meaning that

all, or a signi�ant portion of the programs written in the base language are valid

and orret, the hanes of suess are oneivably higher. To properly understand

how to �x C, it is neessary to desribe the C language and its design philosophy,

inasmuh as both drive its latest inarnation, the ANSI C99 standard.

In the following setion, a short history of C is provided, in the interests of un-

derstanding its evolution. Later setions of the hapter desribe in some detail the

troublespots remaining in the language, and mention whih of these are addressed

by this work.

1.2 C language evolution

C is a diret desendant of BCPL and, as suh, heir to the tradition of proedural

languages in the style of Fortran and Algol 60 (�gure 1.1). This lineage is still

easily notied: C is small and ompatly desribed, assets well suited to its original

domain, system programming. Dennis Rithie blended these inuenes with his

own interpretations and additions into a design that, as he has pointed out, got

things \mostly right the �rst time" [108℄. This basi language is the ore around

whih extensions have been built, and it has ome to be known as the \spirit of C".

This term has generated muh heated debate when attempts are made to de�ne it

preisely; Stroustrup's version [125℄ pins it down aurately enough:

1. Keep the built-in operations lose to the mahine (and eÆient).

2. Keep the built-in data types lose to the mahine (and eÆient).

3. No built-in operations on omposite objets.

4. Do not do in the language what an be done in a library.

5. The standard library an be written in the language itself.

6. Trust the programmer.

6

7. The ompiler is simple.

8. The run-time support is very simple.

9. In priniple, the language is type safe, but not automatially heked (there

was lint for that).

10. The language is not perfet beause pratial onerns are taken seriously.

This desribes the language that is desribed in [78℄. C aquired more onstruts

(struture assignment {whih to some extent violates point 3 in the list above{,

enumerations and void), after an unsuessful attempt by Ken Thompson to rewrite

Unix, whih is the often-told \trial by �re" of C as a language for programming-

in-the-large. This later version of the language is alled by Stroustrup \Classi C"

[125℄. In a proess losely overseen by Rithie, the language was enrihed with more

types (long and unsigned), Algol 60-style unions, asts, and struts ame lose

to beoming �rst-lass objets (laking only literals, whih would be later added

by the C99 standard), and areas of the language were re�ned, e.g., the relationship

between struture pointers and the strutures they point to was strengthened.

C spread out in industry and eduation so quikly and suessfully (thanks

in no small part to the availability of a portable ompiler p), that the need to

stritly de�ne it, was soon apparent. A ommittee was formed and The ANSI C

standard (X3.159-1989) was rati�ed in Deember 1989 (although tehnially it was

ompleted a year earlier). Its harter was aimed more at de�ning the language

with minimal impat to working ode than to �x any troublespots. It did �x some

troublespots with the introdution of funtion prototypes, oat as a data type and

the onst keyword, allowing a modium of independene from the preproessor. An

ISO C standard followed, but it was in e�et equivalent to that aepted by ANSI.

In 1992 the ANSI standard was oÆially withdrawn, as ontrol of the C standard

passed from ANSI to ISO, so that now there is a single standard, managed by an

international body.

As per these standardization bodies' regulations, starting in 1995 the standard

went through a revision proess, whih yielded the reent C99 standard. A major

driving fore in this doument was the Numerial C Extensions Group, whose intent

7

was to make C a language more suited and appealing to the sienti� omputation

ommunity (boolean and omplex types were added, Fortran-style variable-length

arrays, more mathematial funtions and maros)

Figure 1.1 shows a number of languages and their respetive inuenes, and more

importantly, the e�et they had on the development and evolution of C. As an be

seen, C obtained muh of its design and many features from its anestor language

CPL [15℄. What the diagram does not show exatly is that the later versions of

the language are stritly upward ompatible, but lak some bakward ompatibility

[70℄. Also missing in the diagram is that the inuene of Algol and BCPL transends

a mere partiular language design, but represents a shool of thought advoating

that the design of programming languages should be more inuened by the use

the programmers put it to than a partiular approah to programming thought

best by its designers. The C design proess was never too detahed from this goal,

both in implementation and through its user ommunity. (As opposed to Algol

60/68, where the languages were ompletely designed, and standardized before an

implementation was even attempted.) This shool of programming language design

was alled by Rihard Gabriel the \Worse is Better" approah [56℄, and it states

that software should start small and evolve aording to the needs of its users.

Software designed this way, says Gabriel, has a better hane of survival, if perhaps

with a diminished aestheti appeal. In fat, Dennis Rithie redited this partiular

design (along with tool availability, right timing and luk) with the suess of the

language [106℄.

1.2.1 Suess of C

C in its various forms is an enormously suessful language. Its portability, terse-

ness, minimal requirements on the run-time system, emphasis on performane and

impliit trust in the programmer has made it a favorite among programmers, and

(until omparatively reent times) the language of hoie where large projets were

onerned. Testimonials of this suess are the large user-base, huge orpus of ode

and abundant literature that both fouses on the language or uses it as the medium

to introdue programming onepts.

8

Algol 60

Algol 68

C with Classes

C++

CPL

BCPL

B

C

Classi C

ANSI C

ISO C

C99

Objetive C

Cobol

PL/I

Figure 1.1: The evolution of C and its major inuenes

9

Timing was of ourse an important fator for the widespread aeptane of the

language. The suess of Unix made C available to hundreds of thousands of people.

Conversely, Unix's use of C and its portability to a wide variety of mahines was

important in the system's suess. Fortunately, C and its entral library support

has always remained in touh with the real environment, whih made its transition

to platforms other than Unix a relatively easy one. In the words of Rithie, \[C℄

was not designed in isolation to prove a point, or to serve as an example, but as a

tool to write programs that did useful things; it was always meant to interat with

a larger operating system, and was regarded as a tool to build larger tools" [108℄.

Regardless of the hanges mentioned in the previous setion, C has remained

omparatively stable through a large user-base in a wide variety of environments

and with a diversity of ompilers. This stability did not prevent a number of dialets

from appearing (of partiular importane to this doument is the one used by the

GNU Projet's C ompiler, g), suh as the addition of the quali�ers far and near

for the Intel segmented arhiteture.

In ontrast to natural languages, the suess of a programming language is not

measured only by the size of its user-base or amount of ode written in it, but

along other dimensions: suh as expressiveness, reliability, portability, extensibility

and support from its environment, among other riteria. The design of C strikes a

balane of all these onsiderations, a balane that is both aeptable and appealing.

Again, iting Rithie: \C is quirky, awed, and an enormous suess. Although

aidents in history surely helped, it evidently satis�ed a need for a system imple-

mentation language eÆient enough to displae assembly language, yet suÆiently

abstrat and uent to desribe algorithms and interations in a wide variety of

environments.".

While Rithie has a modest view of things, another ommentator, Rihard P.

Gabriel was more emphati: \Right now, the history of programming languages is

at an end, and the last programming language is C".

10

1.2.2 C and C++

Stroustrup intended C++ to be a strit superset of the C language, as C was ira

1980, extending the ore language with a striter type system, some modularity,

better data abstration mehanisms, exeption handling, and a number of other

features that took are of some of C's more obvious shortomings [51℄. However, the

fundamental goal of trying to make high-level paradigms, suh as objet-oriented

programming, oexist and ross-fertilize with other (muh lower-level) onstruts

and programming styles was deemed by some self-defeating. Not only that, but the

burden of bakwards-ompatibility meant that some of the undesirable C features

made it into C++, too.

C++ aeptane has been impressive. It is so popular now that the C Standards

Committee had to expliitly deny that C++ is the future of C. It is lear now that

the languages are following divergent paths. The di�erene is obvious from the way

the languages are evolving: while C is adding more types to the language, C++ is

working on its library, using the already-in-plae abstration mehanisms.

1.3 C's shortomings

As widely aepted and tehnially remarkable as C is, it has a number of shortom-

ings in several respets and whih need addressing with varying degrees of urgeny.

These de�ienies are only to be expeted, sine it is a language that has tran-

sended its originally intended domain of systems programming and has beome a

general-purpose language.

The most-often (and loudest) voied ritiisms against C are direted towards

its lak of readability, whih diminishes programmer produtivity. With respet

to readability, C has a number of inonsistenies, for example, unrelated meanings

of the same form (meaning of stati when it appears in and outside a funtion,

the pointer interpretation of array names, the overloaded break, or subtle varia-

tions between initializers and assignment expressions), muh too low-level pointer

semantis (as opposed to, for example, Bliss's or Algol's), and several instanes

11

where onfusing syntax trips up beginners and experts alike. For example, an awk-

ward type delaration syntax, derived from Algol 68's type omposition sheme

(although most of Algol's adherents would ringe at the thought).

It has been pointed out that a person onversant in the way omputers work

and reasonably familiar with omputer arhiteture an immediately make sense

of most of C. This quik grasp is even more notieable in programmers with some

experiene in ompiler writing. It is not out of the question that, at least to

some extent, the semantis of the language were motivated by the ompiler design,

and, what is more, by the ompiler tehnology and programming praties at the

time of C's ineption [92℄. Examples of this abound: the programmer must be

aware of what is a ompile- and a run-time onstant, and C is overly fond of side-

e�ets in expressions (where most programmers trained in other languages, assume

expressions denote only values).

The pratie of delegating as muh as possible to the library (point 4 in the

\spirit of C" above) works reasonably well for a number of tasks and subsystems

(input/output, for example, where it enhanes the portability of the language as a

whole), but it seems there are times when the same strategy does not work as well,

as is the ase with the simulation of several ontrol strutures suh as exeptions,

oroutines, proedure losures, and in partiular, onurreny [24℄, where it has

been shown that these abstrations annot be inorporated into a language via

libraries. Furthermore, the restrition imposed by point 5, that language libraries

must be written in C, seems overly strit sine most modern ompilers are able to

inorporate proedures written in a di�erent languages, and most modern languages

inorporate a \foreign funtion" interfaing mehanisms.

Another area that needs to be partially resolved within the language, as opposed

to a library, is string manipulation. Due to its origins in the systems programming

world, C does not o�er strong support for harater data. The language treats

strings like �xed-length arrays of integers (hars), with the added guarantee that

string literals are terminated with a null harater (whih therefore an not be

ontained within a string)

1

. Other than that, C leaves all string proessing to

1

The delimited-string approah in C di�ers from anestor BCPL, whih uses a length-�eld.

12

libraries, and the memory management implied by the manipulation of varying-

length strings to the programmer. C's abstration mehanisms are not powerful

enough for the programmer or the library to do a thorough job in either ase, sine

they annot provide their own opy and assignment operations for spei� types.

The lak of these operations often results in errors in the use of library funtions,

whih, in the ase of the standard string-manipulation and formatted input/output

libraries, an lead to perniious (inadvertent or otherwise) aess to the memory

regions, in the form of type unsafety or bu�er overruns, for example. This problem

is detrimental to the overall safety and reliability of the system, partiularly in

today's omputing landsape, where text proessing shares some of the dominane

that was previously the provenane of numerial omputing.

Another problemati area is C's lak of modularity. Modularity is one of the

program struturing onepts that, along with data abstration, was introdued in

the 70s, and sine then has gained importane as it a�ets favorably the mainten-

ability of a programming projet. C's support for modularity is minimal, whih

fores programmers to simulate it by distributing their ode over �les

1

ontaining

preproessor diretives that guide the reassembly of the ompilation unit, and then

rely on external tools, like Unix make for �le dependenies and onsisteny of the

projet. This approah is a partial solution at best, sine more sophistiated de-

vies, like seletive imports or exports, data protetion in the form of publi/private

spei�ations, name ollision resolution and all but the more basi data abstration

lie beyond the preproessor and linker's apabilities. Both the lak of language on-

struts (suh as namespaes, modules and a way to export entities from them while

proteting the rest of the ode within) and the insuÆient preproessing solution

have been widely ritiized [93℄.

This omission is evidene to the fat that exeution environments, ompiler

tehnology, and oding style (the de�nition of a good program, the abstrations

onsidered building bloks for good programs, et.) urrent at the time (1970s)

permeated C's design. Many of these ideas and tehniques have sine been sur-

1

C essentialy implements a module with two �les, a header ontaining onstants, types and funtion

prototypes, and an implementation �le, providing the funtion bodies, and perhaps stati global

variables and internal funtions.

13

passed and the older approahes are now depreated. This does not mean that

ode of the highest quality, onforming with one or more of the so-alled mod-

ern programming paradigms and meeting software engineering requirements in use

today an not be written in C. To do so, however, strit adherene to oding onven-

tions is required; but this disipline is not linguistially enfored [93℄, and therefore,

there is no help from the ompiler. Hene, even minor deviations from the onven-

tions, either maliious or unsuspeting, make it very diÆult for the paradigm to

be maintained.

Finally, it is important to mention another soure of users' dissatisfation with

the language. C is been used for a wide variety of purposes, some of whih fall

outside its original sphere of appliation. For example, as the �rst programming

language, that is, the expository medium through whih inipient programmers are

taught about basi onepts of Computer Siene. As remarkably adaptible as C

has proven to be, sometimes even thriving in these unforeseen domains, being a

teahing vehile is not C's strongest suit. C8 extends C with features that ease this

rôle somewhat, suh as a more straightforward delaration syntax. However, it is

by no means the ase that the C8 projet intends to address all suh objetions in

all programming nihes.

1.4 C8 projet

The C8 projet harter is twofold:

1. �x C's shortomings

2. add to C modern programming language features

These hanges must be made in suh a way that they preserve, from the pratial

point of view, bakwards ompatibility with C, and from the philosophial one,

\C's spirit": a small and simple language that allows unrestrited aess to the

underlying arhiteture and whih requires a minimal run-time environment. In

this respet, the C8 projet shares the aims of the C99 standardization ommit-

tee, in that it \attempted to inorporate valuable new ideas without disrupting the

14

C with Classes

C++

Classi C

ANSI C

ISO C

C99

C8

K-W C

SETL

Mesa

Cedar

Figure 1.2: Notable inuenes on C8

basi struture and fabri of the language. It tried to develop a lear and onsis-

tent language without invalidating existing programs" [31℄. The di�erene resides

in what sort of \new ideas" these projets inorporate: whereas in Standard C

the main fous was on numerial extensions, internationalization and foreign lan-

guage interfaes, C8 is not onservative with its additions and modi�ations, and

the introdution of abstration mehanisms, suh as parametri polymorphism, or

ontrol strutures and patterns, suh as exeption handling, tuples and funtions

returning multiple values set the pae for the modi�ations to the language. Not

all these features are new, and their anestry an be traed in the programming

language literature to the 70s (in the ase of exeptions, for example). A diagram

of the languages that are most inuential in the design of C8 is shown in �gure 1.2.

Ever from the ineption of C, a great many projets have had the stated purpose

of extending that language in a variety of ways and atering to di�erent appliation

domains. However, it is hard to omply with the \spirit of C" as stated above, espe-

15

ially when new abstration mehanisms are inorporated into the language. Take,

for example, C++, whose objet-oriented mehanisms for C have been desribed

as an attempt to graft a high-level abstration mehanism to a muh lower-level

language, an inherent philosophial lash.

The C8 approah is di�erent: �rst it rebuilds the C type system, subsuming C's

semantis of expressions, while providing parametri polymorphism and overload-

ing. This type system was designed and desribed by Glen Dith�eld [47℄ in 1994.

In 2003, Rihard Bilson implemented a translator that inorporates Dith�eld's

type system, with several extensions [16℄. Of relevane to this work is the analysis

of expressions involving funtions returning multiple values. With this translator

as a base, the features desribed in the present work are introdued.

Contributions of the thesis

The fundamental ontribution of this thesis is to make the popular C program-

ming language easier to use and more expressive. While several of the features

desribed in this thesis are similar to those in prior work, their inorporation into

C8's more ompliated type system involved signi�ant di�erenes in design. As

well, the mehanisms for implementation of these features from prior work were

often not amenable to approahes and tehniques used in C8 and therefore had to

be reimplemented.

For example, tuples and their omomitant operations are derived from those in

the forerunner KW-C projet [131℄. However, adding tuples to C is di�erent from

adding them to C8, given the latter's overloading apabilities. Operations like KW-

C's multiple and mass assignment, although similar in form in C8, have di�erent

e�ets (x4.2). Also, although KW-C tuples imply the notion of funtions return-

ing multiple values, their utility is limited by the need to \unpak" the returning

values into reeiving temporaries, whih is umbersome when funtions alls are

to be omposed. This work removed this limitation, and a novel onept of tuple

designation was added to allow for the expression of funtion omposition patterns

that are not found in other programming languages (x4.2.3). From these exten-

sions, several other natural features were designed and implemented, e.g., named

16

or keyword parameters, default values for arguments, and named return values.

Although these latter features are not original, they have proven their usefulness

in other programming languages, and their inlusion in C8 was deemed desirable.

I extended Bilson's expression analysis algorithm to enompass these new forms of

argument passing and provided a omplete translation into Standard C.

C8 also inorporates other existing C programming onstruts subtly modi�ed

by this work to enhane usage and prevent misuse. Among these are the variations

on C's ontrol strutures (Chapter 3), viz. loops with multiple-level exits, lists and

ranges as ase guards, and a version of swith without default falling through

ases. I have also added features to C8, blending ideas from other programming

languages. One ritially important ontrol struture mehanism missing from C

is exeption handling. This work added traditional termination exeption handling

semantis and the more ontroversial resumption semantis from its forerunner,

Cedar. Also, I have designed and implemented a new mehanism for Ada-like

attributes that integrates well into the existing syntax and semantis of C8 (Chapter

5).

While adding all these features to C8, this work strove to remain within the

on�nes of the \spirit of C" (in partiular point 8, above). This onstraint markedly

separates C8 from the most visible C variants, Java and C#, and plaes it within the

group of languages that extend C while remaining (mostly) bakwards-ompatible

(some of whih are desribed in the next setion). Unfortunately, omplete bakwards-

ompatibility is seldom obtainable, and C8 spei�ally violates this goal to �x some

very questionable features in C. An interesting experiment was designed and per-

formed to assess the e�et of all the inompatible hanges in C8 (Chapter 6). The

experiment sans a non-trivial body of representative C programs to determine if

the inompatible hanges introdued in this work have any pratial rami�ations,

i.e., estimate how muh real legay C ode would have to be modi�ed to work with

C8. The results of the experiment indiate that very few inompatibilities do our.

17

1.4.1 Related work

Narain Gehani is the fore behind several dialets of C (C with exeptions, Con-

urrent C), that extended the language by adding, �rst exeptions and then on-

urreny. He made no attempt to �x any existing problems in the language. A

similar e�ort was made by Timothy Budd in Oregon State, who added Ion-style

generators to C, and alled the blend Cg. Cox's Objetive C [38℄ is an attempt to

enrihing the C type system with objet-oriented onstruts. C++ had the same

goal, and has already been disussed.

Cylone [127℄ plaes a lot of emphasis on safety. As suh, it extends the C run-

time environment (it provides \fat pointers" and array subsript heks), introdues

region-based (but still manual) memory management and a more strit type system.

These extensions prevent errors ommon in C programs, suh as bu�er overows

1

.

Its syntati extensions inlude exeptions, namespaes, parametri polymorphism

and tagged unions.

A number of ompilers (ommerial and otherwise) extend the language in some

ways. g's extensions have been mentioned already and are disussed in more

detail in the remainder of this thesis. Pike and Thompson's C ompiler for Plan 9

[99℄ provides struture displays (a way to form strut expressions dynamially). It

also makes anonymous nested struts or unions in struts \transparent", so that

programmers an refer to members of the inner onstrut.

It is worth mentioning that the original designer of C was working on a new

programming language alled Limbo [77℄ that, although strongly inuened by C,

is not bakwards-ompatible and it hanges a number of features, for example,

it dispenses with the C-style delaration syntax and adopted Pasal's. It also

inorporates a muh ompliated runtime system, whih inludes garbage olletion,

bounds heking and onurreny. This is more a ontinuous exploration of the

programming language design spae on their part, and by no means an impliit

dismissal of C.

1

Of ourse, these problems are not exlusive to programs written in C, but there are features in

the language |e.g., pointer arithmeti and unheked subsripting| that make it easier for the

programmer to ause problems, and they go largely unheked.

18

1.5 C8 translator

1.5.1 Blak box view

Many desendants of C have been prototyped as preproessing translators. This

partiular kind of translator an be desribed as a ompiler front-end: a program

that does the lexial, syntatial and semantial analyses and whose output is high-

level language program text, in this ase C.

This approah has several advantages over building a full-edged native om-

piler, suh as portability, possibility of interfaing with di�erent optimizers, quiker

detetion of errors, and several possibilities that the use of one-pass ompilers pre-

luded.The strategy is partiularly appealing if the output language is C, whih

has proven to be e�etive as an \universal intermediate representation" of sorts.

Most importantly, a translator of an extended language to the language it extends

is signi�antly simpler to onstrut.

Of ourse, this omes at the ost of a slight degradation in performane when

ompared to a native ompiler. Furthermore, if not enough information is passed to

the output program, the apability of symbolially debugging the original program

is also diminished.

However, there are language features that simply annot translate diretly to the

target language, or that translate only partially. For example, exeption handling

had to be done in the most straightforward of ways sine the translator has no aess

to lower level information, in partiular the addresses in memory a partiular blok

of ode oupies when translated to mahine language.

1.5.2 Funtional desription

C was originally designed with a bottom-up ompilation model: no intermediate

representation is neessary and the ode an be generated as soon as possible

1

. The

1

As opposed to other languages, for example Ada, where the assumed ompilation model depends

on a tree representation.

19

more elaborate mehanisms introdued in C8 prelude this mode of operation, and a

staged translation is required. The parser onstruts an intermediate representation

that is later traversed in various ways until �nally the ode is generated.

Two intermediate representations of the program are built. The �rst is losely

tied to the grammar of the language, and more amenable to reet future modi�-

ations. To some extent, it also reets the development tools used (flex, bison,

et.) and the at times awkward interation with one another (e.g., C++ STL and

bison).

One the building of this representation is ompleted, a seond representation,

modelling the semantis of the language more losely (in e�et, an Abstrat Syn-

tax Tree), is onstruted. One this seond struture is in plae, the translation

proess is arried out by several passes that rewrite setions of the AST. Some of

these rewriting passes are desribed in muh greater detail in the remainder of this

doument.

After all these rewriting passes have been ompleted, what remains (for a valid

C8 program) is the AST of a C program, whih an then be mapped to a string

that is the output of the translator. A driver takes this output and, then feeds it

to the ompiler, along with a number of ompiler ags.

20

Chapter 2

Delaration Syntax

Ever sine Algol introdued the onept of delaration of objets in a program

1

,

and that these delarations are deorated by the type of the objet, a sublanguage

for type desription had to be inorporated into programming languages. In most

languages, starting with Algol W and Algol 68, type spei�ations are built inre-

mentally from a olletion of primitive or basi types by the (repeated) appliation

of type onstrutors.

In C, delarations are omposed of two parts, the base type and a delarator,

whih inludes the name of the entity. If an objet is not of a built-in type, a de-

sription of the type is provided in its delaration, and this desription is omposed

of basi types, type synonyms (introdued via typedef) and onstruted types.

Type onstrutors inlude a pointer onstrutor (*), that takes a type as argument;

an array([℄) onstrutor that takes a type and possibly a dimension spei�ation;

a funtion onstrutor that takes a return type and a list of parameter types; the

reord onstrutor (strut) and the undisriminated disjoint union onstrutor

(union), that take list of types as members, together with a name for eah of them;

or enumeration onstrutors (enum), that takes a list of enumeration onstants. A

type spei�ation might be further adorned with quali�ers (in C99 onst, restrit

and volatile). Finally, a delaration an be further adorned with one of six storage

1

The C standard [6℄ uses the word \objet" to denote a region of memory ontaining a value, as

opposed to other interpretations in the ontext of di�erent programming paradigms.

21

lasses: auto, extern, register, stati, inline and fortran. Any ombination is

allowed as long as it makes some sense.

Throughout the ourse of its evolution, C's delaration syntax has hanged

somewhat. In its �rst inarnation, and all the way through the version desribed in

the �rst edition of K&R, C did not require the spei�ation of the base type of an

objet, nor did it require spei�ations for the return type or number of arguments

in a funtion. Where appliable, these objets' type was onsidered to be int by

default:

x; // same as int x

*x; // same as int *x;

foo(p); // int foo(int p);

foo(x,y) // K&R old-style funtion delaration

int x,y f

// same as int foo(int x, int y)

g

Pointers were delared exlusively using the array onstrutor rather than a star

[107℄:

int ip[℄; // instead of int *ip;

a notation that survives to this day in a vestigial form in argument delarations.

C89 introdued type spei�ers (onst and volatile), funtion prototypes (that

allowed programmers to speify the argument types in a funtion delaration, rather

than in a funtion de�nition) and some additional quali�ers (e.g., unsigned). C99

depreated the interpretation of missing base types meaning int, and inorporated

more primitive types and the restrit quali�er.

Unfortunately, these alterations have done little or nothing to hange the fat

that the delaration syntax of C is one of the most often voied omplaints about

the language.

22

2.1 C Delaration Syntax

C is a diret desendant of B, B of BCPL, and BCPL of CPL (�gure 1.1). CPL

has a design so ambitious that it was not entirely implemented. BCPL (Basi

CPL) restrited CPL in several ways, one of whih was to substitute the diversity

of types with a single one, the word. B further saled down BCPL, speializing it

for systems programming. Beause of BCPL's word-based system was insuÆient

for the purposes of Thompson and Rithie, C adopted parts of CPL's type system,

albeit in a di�erent guise. In partiular, C's delaration syntax is original and

ompletely di�erent from CPL's (whih follows Algol's).

C's hoie of syntax for delarations is based on the idea that the delaration

of an entity should look like the use of that entity in an expression. To this e�et,

tokens denoting operators are reyled in a delaration ontext to adorn base types

and entities. Although this design ompliates the parsing of the language

1

, the

symmetry between delaration and use was onsidered by the inventors worth the

trouble.

At a �rst glane, this shema is both elegant and e�etive, onsider:

Desription Delaration Use

int variable int x x

pointer to an int int *x *x

/* dereferene */

array of 10 ints int x[10℄ x[5℄

/*subsript */

funtion taking and return-

ing an int

int foo(int) foo(x)

funtion taking an int and

returning a pointer to an int

int *foo(int) *foo(x)

/* dereferene */

1

When parsing bottom-up, it is unlear, upon enountering a type onstrutor token, whether

the orret parse tree results in an expression or a delaration, and more ontext information is

needed.

23

However, this approah breaks down as more ompliated objets, ombining

arrays, pointers and funtions, are used:

Desription Delaration Use

array of ten pointers

to int

int *i[10℄ *i[5℄

/* subsript binds tighter */

pointer to array of ten

int

int (*pi)[10℄ (*pi)[5℄

/* deref and then subsript */

pointer to a funtion

returning an int

int (*pf)() (*pf)()

array of pointers to

funtions returning

int

int (*apf[10℄)() (*apf[5℄)()

When both post- and pre�x type onstrutors are used, a delaration spei�a-

tion is layered (like an onion) around the objet name, and is read from the inside

out. However, this rule of thumb does not begin to larify delarations like the ones

presented above.

The use of type synonyms introdued via typedef an ameliorate to some extent

the need for ompliated type delarations by allowing the inremental onstrution

of the desired type ([39℄):

typedef har fh(); // funtion returning a har

typedef fh *pfh; // pointer to funtion returning har

typedef pfh *apfh[10℄; // array of pointer to funtion returning har

typedef apfh *papfh; // pointer to an array of pointers to funtions. . .

This is, at best, only a partial solution to the problem, espeially when type quali-

�ers and storage lasses are brought into play. Type quali�ers and storage lasses

24

an appear in many orders. The next lines all desribe the same objet:

onst int volatile x;

int volatile onst x;

onst volatile int x;

In fat, any of the seven possible versions of a quali�ed type is valid, although

objets delared with di�erent versions are inompatible with eah other and with

the unquali�ed type. Type quali�ation is only relevant in a lvalue ontext, that

is, when an objet with quali�ed type appears on the left side of an assignment or

in the parameter list of a funtion prototype. In most other ases, a quali�ation

in any other position is dropped. For example, the following is valid:

void bar(onst int x);

void foo() f

volatile int vpi;

bar(vpi);

g

Syntatially, the type quali�er onst presents partiular diÆulties when ou-

pled with pointer variables. Sine a pointer delaration desribes what type the

identi�er is supposed to point to, it atually refers to two entities: the identi�er

and the entity it points at, either of whih an be used in an lvalue ontext.

int onst *pi;

onst int *pi;

int * onst pi;

onst int * onst pi;

int onst * onst pi;

The �rst two lines desribe the same objet, a pointer that points to a onst int,

that is, the pointee is not to hange (in other words, any dereferene of the pointer

in a lvalue position is invalid). The next line desribes a pointer that annot point

to a di�erent target (diret assignment and modifying pointer arithmeti, therefore,

25

is forbidden, but an assignment to the dereferene is allowed). Finally, the last two

lines, desribe a pointer that annot hange its target nor an it assign to the objet

it points to.

It is debatable how muh the \delaration mimis usage" poliy is to blame for

how error prone the notation turned out to be. Another fator that ompounded

the onfusion is the existene of pre�x and post�x type onstrutors, that an be

ombined in various ways. This has been deplored by Dennis Rithie himself

1

,

who reognized that several syntati and lexial mehanisms of CPL, inluding

proedure and data delarations, are more elegant and regular than those in C.

Another problem omes from the possibility of delaring more than one objet

in the same delaration statement, but only the base type is distributed aross all

variables:

int* x, y; // x is a pointer, y is an int

int *x, *y; // two pointers to int

Beginner programmers, and even experiened ones with some familiarity with Pas-

al desendants are often surprised to disover the meaning of delarations like the

above, espeially sine errors are not issued by the ompiler until inappropriate

appliation of an operator, potentially far removed from the delaration itself.

In onlusion, C delaration syntax is fraught with ompliations, whih still

trip even experiened programmers

2

. These ompliations are so fundamental that

1

Rithie has suggested that the delaration syntax would have worked muh better had the in-

diretion operator been post�x rather than pre�x. In Pasal, where delaration syntax is not

onsistent with usage, pointers look like:

var iptr : ^integer;

.

.

.

new(iptr);

iptr ^ := 10;

writeln('the value is ', iptr^);

dispose(iptr);

2

Even speialized tools, like del, that translate a C delaration into English and vieversa have

been developed.

26

suessive revisions of the language have not solved the problem. A more radial

hange thereto is neessary.

2.2 C8 Delarations

Till [131℄ onstruted the �rst implementation of an extended delaration syntax;

however, this implementation required several additional keywords to disambiguate

the grammar. Buhr et al [26℄ onstruted the seond implementation but still re-

quired one additional keyword for disambiguation. In C8, I eliminated all super-

uous keywords previously needed, and extended the C8 delaration grammar to

inorporate the new delaration syntax among the other polymorphi extensions in

delarations.

C8 provides simpler type, variable, and funtion delarations. All the tokens

denoting type onstrutors and their meaning are retained, but they are all pre�x

and right-assoiative. This greatly simpli�es ompliated delarations:

Desription C C8

int variable int x int x

pointer to an int int *x * int x

array of 10 ints int x[10℄ [10℄ int x

funtion taking and return-

ing an int

int foo(int) [int℄ foo(int)

funtion taking an int and

returning a pointer

int *foo(int) [int *℄foo(int)

array of ten pointers to int int *x[10℄ [10℄ * int x

pointer to array of ten int int (*pi)[10℄ * [10℄ pi

pointer to a funtion return-

ing an int

int (*pf)() * [int℄() pf

array of pointers to fun-

tions returning int

int (*apf[10℄)() [10℄ *[int℄() apf

array of pointers to fun-

tions

int (*(*papf)[10℄)() * [10℄ *[int℄() papf

27

Even the most ompliated delarations an now be read left to right with-

out omplex binding rules to remember, and without having to resort to auxiliary

typedefs.

Quali�ers and storage lasses are plaed to the left of the base type, but are

otherwise used in the normal way with the new delarations:

Desription C C8

onst pointer to

onst int

int onst * onst x onst * onst int x

onst pointer

to array of 10

onst int

onst int (* onst pai)[10 ℄ onst * [10 ℄ onst int pai

extern array of

10 ints

int extern ai[10 ℄ extern [10 ℄ int ai;

stati pointer to

onst int

onst int stati * pi stati * onst int pi

When delaring multiple entities, the entire type spei�ation is distributed

aross all variables in the delaration list:

* int x, y; // two pointers to int

* [10℄ * int x1, y1; // two pointers to array of pointers to int

Note that in C8 a funtion return type is enlosed in square brakets, and that

an empty parameter list denotes a funtion taking no parameters (as in C++)

whereas in C the same notation means an unspei�ed number of parameters.

[℄ g(); // void funtion taking no arguments

[int℄ f(); // funtion returning int taking no arguments

[har,int℄ f(); // funtion returning a tuple (fr. hapter 4)

Finally, delaration quali�ers and storage lasses are only allowed to appear at

28

the start of a C8 routine delaration

1

:

extern [int x ℄ g(int y) fg

Di�erent styles of type spei�ation an be used in separate delaration state-

ments (but not intermixed in the same delaration), even in the same blok of ode.

Likewise, either style an be used in any ontext that requires a type spei�ation,

for example, a ast, sizeof , or typeof ontexts. The only ase where intermixing

of delaration styles in the same delaration is allowed is delaration of funtion

return and parameter lists of C8-style funtions:

[int (*x)[10℄ ℄ f(int (*y) [10℄); // C-style return and parameter delarations

[* [10℄ int x℄ g(* [10℄ int y); // C8-style return and parameter delarations

This exeption allows bakwards ompatibility with old-style maros generating C

delarations, e.g.:

#de�ne ptoa(n, d) int (*n)[d℄

[ptoa(x,10) ℄ f(ptoa(y,10));

In general, intermixing delarations styles is neither reommended nor sup-

ported, as this pratie tends to ompromise larity. It is hoped programmers

(espeially new ones) will prefer C8's delaration style to C's.

C8-style delarations are rewritten during parsing to their equivalent C forms,

whih means that the use of either form of delarations does not a�et performane

in any way.

1

C99 has adopted the same rule and depreated alternate usage. It is, of ourse, up to time to

determine how e�etive this poliy will be, but due to the extant legay ode, it is safe to say

that it is hopeless.

29

2.3 Related work

C's syntax for delarations has been the onstant soure of omplaints and a sig-

ni�ant number of reengineering e�orts have gone into making the sublanguage

more readable, for example by Anderson [10℄ and Sethi[112℄. Sethi's proposal is

notable beause he made the indiretion operator post�x. The style of delara-

tions this modi�ed syntax allows is muh learer than C's (in Sethi's proposal, the

indiretion operator, denoted in C by * is written ^):

har (* (*x[3℄)())[5℄; // C

har x[3℄^()^[5℄; // Sethi

[3℄ * [* [5℄ har ℄ () x; // C8

Sethi's syntax is learly more readable than C's, and probably just as lear as C8's.

Interestingly, it still allows a programmer to reuse the \har" at the beginning of

the delaration for subsequent delarations, in the form:

har x[3℄^()^[5℄, y^[5℄, z;

However, the distane between the type spei�er and the seond and third variables

is large, and not onduive to larity. C8 does not su�er from this problem.

Several other attempts have been made to �x C's delaration syntax, whih

some subsequent languages inherited. For example, Werther et al. [135℄ suggest

hanging the C++ syntax delaration, to not only inorporate Pasal's ^ pointer

onstrutor, but also ML's funtion type onstrutor �>. C8's solution requires

less syntati innovations, while attaining the same larity of expression.

30

Chapter 3

Control Strutures

Like most imperative languages, C inludes the traditional ontrol strutures of un-

onditional jumps, onditional branhing and seletion, and looping, largely derived

from those in BCPL and Algol. C8 follows suit, but it introdues some variations

in the interests of program readability and maintainability. This hapter desribes

how I augmented C8's ontrol ow by �xing and extending existing C onstruts

and adding new ones. Further hanges in ontrol-transferring mehanisms, spei�-

ally funtion alling, are desribed in following hapters.

3.1 Multi-level exits

The strutured programming shool introdued the notion that ertain ode stru-

tures, e.g. loops and subroutines, should have only one entry and one exit. While

the one-entry restrition seems logial and has remained largely unontested, expe-

riene suggests that having multiple exit points is useful and sometimes neessary.

In fat, many programmers simulate multiple exit points by testing a multitude of

logial ags, resulting in ode that is so diÆult to read and maintain that these

use of ags is often onsidered the data equivalent to the unstrutured use of the

goto statement.

To alleviate this problem, language designers have provided failities to exit

loops and funtions at di�erent points. In C, these failities take the form of the

31

register t;

t := head;

while (t := . .t) 0 do

while (t := . .t) 0 do

if .(.t + 1) 0 then exitloop[2℄ .t

(a) Numbered exit

register t;

t := head;

l: while (t := . .t) 0 do

while (t := . .t) 0 do

if .(.t + 1) 0 then leave l with .t

(b) Labeled exit

Figure 3.1: Multilevel exit in Bliss

statements break and ontinue for loops, and return for funtions. ontinue is

valid only inside a loop and when enountered auses the urrent loop iteration to

terminate and ontrol ow transfers to the beginning of the losest enlosing loop

to start a new iteration. break an be used in a similar fashion, with the sole

di�erene that all loop iterations are terminated and ontrol ow transfers past the

end of the losest enlosing loop. Buhr [23℄ alls this onstrut a multi-exit loop.

However, a C multi-exit loop is limited in the sense that it is restrited to the

losest enlosing loop. A generalization of this apability is a stati multi-level

exit, whih allows transfering out of a multiple nested onstrut to a statially

determined loation. Bliss [140℄, a systems programming language designed at

CMU in the 70s and no longer in use, ontains the equivalent to C's unquali�ed

break (of the form exitloop

1

), as well as a multi-level exit statement of the form

exitloop[n℄, where the parameter n indiates the number of ontrol strutures to

be exited from. This onstrut is understandably hard to maintain, sine adding

or removing nested ontrol strutures required updating all the ourrenes of n.

Later versions of the language allowed the loops to be labeled (see Figure 3.1).

Peterson et al. [97℄ disuss the apabilities of similar onstruts in extenso.

Ada [48℄ ombined both forms by allowing exit statements to expliitly speify

the enlosing ontrol struture out of whih ontrol is to transfer; if the label is

missing, the innermost ontrol struture body is assumed. Several programming

languages (e.g., Java and Perl) adopted this onstrut. Examples of this devie an

1

exitloop takes an optional return value, sine ontrol strutures in Bliss are expressions, rather

than statements.

32

OUTER: foreah $i (�where) f

foreah $j (�f$ig) f

single-level break

last if $j == �1;

last OUTER if $j == $what;

g

g

(a) Perl

Outer:

for I in Where'Range loop

for J in Where(I)'Range loop

�� single-level break

exit when Where(I)(J) = �1;

exit Outer when Where(I)(J) = What;

end loop;

end loop;

(b) Ada

Figure 3.2: Multilevel break

be seen in �gure 3.2. As well, languages like Java and C# allow for general bloks

(i.e., those that are not the body of a looping onstrut) to be labeled and referred

to by multi-level exit statements.

C8 adopts C's looping onstruts unhanged, and extends them to the more

general sheme of Java and C#. This is, labels identifying a blok an be used

in a break statement to transfer ontrol to the instrution immediately following

the end of the blok. Loop statements an also be labeled and the behaviour is

equivalent to the loop blok being labeled. Also, ontinue statements within a

loop an refer to these labels to immediately proeed to the next iteration.

In e�et, all of these onstruts are a restrited forms of goto. They allow only

branhing to the beginning and the end of enlosing ontrol strutures, and therefore

annot be used to reate yles in the ontrol graph. In this way, onstrution of

loops is restrited to the language loop statements, and a legitimate use of goto

[81℄ is given a new syntati form. The C8 translator makes use of the lower-level

goto to implement these extended ontrol strutures, as an be seen in �gure 3.3.

Notie that a ontinue or break referening the losest enlosing loop or swith

is not transformed into a goto.

33

Blok: f

Loop1: for (i = 0; i < 10; i += 1) f

Loop2: for (i = 0; i < 10; i += 1) f

Swith: swith (i) f

ase 1:

if (i < 5) f

ontinue Loop1;

ontinue Loop2;

ontinue;

break Blok;

break Loop1;

break Loop2;

break Swith;

g // if

g // swith

g // for

g // for

g // blok

L0 : f

L3 : for (i=0;i<10;i+=1) f

L2 : for (i=0;i<10;i+=1) f

L1 : swith (i) f

ase 1:

if (i<5) f

goto L5 ;

ontinue;

ontinue;

goto L6 ;

goto L7 ;

break;

goto L4 ;

g // if

;

L4 : break;

g // swith

g // for

L5 : /* null statement */ ;

g // for

L7 : /* null statement */ ;

g // blok

L6 : /* null statement */ ;

Figure 3.3: Multilevel exit in C8(left) and C translation (right)

34

3.2 Seletion statements

An often-enountered need during programming is to pik out one ourse of ation

among several (exluding all others). Charateristially, programming language de-

signers went about providing for this neessity by suessive approximations: �rst

there was the two-way seletion statement or expression, almost universally taking

the form of an if . This simple binary branhing an be saled to an arbitrary

number of ases/ations by nesting or asading if -then-else statements. When

asaded, the number of if-guards or test onditions often orrespond to mutually

exlusive (and presumably non-overlapping) alternatives. Several proposals to pro-

vide some syntati sugaring to suh a programming artifat have been advaned.

If the test is on the same variable or expression (and this is of an ordinal type),

writing the ondition repeatedly is tedious, and often introdues mistakes. C.A.R.

Hoare

1

introdued the multiway branhing statement in Algol, alled a ase state-

ment, whih is onsidered a better solution to the above problem, as it is more

readable and less prone to mistyping of the ondition.

Most languages o�er a form of the multi-way seletion statement (swith in

the C-family, or ase in Pasal's desendents, for example), with some variations,

mostly in the kind of expressions that an be used to label the ases (lists of values,

ranges, even full-edged prediates). Di�erent types of guarded expressions have

also been extensively experimented with (Unix shells, to ite an extreme example,

o�er a ombination of a string test expression and regular expression patterns as

ase labels).

The form this statement has taken in C has been widely ritiized, and it is

often listed among the most annoying and dangerous harateristis of the lan-

guage. Originally inherited from BCPL [106℄, it took a somewhat idiosynrati

bent when \falling through" ase lauses was made the default behaviour. In most

other languages, the exeution of the ode assoiated with a partiular ase lause

preludes the exeution of any other lause in the same swith statement. In par-

1

Hoare said of this onstrut \This [the ase statement℄ was my �rst programming language

invention, of whih I am still most proud, sine it appears to bear no trae of ompensating

disadvantage" [66℄.

35

tiular, during the exeution of a ase lause, the presene of the following ase

lause indiates the ompletion of the ation triggered by the alternative and the

transfer of ontrol to the next statement after the swith statement. In C, the

programmer has to expliitly indiate this transfer by inserting a break statement

to exit the swith statement. The rationale behind this design is that it makes

up for the lak of ranges and more omplex expressions in ase labels, but it is a

deision that still ba�es beginners (espeially if they have been exposed to other

languages with di�erent semantis).

The overloaded use of the name break (used both to exit swith and loop

statements) does not help matters either. In the interest of minimalism (or probably

as a result of his using an outdated BCPL manual [106℄) Rithie deided to reuse

the keyword break rather than introdue another (BCPL settled for the keyword

endase). This deision has proven to be unfortunate, as it leads to errors, an

extreme example of whih is the one that took down AT&T's whole long-distane

network [3℄, whih has been attributed to a bug aused by a break inorretly

assoiated with a swith when the programmer's intent was to exit the enlosing

looping statement.

Interestingly, the C-inspired languages, most notably Java, preserve falling

through ases as the default behaviour, with experiened C programmers more

in mind than beginners (some C programmers even design the ase labels in their

ode to rely on fall-through). Mirosoft's C#, one of the latest additions to this

family of languages, departs from this tradition by assuming fall-through when

faed with empty ases, but syntatially requiring a break at the end of all non-

empty ase, and, should fall-through be required, foring the programmer to make

it expliit via gotos. C#'s attempt, ommendable as it may be, will probably

throw o� old-shool programmers by plaing additional onstraints on a familiar

struture.

The C8 solution goes halfway, keeping the traditional swith onstrut (almost)

unhanged, but also providing labeled breaks (x3.1), whih help prevent errors like

the one desribed above, by stating expliitly what onstrut the break is intended

to exit, and by introduing a new ontrol statement, alled hoose, desribed

below.

36

As muh as the preservation of the swith semantis was a design goal (for

bakwards ompatibility), some hanges were introdued for the sake of uniformity

with other onepts in the language. Sine these hanges are inompatible with

C, the translator might signal working C ode as invalid C8. These hanges are

the main soures of inompatibilities between C and C8 programs, and, along with

the lash of identi�ers with new keywords, the most likely to reate problems with

legay ode. In pratie, however, real ode seldom makes use of the C onstruts

that C8 hanges, and therefore, the impat of the inompatibilities is minimal (for

a systemati study of these issues, refer to hapter 6).

The major di�erene between C8's swith/ase and C's is that ase lauses

are not allowed anywhere but in the (�rst-level) body of a swith statement. This

restrition is geared to prevent jumping into a ontrol struture, with the possibility

of bypassing invariant-heking ode, variable delaration or initialization and other

ruially important statements. The ability to `interweave' a swith with other

ontrol strutures, along with the default fall-through from ases, allows for ode

like the lassi Du�'s devie (�gure 3.4). Du�'s devie has been alled \the most

dramati use yet seen of fall through in C". It was disovered by Tom Du�, while

unrolling loops in the interests of performane and rewriting the unrolled versions by

interlaing the strutures of a swith and a loop (resulting in a so-alled \unnatural

loop" [94℄). While Du� himself ould not plae his devie as an argument for or

against fall-through [118℄, C8 designers had no suh qualms and set Du�'s devie,

for all its potential eÆieny gain and ingenuity, squarely in the uriosity bin.

A minor di�erene between C and C8's swith statements onerns ode plaed

between the swith and the �rst ase label. Code in that position is syntatially

valid in both languages, but it is handled di�erently. While C does allow dela-

rations to have a sope that inludes all the ase lauses, it does not guarantee

that initialization of these entities is performed. Other than delarations, ode

in this position is onsidered \unreahable" and an only be exeuted if it is a-

essed through a goto statement. This behaviour is onfusing and inonsistent

with all other delaration ontexts in the language. Therefore, C8 adopts alterna-

tive semantis: initialization of these delarations is guaranteed. To ahieve this

semantis, the translator generates an extra blok around the swith and hoists

37

register n = (ount + 7) / 8; /* ount > 0 assumed */

swith (ount % 8)

f

ase 0: do f *to = *from++;

ase 7: *to = *from++;

ase 6: *to = *from++;

ase 5: *to = *from++;

ase 4: *to = *from++;

ase 3: *to = *from++;

ase 2: *to = *from++;

ase 1: *to = *from++;

g while (��n > 0);

g

Figure 3.4: Du�'s devie

initial delarations to the front of that blok. This transformation is illustrated in

�gure 3.5.

3.2.1 Case labels

Historially, the swith statement desends from the swith onstrut of Algol

60, whih is a speialization of Fortran's omputed gotos. C's swith di�ers from

Algol's in a number of respets, most notably in the fat that ranges are not al-

lowed as ase labels (although they were onsidered for inlusion in the proess of

developing the ANSI C89 standard [9℄).

Part of the rationale behind the default fall-through between ases is that the

same ode an apply to a variety of options, whih permits ode reuse. It also gives

rise to a number of idioms that (partly) make up for the limited apability of the

38

swith(i) f

int i = 4;

ase 0:

i = 17;

/* fall through */

default:

printf("%d\n", i);

g

(a) C8 version

f

int i = 4;

swith(i) f

ase 0:

i = 17;

default:

printf("%d\n", i);

g

g

(b) C translation

Figure 3.5: Delaration hoisting in seletion statements

value labels, in partiular, for lists of unrelated values, for example:

swith (i) f

ase 1:

ase 2:

ase 8:

ase 22:

ase 43:

do something();

g

Although this is a well-established idiom, it often falls short of its aim. In

39

partiular, onsider the ode fragment:

swith (i) f

ase 1:

ase 2:

ase 3:

ode range 1to3();

break;

ase 50:

ase 51:

ase 52:

ode range 50to52();

break;

g

and similar instanes when onseutive values have to be manually enumerated,

a task that is both tedious and error-prone. C8's designers have determined that

the introdution of more elaborate ase labels is neessary. A programmer an

speify a range of onseutive values in a ase label by using either g-style (start

: : : end) or C8 start~end syntax

1

, where start and end have to be of omparable

integral types, for whih an inrementing or derementing sequene an be inferred

(i.e., they may be integrals or enumeration types in asending or desending order).

Failure to omply with this requirement results in the ompilation proess issuing

a type-hek error.

Ranges are implemented by expansion to the orresponding falling-through ase

statements, thereby introduing no performane degradation ompared to standard

C. A more diret translation into g ranges ould oneivably be ompiled into a

more eÆient representation. An illustration of the kind of transformation urrently

implemented in the system is presented in �gure 3.6.

1

C8 adopted a di�erent syntax than the g's ellipsis to denote a range, beause its spei�ation,

1 : : : 10, requires spaes around the ellipsis, otherwise it is tokenized as \1.", ausing a syntax

error.

40

typedef enum

f ONE, TWO, THREE g options t;

.

.

.

swith (i) f

ase ONE . . . THREE:

printf("In enumeration\n");

break;

ase 3 . . . 5:

printf("Between 3 and 5\n");

break;

ase 6 ~ 10:

printf("Between 6 and 10\n");

break;

default:

printf("Too high (%d)!\n", i);

break;

g

enum anonymous0

f

ONE C13e anonymous0,

TWO C13e anonymous0,

THREE C13e anonymous0,

g;

.

.

.

swith (i i) f

ase ONE C13e anonymous0:

ase TWO C13e anonymous0:

ase THREE C13e anonymous0:

printf("In enumeration\n");

break;;

ase 3:

ase 4:

ase 5:

printf("Between 3 and 5\n");

break;;

ase 6:

ase 7:

ase 8:

ase 9:

ase 10:

printf("Between 6 and 10\n");

break;;

default :

printf("Too high (%d)!\n", i);

break;;

L0 : break;

g

Figure 3.6: Use of ranges and its translation.

41

3.2.2 hoose statement

The C8 designers hose to \tinker" with some obsure problems with the swith

statement, even at the ost of bakwards ompatibility. Nonetheless, the problems

with swith are too fundamental, and annot be resolved without invalidating a

signi�ant amount of legay ode. As an alternative ourse of ation, a new ontrol

struture, hoose, is provided as an (almost) drop-in replaement. The hoose

statement takes the form:

hhoose statementi ::= `hoose' `(' hexpressioni `)' f hase labeli g+ hstatementi

j `hoose' `(' hexpressioni `)' `f' [hdelaration listi ℄ f hase lausei g+ `g'

hase labeli ::= [`ase' hase valuei j `default' ℄ `:'

hase lausei ::= f hase labeli g+ hstatement listi [`fallthru' [`;' ℄ ℄

Inside a hoose blok, the start of a new ase lause signals the exit from the

blok. The only exeption to this rule ours when the last statement of a ase

is a fallthru statement, whih provides the same termination semantis as a ase

lause in a swith statement.

hoose (test) f

ase 1:

/* impliit break, exit blok */

ase 2:

/* expliit fall through */

fallthru;

ase 3:

/* . . . do something else . . . */

g

The redundany of two selet statements, although seemingly a departure from

the C way of doing things, was introdued in the hope that new programmers

would use the new hoose statement if they are �rst introdued to it. The more

42

int fred() f

int i;

hoose (i) f

ase 3:

i = 5;

ase 2, 4:

i = 3;

fallthru;

default:

i = 3;

g

g

int fred Fi ()

f

int i i;

swith (i i)

f

ase 3:

(i i=5);;

break;;

ase 2:

ase 4:

(i i=3);;

/* null statement */ ;;

default :

(i i=3);;

break;;

L0 : break; g

g

Figure 3.7: Translation of the hoose statement.

natural semantis of the hoose statement may gradually attrat more experiened

programmers, rendering the swith statement obsolete.

Implementing the hoose statement is a matter of introduing a simple rewrite

in the Abstrat Syntax Tree. This rewrite asts every hoose statement and its

orresponding blok into an equivalent swith, where the impliit breaks are in-

serted in their proper plaes, and the fallthru statements are elided (see �gure

3.7).

3.3 Exeption handling

The ability to exit loops and bloks from various points to a stati loation naturally

generalizes in at least two diretions. The �rst is to extend the ability to jump

out of other onstruts, in partiular, to jump out of funtion ativations. The

43

seond diretion is a relaxation on the requirement of exiting to a stati loation.

Both features are very useful. Exits from arbitrary ode to dynamially determined

loations allow the onstrution of ompliated ontrol ow patterns in a strutured

way. In partiular, situations outside the normal purview of an algorithm, e.g.,

errors, an be addressed onsistently without obsuring the real purpose of the

ode.

In C, abnormal onditions are dealt with (or often not dealt with) by heking

speial `error' values from funtion returns and/or global status ags, or trapping

signals, possibly logging the error and terminating exeution more or less graefully.

Handling errors by heking the return ode of a funtion has two disadvantages: the

error handling ode gets intertwined with appliation ode, dereasing the readabil-

ity of both, and heking for an error an quikly beome unmanageable, espeially

in a ompliated funtion all hain.

Reliable software strives to work orretly, or to determine that orret operation

is impossible in a given situation. A mehanism for appropriately dealing with

abnormal or exeptional situations must provide:

1. A lean way to anel the exeution of the program fragment within whih

the situation arose.

2. Means of notifying an abnormal situation has ourred, as well as onsistent

and expressive ways to desribe it.

3. The possibility to math to the situation spei� ode that knows how to deal

with it.

4. The ability to speify what ourse of ation the program must follow one the

abnormal situation has been addressed.

Items 1 and 2 are independent of the ontext: if a ode fragment C is unable to

guarantee its ontinuing orret operation, the orretness of any piee of ode that

depends on C is immediately suspet. In this ase, proeeding with the omputation

is pointless and potentially dangerous, so it is better to anel the exeution of C,

and to release any intermediate alloated resoures. Also regardless of the ontext,

44

an exeptional situation has to be desribed onisely and ompletely, at the level

of abstration of the ode that detets it. By ontrast, items 3 and 4 are losely

related to the ontext. For example, it is oneivable that two programs using the

same funtion may want to reat di�erently in the presene of the same abnormal

situation. If it is to be useful, a mehanism to deal with abnormalities must be

exible.

An exeption handling mehanism (EHM hereafter) onstitutes a family of pro-

gramming language onstruts that furnish the programmer with linguisti means

to address all the onerns outlined above. Despite reservations by a number of

prominent language designers (among whom are names of the aliber of C.A.R.

Hoare [67℄ and Doug MIlroy

1

), most modern programming languages inlude an

EHM. EHMs allow a lear separation of the \usual" and exeptional ontrol ows,

and do away with the need of multiple testing for the same error and ad ho ontrol

transfers.

Although EHMs have been proposed for a variety of runtime systems, this dis-

ussion assumes a proedural, non-objet-oriented, sequential language in whih

funtions' ativations are organized in a single stak (i.e., a C-like environment).

This stak is assumed to grow upwards, i.e., when a funtion invokes another, the

ativation of the seond funtion is assumed to be on top of the �rst. This onven-

tion is also observed in the �gures that illustrate this hapter.

Di�erent EHMs have been extensively studied, but there is no universally-

aepted terminology. This work uses terminology from Buhr et al. [22℄. An

\exeption" is haraterized as an event that is anillary to algorithmi exeution,

and whih is omparatively infrequent. When a ode fragment detets the our-

rene of suh an event, it an notify the rest of the system by raising or throwing an

exeption, whih is a data objet desribing the event. An EHM permits exeptions

to be strutured via parameterization and derivation, providing expressive means

to desribe exeptions aross orthogonal onerns. To address issue 3 above, EHMs

introdue the onept of a guarded region with whih ode spei� to the kind

1

MIlroy laims that exeptions ause a system to be less reliable, as programmers and library

writers throw exeptions rather than try to understand the problem, or even report it in a onise

and omplete manner [122℄.

45

of exeption is assoiated, and organized in handlers. Bloks without assoiated

handlers are alled unguarded regions. What handler is ativated (or athes the

exeption) in eah partiular raise is determined by the propagation model. When

one of the intervening handlers ompletes suessfully, the exeption is said to have

been handled, and the system proeeds aording to the EHM's transfer model,

whih ould be termination or resumption.

In the following setion, the design spae of the omponents of an EHM is

explored in some detail. With this bakground, C8's EHM design and implementa-

tion is desribed in the next setion. Finally, alternative deisions to inorporating

exeptions into C are briey reviewed as related work.

3.3.1 EHM design spae

Caneling inomplete operations

During propagation, multiple stak frames (ativation reords) may be terminated.

Eah stak frame ontains a funtion's arguments and loal variables among other

data. All loal data must be leanly deleted. Resoures, like dynami memory, �le

desriptors, soket desriptors, et., may have been aquired during initialization

of loals or in the ourse of the ompleted part of a funtion, and it is neessary to

return them to the pool of available resoures. EHMs usually guarantee the orret

termination of automati data, and provide, either by themselves or in onjuntion

with other language features, a means to free manually alloated resoures. Ex-

amples of EHM onstruts that perform this servie are �nally lauses in Java,

or unwind�protet speial forms in Sheme [116℄ and Common Lisp. In C++, this

e�et an be obtained by using a destrutor for a lass.

Desribing exeptions

The orret desription of an abnormal situation is ruial to the determination

of the ation to be taken in response. EHMs in languages like PL/I, Ada or Lisp

desribe abnormal situations by tags, strings or a system-wide numeri enoding.

46

This approah is learly not extensible, or even onvenient in larger systems. An al-

ternative approah, taken by ML, is to desribe exeptions by exeption types. ML's

algebrai types (disjoint-tagged-unions) serve this purpose admirably. Furthermore,

having types desribe exeptions allows the programmer to pass additional stru-

tured data along with the name of the exeption, giving raise to parameterized

exeptions. Sine exeption types and \omputational" types are used for quite

di�erent purposes, they are usually kept separate from eah other [25℄. Languages

like C++, however, allow the programmer to throw objets of any type, whih

onfuses this di�erene.

C++ and other objet-oriented programming languages further re�ne the \ex-

eptions are types" approah by organizing exeption types in hierarhies and allow-

ing the propagation proess (desribed below) to math exeptions with handlers

for anestor types. This feature is usually known as derived exeptions, and is

probably one of the learest uses of inheritane as a lassi�ation devie in the

lassial sense [104℄. It is also one argument in support of multiple inheritane. It

is ommon that exeption types form the deepest hierarhies in lass libraries for

languages like C++, Java or C#.

The exeptions a funtion potentially raises are an aspet of its behaviour. Fun-

tion behaviour is usually enoded in an interfae spei�ation (also known as proto-

type in C/C++ or signature in Java), so it is natural to extend suh spei�ation to

inlude exeptions, resulting in another feature ommon in EHMs: exeption lists.

These lists are most notieable in Java. The exeptions a Java method an raise are

enumerated after its parameter list

1

. Any ode invoking a method so quali�ed must

either ath all the exeptions in the method's exeption list, or inlude the ones

that go unaught in its own exeption list. This allows the Java ompiler to hek

for the ompatibility of methods, and serves as doumentation on the funtion's

operation. In pratie, however, most programmers feel that exeption lists violate

the priniple of information hiding, ause more problems than they solve (Should

an overridden method throw the same exeptions as the method it overrides? If

1

This is only true for heked exeptions (those that inherit from Exeption). Other kind of ex-

eptions, namely run-time exeptions (inheriting from RunTimeExeption) do not deorate the

signature in this way.

47

the thrown exeptions are to vary, need they do so ovariantly?), or overwhelm

programmers with details. This state of a�airs often results in exeption lists being

overly general, and exeption lists only ontaining the supertype java.lang.Exeption

are ommon. This pratie disards whatever error-spei� data the exeption ar-

ries and in so doing defeats the purpose of parameterized exeptions. Exeption

lists are also problemati in generi ode, as the requirements on the funtions a

type provides must also list the exeptions those funtions potentially raise. As

stated above, exeptions are a onern orthogonal to the notion a method, generi

or otherwise, implements. Having the exeption spei�ation play suh a prominent

rôle, for all its usefulness, is, in ommonly used type systems, highly inonvenient;

there seems to be no middle ground.

Guarded regions

Handlers that deal with spei� exeptions are assoiated with guarded regions.

The granularity of a guarded region an range from a subexpression [60℄ to bloks

of statements, and without loss of generality, most statement-oriented languages

use a ompound statement. This design allows lexial nesting of guarded regions.

As the program runs, and ontrol ow proeeds through guarded regions, fun-

tion invoations also ause guarded regions to dynamially nest. Upon entering a

statially or dynamially nested guarded region, the guarded region's handlers are

added to the list of available handlers. Similarly, when ontrol rosses the borders

of a guarded region on its way out, the handlers assoiated with the region are

removed from the list of available handlers.

Propagation

As noted by item 4 on page 44, an EHM determines the ontrol ow the program

takes when an exeption is raised. This ontrol ow generally involves aessing

one or more handlers, and, after the exeption is handled, transfers ontrol to a

point where normal operation of the program an ontinue, or the program an

safely terminate.

48

Complex ontrol ow patterns, espeially aross binding environments, are usu-

ally explained by desribing ontrol transfers in terms of funtions. Jumps, for ex-

ample, are presented as funtions that never return, and exeptions are desribed

in terms of one-shot downward or upward ontinuations [130℄. A dual approah,

taken in [22℄, deomposes a funtion, inasmuh as ontrol transfers are onerned,

into two jumps, a all and a return. If it is possible, by using the lexial struture of

the program, to determine statially, i.e., before the program is run, the symboli

address ontrol transfers to by a jump (all or return), the jump is quali�ed as

stati. In ontrast, if a partiular ontrol path of the program is the basis for the

determination of jump targets, the jump is dynami. The possible ombinations of

stati/dynami all and return generate a taxonomy that is useful to haraterize

exeption propagation models. All four ases are disussed.

Call

Stati Dynami

Return

Dynami 1 funtion all 2 resumption

Stati 3 sequel 4 termination

Table 3.1: Control Struture Taxonomy

1. Normal funtion invoation in a lexially-bound environment transfers on-

trol to the address of a lexially-visible funtion (stati all). The ode for

the funtion is exeuted, and, upon ompletion, ontrol returns to the point

immediately after the point of invoation, whih annot be known until the

ode is run (dynami return).

2. A funtion all in a dynamially-bound language, e.g., Emas Lisp [96℄ trans-

fers ontrol to the funtion de�nition that is losest in the all hain to the

point of invoation, a loation not determinable until runtime (dynami all).

Similarly, dynami propagation models also rely on dynami all (raise). Han-

dler seletion depends on the nested list of available handlers built at runtime,

allowing handlers to vary for eah funtion all. The ode of the seleted han-

dler is exeuted, and, upon ompletion, ontrol returns after the raise point

(dynami return). This behaviour onstitutes the resumption transfer model.

49

3. Tennent [129℄ proposed a onstrut, alled a sequel, using stati all, but

that returns to the point past the end of the lexial sope where it is de�ned

(stati return). Knudsen [80℄ built Beta's EHM around this onstrut, but

this design seems to have few proponents.

4. The most popular ombination for EHM is dynami all and stati return

beause of its exibility. Handler seletion is done as desribed in item 2.

One the seleted handler has ompleted, ontrol ontinues in the lexial

ontext after the guarded region assoiated with the seleted handler. This

behaviour onstitutes the termination transfer model.

Dynami all is almost universally onsidered the right design deision for an

EHM. However, the right hoie between dynami or stati return (termination or

resumption) is less lear. Sine they are not mutually exlusive, it is possible to

adopt both termination and resumption models in a programming language. Both

models are depited in �gure 3.8. The all stak is shown on the left, growing

upwards, where every blok denotes an ativation. If there are handlers assoiated

with an ativation, they are shown on the right. The solid arrows onneting ativa-

tions denote (normal) ow of ontrol. Upon the raise of an abnormal event (marked

\raise"), the propagation mehanism searhes among the available handlers for one

that is appropriate to the raised exeption. This searh is denoted in the �gure by

the dashed line through the handlers on the right. In the situation depited in the

�gure, there is no appropriate handler to the raised exeption among those assoi-

ated with the tightest (lexially- or dynamially-) enlosing guarded region, so the

propagation ontinues among the handlers at the next guarded region. A mathing

handler is found among these (marked \ath"), so the handler ode is exeuted.

At some point in this proess, the handler's ode determines that the abnormality

is better addressed at a higher level, so it reraises the exeption (marked \reraise").

This auses another round of propagation of the same exeption to begin, this time

among the handlers assoiated one level out (notie that the dashed line does not

pass through the last available handler on the urrent level), and not stop until an-

other appropriate handler is found two levels out (marked \ath"). This handler's

ode is run to ompletion. At this time the exeption is onsidered handled.

50

1. termination

2. resumption

guarded and handlers
propagation

catch

catch

raise

reraise

stack

unguarded regions

Figure 3.8: Exeption handling

51

The handler-lause mathing usually proeeds in aordane to the rules already

in plae with respet to other aspets of the language, e.g., type equivalene, or

the extended rules of argument-parameter mathing. These rules govern also the

possible ways the exeption an be used in the body of the handler, e.g., what

operations an be applied to the exeption objet. A ommon extension to the

funtion invoation analogy in handlers allows for the provision of a default or

\ath-all" handler, that mathes any exeption.

What happens after the exeption is handled is determined by the poliy in

whether the return loation is stati or dynami. The mehanism an hoose a

sequel -like behaviour (as in Beta) and transfer to the end of the guarded region that

handled the exeption (point \1" in �gure 3.8), resulting in termination semantis.

Alternatively, if dynami return behaviour is hosen, ontrol is returns to the point

after the exeption was raised (point \2" in �gure 3.8), e�etively resuming the

operation within whih the exeption ourred, resulting in resumption semantis.

Termination-versus-resumption is an ongoing debate in programming language

irles, with resumption most favored among the Xerox PARC-bred ommunity

(Smalltalk, CLOS, Mesa/Cedar), and termination advoated among the C++ and

Java amps. One model does not prelude the other, and it has been suggested

that they are omplementary, and serve di�erent purposes, and address di�erent

onerns. If the two models are to oexist in a language, however, lose attention

has to be paid to several issues. Foremost among these is when is the propagation

model for a partiular raise seleted. There are three possibilities:

1. As part of the exeption type (in the delaration).

2. Indiated at the raise point.

3. Indiated at the handler.

Enoding propagation model preferenes in the exeption type should be exible

enough to provide for the ase when the exeption is dual, i.e., when it is not spei�

to either mehanism.

52

Regardless of what propagation model is hosen, the ombination of resumable

and terminating exeptions alls for more sophistiated handler semantis, that reg-

ulate the oupling or the propagation model spei�ed by the raised exeption and

the handler that is to deal with it. This onsideration is part of the handler math-

ing semantis, and is usually spei�ed by desribing the behaviour of the system

under all possible ombinations of exeption/handler hoie of propagation models.

Not all suh ombinations make sense. In partiular, it is impossible to math a

terminating exeption with a resumption handler, sine by the time exeution is to

be resumed, the stak has been unwound. In general, unmathed exeption/handler

ombinations are problemati, and the most onservative semantis for these ases

are usually safest.

The added exibility of dynami propagation is not without drawbaks. In par-

tiular, the ase of an exeption going unaught and esaping to the runtime, due to

a lak of an appropriate handler. Di�erent programming languages handle this ase

di�erently. Some, like Java, try to determine statially whether there is the possi-

bility of this happening in a partiular program, via powerful ontrol-ow analysis

at ompile time. C++ provides a terminate() funtion hook for unaught exep-

tions, whose default behaviour is to abort the exeution of the program. Despite

this important failing, dynami propagation remains the most popular hoie.

3.3.2 C8 Exeption Handling Model

In this setion, the syntax and semantis for the C8's EHM are presented, relying

on the bakground developed above. The C8 EHM inludes parameterized and

derived exeptions, as well as both resuming and terminating transfer models.

Desribing exeptions

In ontrast with C++, where values of any type an be used as exeptions, in C8,

the only type that an be thrown is exeption, an alias for the type strut exeption,

de�ned in the runtime library. Derived exeptions are onstruted from this type

via reord omposition. That is, more speialized exeption types are struts that

53

inlude an anonymous �eld of type exeption. This rule builds upon the impliit

onversion rules in C8's stati type system (inspired by a similar extension in the

Plan-9 C ompiler [99℄), whih introdues an impliit onversion from strut in-

stanes to the type of an unnamed �eld:

typedef strut exeption f har *msg; g exeption; /* runtime library */

strut io exeption f

exeption;

har *devie name;

g io exeption;

printf("Exeption: \%s", io exeption.msg); // impliit ast to exeption

This approah, taken reursively, permits forming exeption hierarhies �a la objet-

oriented inheritane hain, rooted on exeption. In this way, more organized exep-

tion handling patterns and some reuse of handler ode are possible.

Guarded regions

Like C++ and Java, guarded regions are ompound statements pre�xed by the

keyword try. Inspired by Java, C8 inludes a �nally lause that is exeuted

regardless of how the try blok terminates. Every guarded region may have multiple

handlers assoiated with it; eah handler omprising a ompound statement and

introdued by one of the keywords resume or terminate. There is at most one

�nally lause after the handlers:

htry statementi ::= `try' `f' hstatementsi `g' [hhandlersi+ ℄ [h�nally lausei ℄

hhandlersi ::= [`terminate'j`resume'℄ `(' hexeption spei ')' `f' hath lausei `g'

h�nally lausei ::= `finally' `f' hstatementsi `g'

Notie that C8 follows the C++ approah for the sope of handlers and try

bloks. By requiring handlers to be assoiated with bloks, the language syntax

54

e�etively prevents delarations in try bloks from leaking into handlers. In par-

tiular, it prevents the problem of the handler referring to objets that are nonex-

istent. Consider, for example, the ase of a delaration plaed after an expression

that raises an exeption.

The exeption spei�ation is a C8 variable delaration with ertain restritions.

In partiular, sine C8 uses name equivalene for types, delaring a new type in a

handler, e.g.:

try f

. . .

g terminate(strut new exeption f exeption; /* more �elds */ g e) f

. . .

g

introdues ode that is e�etively unreahable. The urrent implementation of the

C8 translator ags this situation as invalid. It also makes sure that the ath-all

terminate(exeption) or its resume ounterpart ours at the end of a handler

list.

Raising and propagating exeptions

An exeption an be raised at arbitrary points in the program. The syntax for

raising (and re-raising) an exeption is:

hraise statementi ::= [`terminate' j `resume' ℄ [hexpressioni ℄ `;'

As an be seen, the propagation model for a given exeption is set both at the

raise and handle points. Enoding the propagation model in the exeption type

involves modi�ations to the type system (terminate an only throw terminating

exeptions, et.) and imposes �ner ontrol over the \inheritane-as-omposition"

mehanism, for no expressive gain.

C8 has mathing semantis of handlers, that is, a handler has to math the

exeption type, spei�ed in the handler lause, and the propagation model, spei�ed

55

by the kind of raise/handler pair, for it to be seleted. A reraise must math with

the propagation kind of the initial raise.

When there are no raised exeptions, ontrol ows through guarded regions,

ignoring handlers and exeuting �nally lauses. When an exeption is raised, the

propagation mehanism searhes the guarded region for available handlers lexially

from top-to-bottom for eah handler lause, in the order of de�nition. The �rst han-

dler that mathes the raised exeption is the one seleted. Note that this strategy

means that a more general exeption spei�ation an shadow a more spei� one

ourring later in the handler list, thereby rendering the latter handler e�etively

unreahable.

Upon handler seletion, the exeption parameter (the result for the expression of

the raise statement) is bound to the variable delared in the exeption spei�ation

parameter.

Assume that the seleted handler runs to ompletion, i.e., that no further ex-

eptions are raised or reraised during its exeution. For a resume handler athing

a resumable exeption, the exeution state at the point of the raise is restored,

and exeution ontinues at the statement after the one that issued the raise. For a

terminate handler athing a terminating exeption, the exeution state between

the raise point and guarded region ontaining the seleted handler is disarded, and

ontrol ontinues after the guarded region, one the �nally lauses of all disarded

guarded bloks are exeuted.

If after the stak of available handlers is ompletely examined an appropriate

handler is not found, the unaught exeption funtion hook is invoked. The default

behaviour of unaught exeption is to abort the exeution of the program, but a

programmer an provide an alternative implementation. However, an alternative

implementation must eventually abort.

3.3.3 Implementation

There are two popular strategies for the implementation of a termination-based

exeption handling mehanism. Christiansen [28℄ alls them dynami registration

56

and stati table. The stati table approah is only feasible when aess to the (ma-

hine) ode-generation engine is possible, as knowledge of the addresses (symboli

or otherwise) of generated ode is neessary. For a soure-to-soure translator, this

approah is learly infeasible.

For my implementation of C8's EHM, I seleted the dynami registration method.

This approah onsists of storing the state of the program

1

upon entry to a guarded

region in a LIFO list, or stak. The state information is stored in a reord that

also ontains a ag desribing the status of the propagation. A runtime library

funtion reates and links reords onto a guarded-region stak. This funtion is

invoked upon entering a guarded region. Also, a guarded blok is translated into

a swith statement whose ases reet the urrent status of the propagation, i.e.,

whether a handler is being searhed, or the �nally lause is being exeuted. The

handler lauses are plaed in one of the ases and the �nally lause in the last.

If the guarded region's run is ompleted normally, the reord is unlinked, and the

�nally lause, if present, exeuted.

When an exeption is raised, is top of the guarded-region stak is examined

for the next available group of handlers, i.e., the ones orresponding to the losest

dynamially enlosing guarded region. As pointed out above, C8 mathes handlers

to exeptions depending on the exeption type and then on�rms the math by

ensuring that the propagation model for the raise and handler spei�ations are

the same. Runtime type mathing is performed using a runtime type desriptor, or

RTTD

2

. For the C8 translator, the RTTD is a linked list of names, ontaining the

name of its delared exeption type and a list of the exeption types it is derived

from (fr x3.3.2) reursively. This representation permits the type mathing to take

the form of a linear searh over lists. The translator onverts handler lauses into

if hains, preserving the order of handlers and guaranteeing that the �rst handler

that mathes is the one that is seleted.

If a handler is not found, ontrol is transferred to the �nally ode, if it exists.

1

Ad minimum: the values of the stak and frame pointers and the program ounter.

2

Common RTTDs are strings ontaining type names, perhaps after mangling. Full edged, dynami

type identi�ation (RTTI) shemas, like that of the GNOME GObjet framework [128℄ are also

ommon.

57

If this ode is run to ompletion, the top reord on the guarded-region stak is

unlinked, and the proess proeeds with the next reord. If a handler is found, its

ode runs. If this ode is run to ompletion, ontrol is transferred to the �nally

lause, with the subsequent unlinking of the top reord one the �nally ode is

done. The exeption then is handled, and the program proeeds at the level of the

athing guarded region.

The standard C library funtions for nonloal jumps, setjmp and longjmp pro-

vide for jumps downward in the all stak, and automatially unwind the stak.

Thus, this faility does not allow for the implementation of resumable exeptions.

More versatile, but less portable libraries that provide the neessary funtionality

are POSIX [69℄ user-level ontext-swithing funtions

1

. In partiular, operating

systems like Windows and even several Unix variants like FreeBSD are laking in

these failities. Even with ompatibility among operating systems, the problem is

not ompletely solved (for example, at the time of this writing Cygwin still did not

inlude the uontext funtions). Using uontext funtions permits the storage of

the program state at the raise point of a resumable exeption, state that is restored

one the exeption is handled. As a result of these tehnial diÆulties, resumption

is not implemented in the urrent C8 translator.

The translated output for a program ontaining terminating exeption handling

ode is presented in detail in �gure 3.9.

The implementation desribed above is not without problems, the most obvi-

ous of whih is performane. Eah try blok has to set up a new node in the

guarded-region stak. If no exeptions are thrown, but there is a �nally lause

present, longjmp still has to be alled, inurring a performane hit. Furthermore,

the GNU implementation of the non-loal jump failities make extensive use of the

C++ runtime system, in partiular the exeption-handling support routines. Most

of the ode in these support routines has to do with ensuring that all objets with

a loal sope are destroyed (and their destrutors invoked) when the orresponding

sope is abandoned, whih is not needed for the purposes of C8 exeptions. Us-

1

Other possible hoies inlude the libunwind[5℄ library, that de�nes a portable API for all-hain

manipulation in C programs. At the time of this writing, it supports only Itanium and x86

arhitetures, whih is not portable enough.

58

int foo() f

io exeption no�le;

stpy(no�le.msg, "No file found.");

terminate no�le;

g

//. . .

void bar() f

//. . .

tryf

//. . .

foo();

g terminate(io exeption ex) f

// handler 1

g terminate(exeption) f

// terminate any

g �nally f

lose(fd);

g

g

int foo() f

f

exobj.data = (void *)&x; // global objet

longjmp();

g

/* alternative exeution path */ return 0;

g

//. . .

void bar() f

f

gd region link link;

gd add ontext(&link);

swith(setjmp(link.tx)) f

ase 0: f

//proteted region of ode, inluding:

foo();

longjmp(link.tx, INHANDLER);

g

ase INCODE:

// beginning of handlers

if(math(exobj.data type, handler1.type)

& exobj.prop model == handler1.prop model)

// handler 1

io exeption ex = (io exeption)exobjet.data;

// . . .

exobj.handled = true;

longjmp(link.tx, INHANDLER);

g else

if(exobj.prop model == handler3.prop model)

f

// ath-all handler

exobj.handled = true;

longjmp(link.tx, INHANDLER);

g

ase INHANDLER:

f

lose(fd);

gd remove ontext(&link);

if (! exobj.handled)

longjmp(gd top ontext(), INCODE);

g

g

Figure 3.9: Exeption handling translation.

59

ing ompiler or library-spei� failities, suh as GNU C's builtin setjmp() and

builtin longjmp() that limit their funtionality to basi omputer state informa-

tion might signi�antly alleviate the performane degradation.

Furthermore, there are onerns about the generated ode. Global variables

are used to store the root of the guarded-region stak and the exeption data

objet, whih is almost always poor pratie, and immediately problemati when

onurreny is introdued to the program.

3.4 Related work

The addition of ontrol strutures to the C language has been the subjet of many an

aademi and tehnial study. Most of them involve modi�ations to the runtime

organization (for example, Budd added Ion-style generators [21℄, a work whih

involved substantial reorganization of the runtime stak).

Modi�ations to the swith statement and the default fall-through behaviour

have also been oasion of muh disussion. Of these studies, it is worth singling

out Cylone [127℄, whih extends swith to handle values of any type and ase

labels to speify patterns, possibly quali�ed by guards, whih are prediates whose

truth is required for the pattern to math, and the partiular ase to be seleted.

Partiularly interesting is the fat that swith onditions and ase patterns in Cy-

lone may involve tuples. Cylone also forbids falling through non-empty ases, and

introdues the keyword fallthru for the programmer to on�rm that fall through

is the desired behaviour.

EHMs have been integrated into C in a great variety of forms. The dynami

registration method has been espeially popular in this task for it implies little or no

hanges to the ompiler or runtime. The most omplete desription of the dynami

registration method is by Cameron et al. [27℄, in the ontext of C++. Examples

of this approah are the exept[34℄ library, that provides C++-like try, ath,

and throw onstruts; and the real-time oriented RTF�les [111℄, that also inludes

�nally lauses. Neither of these libraries permit resumption, or even mathing by

type, as exeptions are identi�ed by system-wide numeri odes. Another exponent

60

of the dynami registration approah, also worthy of mention is Allman's [8℄, whih

uses string exeptions in ombination with regular expression mathing at the han-

dlers for a exible form of derived exeptions that does not involve inheritane or

inheritane-like mehanisms.

For better performane, platform-spei� C extensions, like those known as

\Strutured Exeption Handling"[98℄ on Windows platforms ould be generated.

At a lower level, if C is not to be generated, but an intermediate ode is targeted,

Ramsey and Peyton-Jones's C{ [102℄ provides versatile exeption handling meha-

nisms, and is oupled with a variety of bakend ode generators. At an even lower

level, the most popular virtual mahines to date, Sun's JVM and Mirosoft's CIL

failitate the walking of the stak, whih allows for very exible EHM implemen-

tations. At the arhiteture level, very few platforms (e.g., SPARC and MIPS)

support the new generation of generi stak unwinders.

Alternative approahes to error handling for C, besides the ones mentioned at

the start of the setion, are basially extensions to the status-ag tehnique. An

example of this is an approah used by most C-CORBA bindings [63℄, onsists of

passing extra by-referene \environment" reords as arguments to funtions. The

programmer needs to hek the values the funtion has plaed in spei� �elds of this

reords to determine whether an error ourred during the funtions' run. Although

this is perhaps the most appropriate way to hek for errors in a distributed ontext,

it su�ers from the same weaknesses as the status-ag methods.

61

Chapter 4

Tuples

The onept of \subprogram" arose in the early days of omputer programming.

In general, a subprogram is a named, self-ontained, possibly parameterized, frag-

ment of ode that performs some well-de�ned ation that is invokable from another

subprogram, to whih it may or may not return a value. The key point is that a

subprogram is independent of its aller, therefore usable by any other subprogram

at any point in its ode.

The subprogram is the most ommon abstration mehanism in all programming

languages, and was present even in the �rst one, Fortran. Subprograms play a

pivotal rôle in the \strutured programming" shool of thought, and in software

engineering with respet to the notion of modularization. Today, virtually every

programming language supports the notion of a subprogram and all programmers

are taught about and use subprograms as a primary oding mehanism.

Under the onept of subprograms, endless variations of the original theme an

be found: arguments an be passed to the alled subprogram aording to a number

of poliies (as opies, referenes or a representation of their atual textual form),

argument lists an be of any �xed or even of unspei�ed length, subprograms an

diretly or indiretly all any other subprogram inluding themselves ad in�nitum,

an be alled asynhronously, or alled on a di�erent omputer, et.

It is perhaps surprising that these numerous mutations, generated over the more

than 40 years of researh and use, have not wandered far in form and onept from

63

the original notion of subprogram all. The main omponents of suh a all are

still learly reognizable: a list of arguments passed to parameters, a hange in

the ontrol ow from the all to the subprogram, saving the neessary exeution

state so it an be restored after the subprogram and those that it has alled have

�nished; and, should it be neessary, the plaing of the result of the subprogram

omputation in a loation where the alling program an aess it.

Exploring the design spae depited above, KW-C [131℄, one of the diret fore-

runners of C8, inluded output parameters, named return values, and other fea-

tures. Most notable among the extensions, it introdued to C language the idea

of tuples. Tuples apture in a limited way the notion of independent omputa-

tions, and thus are more a data struturing mehanism than a new built-in type;

tuples allow for a more onise expression of several idioms in C that involve the

use of temporaries. These idioms inlude multi-valued funtions, the manipulation

(paking and unpaking) of omposites, operations like the simultaneous seletion

of multiple members from reords, or initialization of the same, and various parallel

forms of assignment. Having tuples in the language establishes uniformity to all

suh manipulations.

C8 relies on tuples to enhane the C8 language desribed by Dith�eld [47℄ and

Bilson [16℄ in muh the same way that KW-C does for C. To this end, I extended the

original C8 expression analysis algorithm to inlude the e�ets of overloading and

type speialization in tuple operations. Moreover, I generalized KW-C's notion of

a tuple to enompass designators, a feature that allows for very expressive funtion

omposition patterns. Other features that resulted from the extended expression

analysis phase are named parameters, default values for arguments, and named

return values. The desription of these modi�ations, the features they sustain

and, more importantly, the resulting inreased expressiveness of the language form

the substane of this hapter.

4.1 Multi-valued Funtions

In the most general ase, a subprogram aepts arbitrary number of arguments of

arbitrary types and returns arbitrary number of values of arbitrary types. There are

64

a number of possible explanations for programming languages designers not giving

multiple value-returning (MVR) funtions the same importane (if any at all) as the

single-valued returning (SVR) ounterpart. First there is the notation. Awkward

syntax is probably the �rst reason that disourages designers from inluding MVR

funtions in their language. Ideally, a MVR funtion should be syntatially as

similar as possible to a SVR funtion, that is, it should be possible to delare and

use an MVR in every ontext where a traditional SVR funtion ours, spei�ally:

returning values: It should be possible to store the values returning from a fun-

tion into appropriate variables, and

omposition: It should be possible to use the values returned from a funtion as

arguments to another (provided they are type-ompatible), without the need

of intervening temporaries.

Syntax meeting these requirements is not immediately obvious in most pro-

gramming languages. Partiularly problemati is the omposition of MVRs. For

example, given a (urried) funtion type asription, expressed as:

funf : Type

f;1

! Type

f;2

! : : : ! Type

f;n

fung : Type

g;1

! Type

g;2

! : : : ! Type

g;m

if Type

g;i

: : :Type

g;k

; i; k � m;m � n, math Type

f;n�k

; : : :Type

f;n

, the funtions

f and g are omposable, and their omposition has the type asription:

f � g : Type

f;1

! Type

f;2

! : : :Type

g;m

If SVR-funtion omposition is expressed in pre�x notation f(g(: : :)), it is lear

from the denotation that the result of the innermost funtion is to be used as the

argument of the next funtion in the hain. For MVR-funtions, however, it is not

so obvious what results are to be bound with what parameters. An in�x 'apply'

operator solves the problem:

65

(Value

Type

1

;Value

Type

2

; : : :Value

Type

n

)appfappg (4.1)

This form of notation is so appealing in this partiular ase that even otherwise

algebraially-inspired languages, suh as Beta [87℄ adopt it (the proposed app op-

erator is written => in Beta). The funtion takes two below takes two parameters,

alled input parameters

1

, whih are assigned (left-to-right) from the variables y and

z as arguments:

y,z => takes two

The MVR funtion gives two returns two results. Funtion omposition is then

performed as follows:

gives two => takes two

This syntax allows the funtion omposition in formula 4.1 (for n = 2) to be

expressed as:

val1,val2 => f => g

Beta's hoie of notation ertainly looks familiar to programmers of the Unix

shell sripting languages, whih rely heavily on program omposition, and where

ommuniation takes plae exlusively with text streams. Conneting the output of

a program to the input of another (the app operator above) is done using a `pipe'

harater (j). Raoult and Sethi [103℄ propose inorporating the pipe notation into

a ompiled programming language.

A seond syntatial alternative, post�x notation, makes omposition of multiple-

value returning funtions unfettered in stak-based languages, where the symmetry

between multiple arguments and multiple return values has been ommonplae.

Consider the Forth version of the running example:

1

also part of KW-C.

66

: \gives_two 2 3 ;

: \takes_two {a b} ... ;

\gives_two \takes_two .

The �rst two lines de�ne the funtions (\words" in Forth terminology) ngives two

and ntakes two. The �rst one pushes the values 1 and 2 onto the stak. The fun-

tion ntakes two pops two values from the stak and plaes them in the variables

a and b. The last line is an expression omposing both funtions.

For languages using a pre�x funtion appliation operator things beome more

diÆult. Most languages in this ategory have been unsuessful in ahieving nearly

as natural a form as those outlined above and have to resort to alternative syntax

(as Beta did). Consider, for example, Sheme, whih, as of the last revision of

its standard [76℄, inludes MVR funtions. However, funtions returning multiple

values have to follow a partiular interfae, namely, generating a group of variables

with the speial form values, and alling a funtion upon an expression generating

multiple values with the form all�with�values, whih takes a losure with no pa-

rameters as a produer, and a seond losure, the onsumer, whih is alled with

the values generated by the produer as arguments. Although ertain optimizations

that elide the use and overhead of these losures are possible [12℄, alls to MVR

funtions do not resemble appliations of a SVR funtion. They look awkward in

even simple ases, suh as when using a reursive de�nition:

(de�ne partition

; `partition' takes a list and a prediate, and returns the list of all the

; elements of the original that omply with the prediate, and the list

; of all the elements whih do not.

(lambda (l p)

(if (null? l)

(lambda () (values '() '()))

(all�with�values (partition (dr l) p)

(lambda (lyes lno)

(if (p (ar l))

(lambda () (values (ons (ar l) lyes) lno))

(lambda () (values lyes (ons (ar l) lno)))))))))

67

John MCarthy was among the �rst language designers to reognize the impor-

tane of MVR funtions, and urged the amerian delegation in the Algol design

ommittee to inlude this faility in Algol 60, and made it part of even the �rst

inarnations of Lisp. Later, Friedman and Wise [55℄ extended Lisp to inorporate

easier-to-use reursive MVR funtions (a faility that is almost as expressive as

C8's). It is not surprising then, that later inarnations of Lisp, in partiular ANSI

Common Lisp ([61℄), with its emphasis on pure funtional programming style, frown

upon the use of `out' parameters and provides a speial faility for the manipula-

tion of MVR funtions. Any funtion an return multiple results that are bound

via speial forms and maros: values returns its arguments (without intervening

struturing), multiple�value�bind names these values on the reeiving end. This

approah inreases readability, but funtion omposition is still awkward:

(labels ((gives�two () (values 2 3)))

(multiple�value�bind (x y) (gives�two) (takes�two x y)))

The formmultiple�value�bind binds the two values returned by gives�two via values

to the names x and y. multiple�value�bind is but one of the spei� forms of

destruturing�bind, whih mathes more strutured (nested) lists. One the vari-

ables are bound, they an be used as arguments to all takes�two.

Other Lisp-inspired languages, even with more algebrai syntax also make use

of a similar interfae for dealing with multiple values from a funtion. For example,

Dylan [113℄, a hybrid between Sheme and CLOS omes loser to the objetives

stated above. It also makes use of the values speial form, but reuses the loal

assignment form let to make use of the values returning from a funtion.

de�ne method gives�two ()

=> (a :: <number>, b :: <number>);

values(2, 3);

end method

.

.

.

let (x, y) = gives�two();

takes�two(x,y);

68

For Algol derivatives other forms have been proposed. Languages like Xerox's

Mesa [91℄ and its suessor, Cedar, treat funtions as if both parameter and return

values lists were reord strutures. When assigning the result (or rather, the on-

tainer for the result), any variable whose struture mathes the one returned by

the funtion is type-ompatible.

gives two: proedure returns [a,b:integer℄ =

begin

return [a:2, b:3℄;

end;

.

.

.

[x, y ℄ = gives two[℄ ;

takes two[x,y℄;

This interpretation of parameters and return value lists as reords is used to some

extent in C8(see page 81).

Other languages that provide for multiple-value returns are C's forerunner,

BCPL [105℄, Alphard [114℄ and CLU [88℄. While all the algebrai languages above

deal with returning multiple values, none addresses the issue of funtion omposi-

tion of MVR funtions onsistently with their SVR ounterparts.

Sine all these inarnations of the mehanism are unappealing or do not inte-

grate well with the rest of the language (e.g., inonsistenies between single- and

multiple-value returning funtions), alternate solutions to returning more than one

value from a funtion are usually preferred. The e�et of returning multiple values

from a funtion an be simulated to some extent by a ombination of other pro-

gramming language onstruts (aggregate or `out' parameters

1

) or by resorting to

programming onventions, like rewriting a program in ontinuation-passing style.

These workarounds arry their own set of diÆulties.

1

`Out' parameters an be used to trigger optimizations, for example, by returning multiple results in

registers (as it happens in languages like Ada, Sather and Merury). If unavailable in a partiular

language, the e�et of 'out' parameters an be approximated by passing extra arguments by

referene.

69

Passing aggregates bak and forth has the inonveniene of requiring umber-

some and error-prone paking and unpaking. Output arguments and passing pa-

rameters by referene require additional notions suh as variables, addresses, as-

signments, nonloal side e�ets, aliasing, et, that plae a onsiderable burden on

the programmer.

Furthermore, any of these approahes involves the use of temporary variables

whose sole purpose is to immediately transfer the results from one funtion to

another. This use of variables is undesirable from a number of standpoints. Firstly,

it inreases the data omplexity of the funtion all that makes use of suh a pratie.

Data omplexity is a measure of the amount of data proessed by a subprogram,

and it is reeted, among other riteria, in the the number of variables delared

therein [32℄. Seondly, it multiplies the plaes that require hange should any

of the funtions involved hange its interfae

1

. Lastly, for languages like (pre-

C99) C, all variables must be delared at the beginning of a blok, whih an

be substantially separated from the point where the funtion all is made (unless

\spurious" bloks are introdued by the programmer, an unsatisfatory solution),

inhibiting readability and maintainability. Languages like C99, C++ and Java

alleviate this situation by allowing the delaration of variables to be interspersed

with the statements but the variable ount is still arti�ially (and awkwardly)

inreased.

Continuation-passing style (CPS), and later the CPS-transform was �rst intro-

dued by Fisher and Plotkin [53, 100℄ and extended by Harper et al. [65℄ to the

typed ase. It does not involve the use of temporaries, but entails its own set of dif-

�ulties. In its original form, CPS makes use of a rei�ed form of the program state,

alled a ontinuation. A ontinuation is a funtion that represents the \rest of the

program", i.e., the omputation that is to take plae one the urrent omputation

is done, and to whih the result of the urrent omputation potentially ontributes.

Roughly desribed, CPS involves passing a allbak, representing the ontinuation,

to every funtion. At the end of its omputation, and instead of returning a value

1

In the best of ases the temporary and the new interfae would be inompatible, so an error is

deteted by the ompiler. However, it is more likely that an impliit onversion and potential

information loss would take plae, leading to hard-to-�nd bugs.

70

to its aller, the alled funtion invokes the allbak on the values it is to return.

For the running example, the use of these tehnique looks like:

void takes two(int a, int b, . . .);

.

.

.

void CPS gives two(void (*allbak)()) f

int ret1;

double ret2;

.

.

.

(*allbak)(ret1, ret2);

g

.

.

.

CPS gives two(takes two);

This method transforms the problem of returning multiple values to the aepting

of multiple arguments, and thus avoids the reation of temporaries. However it

requires a omplete restruturing of the ode, not always possible in a separate-

ompilation setting.

In any ase, all the approahes desribed in the preeding paragraphs hide the

fat that what the programmer wants to express is the omposition of funtions.

4.1.1 Importane of MVR funtions

MVR funtions make the ode amenable to various optimizing transformations.

In partiular, sine the returned values are independent of eah other, and are

passed unpaked, they ould be passed bak in registers rather than using the stak,

providing some speedup. Also, using more information on how the returned values

are going to be used (as arguments to a funtion, or assigned to new variables)

would oneivably allow for loser, more eÆient aller/allee interation.

However, performane inrease is not the stated goal of inluding MVR fun-

tions in the C8 language. Even if there were no performane gains as a diret

onsequene of this feature, the semanti gains alone are important for the pro-

71

grammers developing or maintaining the ode. If nothing else, the lear syntati

distintion between input and output arguments at the all site is helpful to the

understanding of the intent of the ode. To further illustrate this point, take for

example the following fragment whih invokes funtion foo:

foo(i1,i2,&o1,&o2);

It is unlear from this line whether the output arguments have to ontain a sensible

value to the funtion when it is invoked, or if this value is modi�ed (if \transparent"

pass-by-referene is possible, like in C++). These issues do not our if the above

ode is stated as:

[o1,o2℄ = foo(i1,i2);

as it is plain now that the intent of o1 and o2 is to reeive the values returned by

a suessful all to foo, and that these assignments do not interat with whatever

happens during the evaluation of the right-hand-side. Also, it is now lear that i1

and i2 are not modi�ed during the assignment or the evaluation of the right-hand-

side (unless the language allows transparent pass-by-referene).

These are all useful fats that an be extrated diretly from the syntax by

the reader of the program, and the notation aounts niely for one of the two

possible usages of the values returned by MVR funtions, as the right-hand-side of

an assignment. This notation, �rst introdued to the C language in [26℄, requires

the introdution of a new onstrut, a tuple. Tuples also �t in with the seond

usage of values from MVR funtions, funtion omposition.

The rest of the hapter desribes in great detail the way tuples are inluded in

C8. It is organized as follows: a desription of tuples and the operations on them is

presented in the next setion. The implementation of these operators is desribed

next. Finally, additional notes on related work are briey outlined.

72

4.2 C8 Tuples

Reognizing the advantage of having MVR funtions in C8, its designers strived to

�nd the abstration that best inluded this feature and integrate it as seamlessly

as possible in the overall fabri of the language. They found it in one of the most

innovative aspets of its forerunner, KW-C.

KW-C [131℄ inludes an abstration of argument lists, a programming language

devie that is so ommonplae that it is not often onsidered a onstrut in its own

right, but a mere byprodut of the funtion all syntax. The rationale for identifying

argument lists with tuples originally was that funtions are often alled with the

same arguments, so giving the list a name made it easier on the programmer,

and generated a possible ompiler optimization. C8's tuples soon transended its

originally intended purpose by allowing the expression of a number of di�erent

onepts.

Tuples are ordered, �xed-size lists of possibly non-ontiguous, heterogeneous

elements. Suh lists should be familiar to most programmers, as they appear in a

number of ontexts in imperative and funtional languages: parameter and argu-

ment lists, array subsripting, �elds of reords, et. In all these situations, tuples

an be onsidered as a struturing devie rather than the spei�ation of a family

of types. C8 tuples and their onomitant programming onstruts onstitute a

natural representation for several often-used programming devies and provide a

powerful way of expressing programming ideas.

In C8, the syntax of tuples is given by the grammar:

htuple expressioni ::= '[' htuple expressioni [',' h tuple expression i℄* '℄'

j '[' hassignment expression i? [',' hassignment expressioni? ℄+ '℄'

Square brakets, [℄, allow di�erentiating between tuples and expressions ontaining

the C omma operator. Examples of tuples are (assuming the funtion appliation

73

expressions ontained therein return a single value):

[4, f() ℄ // 2 values

[7, (f(), g()) ℄ // 2 values, omma operator

[x + y, , 'a' ℄ // 2 values, hole

[int, double, int ℄ // 3 types

['a', ['b',''℄, 'd' ℄ // 4 values, nested tuple

Tuples an be arbitrarily nested. Not all forms of tuples are legal in all ontexts

where tuples are allowed, e.g., tuples with holes.

Tuples in KW-C, and therefore in C8 are inuened by the set-based language

SETL [45℄

1

, whih aounts for the sharp di�erene between this onstrut and

onstruts of the same name present in other programming languages, like ML,

Python or Haskell. In partiular, the individual elements in a C8 tuple are not

diretly addressable, neither by name nor index nor o�set (further exposing their

potential non-ontiguous nature). As well, a C8 tuple does not model a sequene,

so it is impossible to yle through the ontents of a tuple. Essentially, a C8 tuple is

largely a ompile-time phenomenon, having little or no runtime presene. Therefore,

it is wrong to equate C8 tuples with tuples in other languages beause the purposes

of eah are ompletely di�erent. C8 has di�erent failities and mehanisms to reate

the kinds of entities alled tuples in other languages.

Tuples are not �rst lass values in C8. Their struture is also less strit than that

of reords, e.g., nested tuples are impliitly attened. When passed to a funtion,

tuples are impliitly opened to aess their omponents, whih are subsequently

paired with the orresponding arguments, and when returned from funtions a

similar operation takes plae. Funtions do not return \a tuple of. . . ", but multiple

values of the orresponding types. The only exeption is when tuples are used

in ontexts that require types, spei�ally in delarations (when delaring tuple

variables). Tuples are best understood as a syntatial devie, a shorthand notation

that is expanded at ompile-time, and that has little or no run-time manifestation.

As suh, their use does not enfore a partiular memory layout, and in partiular,

1

SETL ombines features suitable for symboli programming with an imperative syntax and se-

mantis.

74

does not guarantee that the omponents of a tuple oupy a ontiguous region of

memory. Some operations that are ommon to values, suh as querying for the

address are disallowed for tuples. Another onsequene is that funtions on tuples

annot be de�ned. Finally, a user annot extend the built-in tuple operation set

(desribed below). Essentially, tuples are used as a ompile-time devie to organize

information.

4.2.1 Tuple Assignment

The struture of tuples is uid. Although tuples are permitted to nest, they are

immediately attened when used, and their ontents are impliitly extrated when

required. In partiular, in an assignment operation between tuples, i.e., an as-

signment that ontains a tuple expression in its left-hand side, both operands to

the assignment are impliitly attened, and tuple variables are expanded to their

de�nition. The omponents of both sides are then paired and individual \salar"

assignments are performed.

Holes in tuples introdue a more textured mathing disipline, whih is desribed

below, but in general, tuple mathing takes plae between two at lists of values.

One an assignment is performed, the left-hand side is oneptually restrutured if

required.

4.2.2 Multiple Assignment

Multiple assignment is the straightforward extension of simple assignment to tuples

of the same size. It onsists of a tuple of lvalues being assigned a tuple of expressions,

taking the form:

[lvalue

1

; lvalue

2

; :::; lvalue

n

℄ = [expr

1

; expr

2

; :::expr

n

℄

The left-hand side is a tuple of lvalues, whih is a list of expressions eah yielding an

address, i.e., any data objet that an appear on the left-hand side of a onventional

assignment statement. Eah expr appearing on the right-hand side of a multiple

75

assignment statement is any standard arithmeti expression and its value is assigned

to the orresponding lvalue on the left-hand side of the statement. Clearly, the

types of the entities being assigned must be type ompatible with the value of the

expression.

The multiple assignment onstrut has parallel semantis, whih permits a

\swap" of the ontents of variables to be written as:

[x,y℄ = [y,x℄

(as in the ase of argument lists, are must be taken when using side-e�et expres-

sions inside a tuple, sine no partiular order of evaluation is guaranteed by either

C or C8).

A speial form of pattern mathing takes plae when \holes" appear in the

left-hand tuple of the assignment operator:

[int x, int y, int z℄ foo();

[ret, , ℄ = foo(); // ignore last two values

[a,,℄ = [x,y,z℄ // ignore middle value

In both assignments, the rvalues in positions orresponding to the holes are ignored

by the rest of the omputation (and performed only for side e�ets).

If a funtion returns lvalues, holes an appear on the right-hand side of an

assignment, as in:

[lvalue int x, lvalue int y, lvalue int z℄ bar();

bar() = [v1, , v3℄;

whih results in the value assoiated with the seond address remaining unhanged,

while the results of the expressions v1 and v3 are assigned into the address spei�ed

by the �rst and third return values of the funtion bar. Note the keyword lvalue,

a C8-spei� extension for a restrited pointer on whih it is impossible to perform

arithmeti and that is impliitly derefened. lvalues are similar to C++ referenes.

76

Mass Assignment

A onvenient simpli�ation of multiple assignment in C8 is to assign a single value

to a number of di�erent variables, an operation alled mass assignment, whih has

the form:

[lvalue

1

; lvalue

2

:::lvalue

n

℄ = expr;

where for all lvalue

i

provide the address of an objet that is type-ompatible with

the type of expr.

As for multiple assignment, mass assignment uses parallel semantis, whih

means assignment is not equivalent to either C ode fragments:

lvalue 1 = expr;

lvalue 2 = expr;

.

.

.

lvalue n = expr;

or

lvalue 1 = lvalue 2 = . . . = lvalue n = expr;

The �rst fragment auses multiple evaluations of expr, whih is, at the very least

ineÆient, and at worst, wrong, when an expr has side-e�ets. In the seond ode

fragment, the value of expr is repeatedly asted into the types of lvalue n, lvalue (n�

1) and so on, whih an ause loss of information along the way.

Parallel assignment semantis, ensures expr is only evaluated one, preluding

side-e�et problems, and this value is assigned to eah of the lvalues so that only

the minimum typeasting takes plae between lvalue i and expr.

4.2.3 MVR funtions in C8

The introdution of tuples to C8 permits the spei�ation of funtions returning

multiple values that are onsistent with SVR funtions and, onsequently, user's

77

expetations. The result is a natural extension of C's syntax and style:

[int, int, int℄ gives3(int);

[x, y, z℄ = gives3(x);

Here, gives3 returns three values, whih are assigned left to right into variables x, y

and z. Or, if omposing gives3 with another funtion:

takes3(gives3(w));

where the multiple values generated by gives3 beome the arguments of takes3.

A MVR funtion delaration may or may not assoiate names with the ompo-

nents of the return tuple:

[int, int, int℄ foo() f . . . g // unnamed return values

[int x, int y, int z℄ foo() f . . . g // named return values

In the seond form, the return-tuple omponent names beome loal variables in

the funtion just like parameter names. This form introdues a similar faility to

the short-lived g \named return values" extension

1

. There are several ways a

MVR funtion an return a result:

[int x, int y, int z℄ foo() f

[int, int, int℄ temp;

// ase 1:

return temp; // use of a tuple variable,

// ase 2:

return [3,4,5℄; // return ``tuple literal''

// ase 3:

[x, y, z ℄ = [3,4,5℄;

if(x == 4) return;

// ``fall-o�'' the funtion (impliit return)

g

1

Mihael Tiemann, with help from Doug Lea, provided named return values in g++, ira 1989

[86℄.

78

Cases 1 and 2 diretly return a tuple value. Case 3 indiretly returns a tuple value

through the named tuple variables, i.e., a return; or fall-o� the end of a funtion

is rewritten to return [x,y,z℄;. The named ase an help the ompiler to optimize

out unneessary opying of temporaries from the funtion to the all site.

It an be seen that Mesa's (x4.1) design has been highly inuential in this

language extension.

4.2.4 Named parameters

Syntax imposes signi�ane in the ordering of the parameters in a funtion that is

not always warranted. This ordering has to be respeted when alling the funtion.

However, when using library funtions, oming from a variety of soures, there is

no hope for a universally respeted onvention regarding the order of arguments.

Changing an interfae is not always possible or even desirable, so a method of

plaing the soures of the parameters in the right position in the funtion all is

required. This issue ompromises the exibility of funtion omposition.

Reognizing this fat, C8 inludes keyword parameters. Keyword parameters

[64℄ introdue an alternative ordering to the traditional by-position in parameter

lists, by also adopting indexing by name, thereby rendering argument lists isomor-

phi under permutations. They also provide a dual for the named return values of

an MVR funtion. That is, keywords an be used in an argument list to diretly

onnet arguments to parameters, whih is espeially useful to rearrange tuples

returned from an MVR funtion alled as an argument. In C8, having di�erent

names for parameters or return values in a funtion delaration (as a prototype)

and later in its de�nition is onsidered an error.

Named parameters have been a part of programming languages sine the early

days of programming languages. Parameters are usually aessible by name within

the funtion body

1

, but, in most programming languages, not from the point of

invoation. It is often inonvenient for a programmer to remember the order of a

1

Although admittedly primitive programming environments like most Unix shells or the T

E

X type-

setting environments use the position of a parameter to refer to it.

79

funtion's arguments, and aidental transpositions are not deteted by the om-

piler, ausing hard-to-�nd bugs. For a reader of the same ode, things are not lear

either, even when there is appropriate doumentation or programming onventions

that use (possibly temporary) variables named after the orresponding parameters,

or that make lear what the purpose of the argument is.

Clearly in many ontexts the order of parameters is either highly onventional

(as for geometri oordinate systems) or immaterial (a funtion that is intension-

ally equivalent under a permutation of its arguments, as is the ase, for example,

with a binary ommutative operator). In C8, funtions an be alled with a mix-

ture of positional and named arguments. While named keywords alone inrease

the expressiveness of a programming language, they are partiularly useful when

ombined with other features, partiularly default parameters, and omposing MVR

funtions. Consider the following examples:

1 [int, int℄ foo();

2 void bar(int a, int b, int);

3

4 bar(foo(), 3);

5 bar(3,foo());

6 bar([,a℄:foo(), b:3);

7 bar([a,℄:foo(),2,3);

8 bar([,a℄:foo(), 2,3);

In lines 4 and 5 above, the values being returned by funtion foo are mathed with

the arguments of bar based on their positions, in the usual fashion. However, it is

unlikely that the writer of an MVR funtion knows the order the returned values are

going to be required by other funtions in a program. A designated tuple makes this

knowledge unneessary, as the order in whih these arguments are to be mathed

with the parameters of the reeiving funtion is expliitly spei�ed. For example,

in line 6 above, the results of foo are paired with arguments and a respetively,

whereas argument b is given by the integer 3. Furthermore, not every value from

the MVR needs to be used. Any returned value an be disarded by the alling

80

funtion, as illustrated by the last two lines in the example. In line 7, the �rst value

from foo is paired with a, while the seond is ignored; in line 8 the exat reverse is

done.

Default values for parameters have been inluded in a great variety of program-

ming languages. C8 adopts C++ syntax for this faility, so default parameters

follow eah parameter's delaration in a funtion delaration, e.g.,

int foo(int x = 10, har ab = 'a');

Also adopting a widespread onvention, C8 requires all parameters that do not take

default values (also known as positional parameters) to be listed �rst, followed by

the ones with default values.

Tehnially, overloading and default parameters are redundant, sine it is possi-

ble to ahieve the e�et of default parameters exlusively by means of overloading.

This, however, requires a funtion delaration for eah possible form of all, result-

ing in linear growth. As well, overloading annot handle default arguments in the

middle of a positional list, via a missing argument, suh as:

p(1,/* default */,5);

The pattern-mathing taking plae between the funtion all and the funtion

parameter list results in a rewritten all (and several assignment to temporaries),

this time undesignated, that ahieves the same e�et. In brief, the mathing proess

takes plae by �rst onstruting an ordered list of the parameter names of a funtion,

and maintaining a pointer to the last bound parameter (initially, the �rst of the list).

Upon an undesignated referene, the pointer moves forward to the next unbound

parameter, whih is then bound to the argument. When enountering a designated

referene, the orresponding argument is bound, but the pointer does not move. At

the end of the argument list, all unbound parameters take their value from their

defaults if they exist. The \holes" in argument lists are mathed positionally to

the parameter list.

These pattern mathing rules an be more formally desribed in terms of the

81

well-known relational algebra operators projetion (�), renaming(�), ross produt

(�) and a nontraditional join (1) [42℄. Under this interpretation, a funtion all

is treated as a reord operation. Eah funtion all in the argument list is repre-

sented by its name, and it stands for its return value, whih is always a (possibly

one-) tuple; also, the argument-list omma delimiter stands for the ross produt

(onatenation) of tuples. The �rst step, the possible �ltering of some of the val-

ues returned from a funtion, an now be expressed as a projetion based on the

position of the values in the return tuple. Furthermore, the rearrangement of argu-

ments an be pereived now as a renaming followed by a (non-standard) join. For

example, given the funtion delarations:

foo(int a,int b);

[int,int,int℄ bar();

the relational algebra formulation of the funtion all foo([,b,a℄: bar()) is:

foo 1

C8

�

b;a

(�

2;3

(bar))

where the seond and third results from bar are seleted (via the projetion �

2;3

),

then renamed to b and a respetively (�

b;a

), and �nally joined (1, for C8's inter-

pretation of a join) to the parameter list of foo.

It is easily notied that the operation represented here as a join is not the

traditional relational-algebra natural join, although its similarity is onspiuous.

These rules for mathing arguments to parameters in funtion alls are also

used to math initializers to �elds when initializing aggregates, with two di�er-

enes: the pointer always points to the last �eld initialized, whether designated or

undesignated. Furthermore, a member an be referened in an initializer list multi-

ple times, either via designation or by being indiated by the urrent �eld pointer.

Only the last value paired with the member takes e�et. For funtion alls, re-

peated referenes to the same parameter via designation are onsidered errors. All

these related operations are illustrated in �gure 4.1.

If it so happens that after rearrangement the all still mathes more that one

funtion due to overloaded symbols, the minimum onversion ost [16℄ rule is used

82

foo = (a; b;);

bar = (b; ; d);

foo 1 bar = (b;)

(a) Natural Join

foo = (a; b;);

bar = (b; ; d);

foo 1

left

bar = (a; b;)

(b) Left Join

strut f int a, b, g re = f b:3,4; g; // funitialized, 4,3g

() Reord Initialization

int foo(int a, int b, int = 10);

foo(b:3,4); // foo(4,3,10);

(d) Argument list rearrengement

Figure 4.1: Name driven mathing

to disambiguate the all. Essentially, this rule hooses the option that entails

the least number of intermediate onversion (safe and unsafe) and speialization

operations.

All these failities together allows for a lean desription of ertain algorithms.

For example, onsider a funtion that takes a string and returns a permutation

of it, \pivoted" around the enter, that is, for the word "overhang" it returns

"hangover", for the word "overturn" it returns "turnover", et. A C8 implemen-

tation of suh a funtion, in terms of two auxiliary funtions, split and onatenate

(a multi-valued version of the Standard C library's strat) is:

[har *s1, har *s2℄ split(har *s);

har *onatenate(har *s1, har *s2);

har *mirror(har *s) f

return onatenate([s2,s1℄: split(s));

g

83

4.2.5 Reords and Tuples

Reords (struts in C parlane) are another instane of an ordering relationship

unwittingly introdued by the language, this time among the �elds. Sine �eld se-

letion in strut instanes is done in terms of names, the existene of this position-

based ordering is not really an issue, exept for initializers, where the (textual)

layout of the struture has to be mimiked by the initializing expression. C99 re-

ognized this fat and introdued designated initialization (for struts and unions),

where eah initializing expression is quali�ed with the name of the �eld it applies

to. For example:

strut point f

double x,y;

int olor;

g

strut point p1 = f olor=RED, 3.0, 4.0 g;

C8 adopts this innovation with a slightly modi�ed syntax (the assignment sym-

bol is replaed by a olon), and naturally extends the de�nition of designators to

inlude name tuples. For example, an instane of the type strut point in the above

example:

strut point pfa = f olor: RED, [y,x℄:3.0 g

Tuple assignment and funtion alls an also be used when seleting multiple

�elds of a struture, sine C8 allows the �eld seletion operator to take a name

84

tuple to refer to multiple members of a strut instane:

strut st f

int x,y;

double z;

g s1, *s2;

s1.[x,y℄ = [2,3℄; // multiple assignment

s2�>[y,x℄ = 5; // mass assignment

4.3 Implementation

Till [131℄ implemented a �rst-approximation of most of the operations desribed

above (barring MVR funtion omposition) for KW-C, an extension of the C pro-

gramming language. The C8 language, as desribed in [16℄ enrihes the C language

with parametri polymorphism and overloading, and the type resolution algorithm

aounts for MVR funtions. However, this work did not inlude tuples and their

extended assignment forms, nor did it aount for the ode generation of this forms

or MVR funtions. The remainder of this setion �lls in these gaps. First, exten-

sions to the type resolution algorithm mentioned above are desribed to aount

for various onstruts resulting from the introdution of tuples. Finally, the ode

generation algorithm for these forms is presented.

4.3.1 Tuple expression analysis

Traditional overload resolution algorithms rely on the orrespondene of the num-

ber and position of arguments in a funtion all with the number and position

of the formals in a funtion de�nition. The not-so-traditional Baker-Dith�eld-

Bilson[16℄ overload resolution algorithm also onsider funtions returning multiple

values, but still assume positional orrespondene. When named parameters are

thrown into the mix, this assumption must be disarded, and further generalization

of the algorithm is needed.

85

C8's overload resolution algorithm reeives an untyped expression tree and it

returns a typed tree, where eah of the funtion alls therein resolved to a unique

funtion in the program. The whole expression tree is then uniquely interpreted.

This resolution proess takes into aount not only the number and type of the

arguments to the funtions, but the types of the returned values as well. It also

aounts for funtions returning multiple values and C's impliit type onversions.

A full aount of the algorithm is given by Bilson [16℄. SuÆe it to say here that

it works in a bottom-up fashion, keeping trak of every possible interpretation

for eah subexpressions and piking from among them one information on the

ontext beomes available. A onversion-ost-based tie-breaking sheme is used to

disambiguate alls. For tuples, this poliy hanges somewhat. The assignment that

is �nally performed is the narrowest type that applies to all the tuple's omponents.

This poliy ensures that expressions are evaluated only one, but may result in

di�erent e�ets than the pairwise maro-expansion interpretation. In fat, it might

be the ase that a tuple assignment is termed \invalid" by the system, even if the

pair-wise expanded form has a valid interpretation. Consider, for example, the ase:

double foo();

int *foo();

double d;

int *pi;

d = foo(); pi = foo(); // �ne, 2 alls

[d, pi ℄ = foo(); // invalid assignment (no narrowest type), 1 all

4.3.2 Tuple ode generation

Multiple assignment

One expressions have been mathed on both sides of an assignment, temporaries

are generated for eah pair of left- and right-hand values. The former onsist

of variables of pointer type that take the address of the left-hand operands of

the assignments, whereas the latter store the value of the right-hand operands.

Although this strategy might seem like a superuous generation of temporaries, it

86

is neessary to ensure that expressions on either side are evaluated only one. The

result an be seen in �gures 4.2 and 4.3.

Mass assignment

A temporary is generated for the right hand side, and as many temporaries as are

required for the left hand side. This allows the right-hand-side expression to be

exeuted only one (with the orresponding side e�ets exeuted only one). The

result is illustrated in �gures 4.4 and 4.5.

MVR funtions

As outlined in setion 4.1, there are several options for the simulation of the e�et

of MVR funtions in C

1

. Consider the C8 program:

[int, int℄ divmod(int q, int d)

f

return [q div d, q % d ℄;

g

void display pair(int, int);

display pair(divmod(a,b)); // use

A �rst approah is based on paking and unpaking of strutures, whih is the

1

There are even more than the ones illustrated here. For example, the use of oroutines, whih

generates ode too omplex and ineÆient to be seriously onsidered.

87

[i,y[i℄,z℄ = [a + b,i,3℄;

(a) C8 version

f

int * tpl lhs 4;

int tpl rhs 5;

int * tpl lhs 2;

int tpl rhs 3;

int * tpl lhs 0;

int tpl rhs 1;

(tpl lhs 0=(& i i));

(tpl rhs 1=(a i+ b i));

(tpl lhs 2=(& y A0i[((long int) i i)℄));

(tpl rhs 3= i i);

(tpl lhs 4=(& z i));

(tpl rhs 5=3);

((* tpl lhs 0)= tpl rhs 1);

((* tpl lhs 2)= tpl rhs 3);

((* tpl lhs 4)= tpl rhs 5);

g

(b) C translation

Figure 4.2: Code generation for a multiple assignment statement

[x,y℄ = [y,x℄;

(a) C8 version

f

int * tpl lhs 2;

int tpl rhs 3;

int * tpl lhs 0;

int tpl rhs 1;

(tpl lhs 0=(& x i));

(tpl rhs 1= y i);

(tpl lhs 2=(& y i));

(tpl rhs 3= x i);

((* tpl lhs 0)= tpl rhs 1);

((* tpl lhs 2)= tpl rhs 3);

g

(b) C translation

Figure 4.3: Code generation for \swap" statement

88

[i,y[i℄,z℄ = foo();

(a) C8 version

f

int * tpl lhs 4;

int * tpl lhs 2;

int * tpl lhs 0;

int tpl rhs;

(tpl lhs 0=(& i i));

(tpl rhs= foo Fi ());

(tpl lhs 2=(& y A0i[((long int) i i)℄));

(tpl lhs 4=(& z i));

((* tpl lhs 0)= tpl rhs);

((* tpl lhs 2)= tpl rhs);

((* tpl lhs 4)= tpl rhs);

g

(b) C translation

Figure 4.4: Generated ode for a mass assignment statement

[x,y℄ = a + b;

(a) C8 version

f

int * tpl lhs 2;

int * tpl lhs 0;

int tpl rhs 1;

(tpl rhs 1=(a i+ b i));

(tpl lhs 0=(& x i));

(tpl lhs 2=(& y i));

((* tpl lhs 0)= tpl rhs 1);

((* tpl lhs 2)= tpl rhs 1);

g

(b) C translation

Figure 4.5: Generated ode for a mass assignment statement

89

tehnique KW-C adopted in its translator:

strut divmod Ret f int x; int y; g divmod(int q, int d)f

strut divmod Ret ret;

ret.x = q + d;

ret.y = q * d;

return ret;

g

/* use */

strut divmod Ret re = divmod(a, b);

display pair(re.x, re.y);

CPS, as desribed above, ould also be used. Any of these approahes would

pro�t by additional information at the all and within the funtion, namely how

many and/or whih return values are atually used at the all site. Suh information

an be utilized to optimize the all, sine the allee need not ompute unused results.

Sine C's arguments are unmoded, and an be aliases of one another, an optimizer

for these expressions is non-trivial.

The urrent inarnation of the C8 translator rewrites MVR funtions to take ex-

tra by-referene arguments. It also rewrites every return statement in the funtion

body.

[int a, int b ℄ gives two();

gives two();

[x,y℄ = gives two();

90

generates:

void gives two(int *a, int *b);

f

* tup x = &x;

* tup y = &y;

gives two(tup x, tup y);

g

The ase of omposition with tuple designation is more interesting. This proess

takes plae in stages: oneptually, an auxiliary multiple assignment statement is

generated, taking into aount all the potential rearrangement of arguments. The

following C8 ode

void takes two(int a, int b);

takes two([b,a℄:gives two());

is transformed, in stages, to:

[t1, t2℄ = gives two()

takes two(t2, t1);

and then (C) ode for it is emitted as output, generating the following:

f

f

* temp t1 = & t1;

* temp t2 = & t2;

gives two(temp t1, temp t2);

g

/* rearrange arguments */

takes two(t2, t1);

g

91

4.4 Related work

Jaakko J�arvi's tuple library [72℄ (now part of the boost [19℄ library suite) makes

use of the template failities in C++ and the so-alled type lists [7℄ to add MVR

funtions to C++.

Matrix-manipulation languages like APL and Matlab allow for a wide range of

modi�ation of the form of its argument list via vetor multipliation and matrix

transposition. These operations, however, are not generalizable to heterogeneous

lists.

Rearrangement of argument subexpressions via designators is a onsequene of

having keyword or named parameters in the language. It is surprising that, given

the formal similarity of this faility with reords, features of this nature have not

been more widely studied. Two extensions to the �-alulus that take into aount

reord-like funtion alls and modify the substitution rules aordingly are Garrigue

et al. \label-seletive" �-alulus [59℄ and Laurent Dami's �-N alulus [41℄. The

latter is espeially interesting as it uses designated argument lists as the basis for

a reord- and objet-aluli for general software omposition.

Similar behaviour to C8's designated all an be ahieved, in a muh limited

form, in Haskell via the library funtions urry, unurry and, in partiular ip,

whih is a ombinator that returns a funtion with its two arguments reversed.

These failities rely on the presene of losures, urrying, and partial appliation

(slies) in the language. Although these features make it possible for (positional)

argument rearrangement to be written as a library, the library approah does not

sale to handle tuples of greater length. It is worth pointing out that, in ontrast

with C8's approah, Haskell modi�es the funtion to be applied (ip returns a

funtion) rather than the argument list.

Languages that use similar funtion-modifying mehanisms, like Lisp, Sheme,

and, most notably, Dylan maros an also be used to ahieve funtionality similar

to C8's designated alls, in the same sense that the Haskell approah does. If a

non-standard Lisp with reetive extensions is used, modi�ation of the argument

list is possible. Suh an approah, however, is likely to introdue a sublanguage for

haraterizing the rearrangement similar to C8's name tuples. Either way, these

92

options require the presene of a very powerful and deeply embedded maroproes-

sor.

The C++ and Haskell approahes are inherently limited by having to hard-

ode the length of the tuple. This is derived from limitations inherent to their

type systems. More powerful type systems, that inlude dependent types [141℄

are needed. Currently, there are very few languages that inlude this faility. An

example is Lennart Augustsson's Haskell-inspired Cayenne [13℄. Cayenne allows

the user to write funtions over tuples of any length (the most ommon example is

an n-ary zip funtion). Tuple rearrangement, however, requires more ompliated

annotations on the tuple than just the length.

93

Chapter 5

Attributes

A program is often pereived as the desription of a proess in terms of a ompu-

tational model. This view fouses on the programmer direting a omputer to the

solution of a problem. Higher-level programming languages enable a more expres-

sive desription of a solution, but also add ontent to the program, and partiipants

in the interation. A program an now be viewed as a message, whose ontent is

more than just a omputational mehanism.

For example, there are fragments in the program text that are direted to pro-

grammers rather than the omputer, suh as onst, aess quali�ers and other

annotations, e.g., omments and variable names, that indiate how objets in the

program are meant to be used. Naming onventions often make up for features

missing in a language. For example, to address the lak of modules, identi�ers in

C are often pre�xed with a library name; also, type variables in C++ STL ode

are named after the onept they model [58, 14℄ in an attempt to ompensate for

a lak of features to onstrain generi types, like C8's ontexts or Haskell's type

lasses. Lak of ontexts or type lasses (and funtional dependenies [75℄) also

fores programmers to express relationships using naming onventions, like that

between type int and its minimum and maximum values by identi�ers INT MAX,

INT MIN. In fat, it seems that arefully named identi�ers are often used when-

ever a relationship between an objet and other parts of the program annot be

expressed by linguisti means.

95

Other program fragments address the implementation of the omputational

model, direting the proess of ode generation, aiding the linking phase, or en-

abling the generation of runtime heks by manipulating a host of options and

features, often in the form of \pragmati omments" or pragmas. Pragmas are

often given speial syntax in the language, but this is not always the ase. For ex-

ample, C's type quali�ers register or inline are truly pragmas, sine they supply

information to the ode generation mehanism. Having a non-ad ho syntax for at-

tributes allows for learly-marked diret-ommuniation between the programmer

and the ompiler. It also provides a uni�ed interfae to this kind of ommuniation.

Some ompilers, like g extend the language to allow for riher pragma syntax in

the form of attributes, whih interfae with the ompilation/optimization proess.

The programmer an annotate only ertain objets (funtions, variables or types),

whih are alled targets, with attributes. g attributes annot be extended and

only diret the ompiler's translation.

However, it is possible to generalize attributes further. Ada, for example, uses

attributes to ommuniate information both to and from the translation system and

the programmer. In Ada, targets of attributes inlude program units (modules),

labels, types, et. Attributes ontain information about targets suh as string

representation, version, low-level representation details (e.g., size and alignment

of types), and relationships between entities, e.g., the base type of an aess or

onstrained type. The list of attributes, although large, is �xed and determined

by the language spei�ation [71℄. Compiler implementors may extend it, but not

appliation programmers. Despite this limitation, programmers are allowed some

degree of exibility, sine they an override the behaviour of ertain attributes,

spei�ally marked in the standard as spei�able, as long as the attribute's interfae

is respeted, i.e., its target, extra parameters and return type.

Languages desending from Ada, like VHDL (VHSIC Hardware Desription

Language), generalize this rule by allowing programmers to delare their own at-

tributes thereby providing a more general ode annotation mehanism. Targets,

however, are a restrited and �xed set of entities in the language. Attributes in

Ada and VHDL an be queried for their value by an attribute expression, whih

onsists of a referene to the target suÆxed with the attribute name and extra

96

parameters, if needed. Ada attributes provide a hook for extensibility in related

development tools, like ompilation managers and ompilers, whih take advantage

of the attribute syntax to enable enhaned ommuniation with the programmer.

Code annotation is also provided in C#, with a mehanism also alled attributes.

C# attributes are patterned after those in the DCOM and CORBA interfaing

mehanisms. As in VHDL, attributes an be extended (user-de�ned attributes are

known as ustom attributes). The attributes prede�ned by the language furnish the

programmer with the possibility to on�gure a great number of ode generation fea-

tures that are hardoded in most programming languages, e.g., marshalling poliies

for distributed ommuniation, memory layout, et. Targets of attributes inlude

all stati language onstruts. At runtime, targets an be queried for the value of

their assoiated attribute values, whih are stored is a speial \metadata" table.

C# attributes are extensively used by ompilers, validation tools and exeution

environments.

Viewing the program as a message, and having multiple interested reipients

(ompiler, development tools, runtime), it is fair to ask whether programmers ould

pro�t from programmati aess to the soure ode, annotated or otherwise. Pro-

grams that an aess their own soure ode have long been thought of as mere

uriosities (e.g., the so-alled quines, programs that print their own listing). How-

ever, metaprogramming, i.e., the ability to manipulate soure ode as data oupled

with a means to automatially generate ode, allows for extremely generi ode

that is ustomized at ompile- or even run-time to great gain in adaptability and

performane. Metaprograms, or programs that speify how other programs should

be generated, are the subjet of study in the �eld of Generative Programming [40℄.

As a side e�et, when a program an aess its own soure ode, an additional

mehanism to query ode annotations is redued.

When aess to some aspet of the soure ode is required by a programmer,

it is ommon to resort to a hand-dupliated version of the program fragment (e.g.,

C++'s \smart enumerations" [126℄ expet the programmer to provide the enumer-

ation onstants twie: one in the enum and another as a string), or to iruitously

dedue it from the program (e.g., the type traits C++ template library takes ad-

vantage of the Turing-ompleteness of the template instantiation mehanism to �nd

97

out type properties by observing the e�ets of the overloading resolution proess).

Both these solutions involve either tedious and error-prone programming praties,

very detailed low-level knowledge of the inner workings of a language mehanism

or ompiler, or, in the ase of C++ template metaprogramming tehniques, the use

of a very powerful mehanism for other purpose than it was intended. It should

be possible for the language to allow these problems to be expressed diretly, given

that the information is already available within the program text or the ompiler's

symbol table. Furthermore, the ompiler is privy to information about the exeu-

tion environment of a program. Aess to this information an signi�antly add to

the exibility and adaptability of a program.

A mehanism that provides a uni�ed aess to the soure ode and ertain as-

pets of the exeution environment is that of reetion, whih is desribed in the

following setion. Reetion is not the only way to enrih program entities with

annotations aessible programmatially, and some of the alternatives are disussed

in the following setion, in partiular with regards to types. C8's attribute meha-

nism is then presented, onsisting of a ombination of already in-plae mehanisms

like overloading and new attribute mehanisms. Finally, some related work is men-

tioned.

5.1 Reetion

The original meaning of omputational reetion is the ability of a program to

inspet and manipulate itself at the soure-ode level. Mainstream programming

languages that inorporate this onept, like C# and Java, extend the sope of

the reetion mehanism to inlude the program state and its exeution environ-

ment. This setion onentrates on the aspet of reetion that relates to program

ode. Program-ode reetion usually involves two operations: rei�ation, whih

translates program fragments to data, and spliing, whih does the reverse.

Full reetion is an ambitious goal, and few programming languages provide

it. However, even a limited set of reetive features is useful. Rei�ation ould

be limited to ertain kinds of language onstruts, as ould be the operations on

98

these representations, or the form in whih they are splied bak onto the running

program. Depending on the operations allowed over ode-fragment representations,

a lassi�ation of reetive systems is possible [44℄. If the rei�ed data is available

only for querying, the system is said to provide introspetion; if write aess to

the representation is allowed, the system has linguisti or strutural reetion; and

�nally, if an updatable program representation inludes aspets of the semantis

of the programming language, e.g., evaluation order of arguments, the system has

behavioural or omputational reetion. In systems with linguisti or omputational

reetion, a rei�ed program representation an be modi�ed and splied into the

running program, allowing for the possibility of run-time ode generation. However,

this possibility is not onsidered further in this work.

Computational reetion was �rst introdued in the ontext of Lisp [117℄, a

language whose uniform representation of ode and data makes the problem of

rei�ation/spliing that of (quasi)quoting/evaluating. Other languages with similar

uniformity, like Prolog, soon started bene�tting from metaprogramming tehniques,

and it has beome part of the Prolog lore to modify the usual searh strategy, im-

plement explainers or debuggers, and similar appliations by replaing the standard

evaluation funtion using \metairular interpreters".

Interpreted, dynamially-typed programming languages an bene�t from ree-

tion very naturally, sine they an enapsulate the interpreter itself as a funtion

taking a string argument ontaining a ode fragment and interpret it. Results and

e�ets (e.g., new objet reation) ontained in the ode fragment an all be read-

ily inorporated into the running proess. Interpreted, objet-oriented dynami

languages take a more systemati approah to program representation. Usually, a

language-provided framework, known as a metaobjet protool (MOP) [79℄, pro-

vides an objet-oriented interfae to the inner workings of the runtime and program

representation. Through the MOP objets, the program an be queried, navigated

and manipulated. The resulting exibility of this design aounts for muh of the

adaptability of programs written in languages like CLOS or Smalltalk.

In statially-typed languages, the problem of reetion is more ompliated, and

only reently the �rst omplete implementation of a metairular interpreter for a

Turing-omplete, statially-typed language was presented by L�aufer and Odersky

99

[85℄. Due to the urrent prominene of appliations that require seurity, adapt-

ability, persistene, and a host of other harateristis that reetion enables, muh

interest in reetion for statially-typed programming languages has arisen (see, for

example, Stemple et al. [120℄).

Perhaps the most omplete interfae to the state of the exeution and program

representation in a statially-typed language is that of the SML dialet of ML.

The SML of New Jersey interative ompiler provides metaprogramming and sep-

arate ompilation by externalizing various internal ompiler representations and

proesses to make them available to ML programs, a tehnique rendering a visible

implementation of the ompiler and supporting runtime libraries [11℄. Although not

everything in a ML program an be manipulated, the available externalized entities

oupled with ode annotations have been suÆient to enable interesting applia-

tions, suh as the SoureGroup library [109℄, that plays the rôle of make in a C/Unix

environment, Blume's foreign funtion interfae [18℄, or Tolmah's debugger [132℄,

whih works by automatially instrumenting soure-ode and provides traditional

breakpoint/wath mehanisms, reverse exeution, hekpointing and replay.

However, this sort of uniform interfae and powerful interation with the state of

the program is very rare. Currently, most mainstream statially-typed languages

like Java or C# inlude a limited, yet useful set of reetive features. In this

work, I fous on the introspetion aspet of reetion, omprising the ability to

programmatially examine (not modify) various program objets, espeially types.

Code that take advantage of this ability is robust to hanges in the de�nition of

types.

5.2 Introspetion

As mentioned above, introspetion is the read-only aess to the program repre-

sentation. A minimal set of introspetive apabilities are usually inluded in most

languages. For example, introspetive features have been part of C sine its in-

100

eption, via the C preproessor

1

. Programmers have programmati aess to the

urrent �le name and line number via the FILE and LINE maros respe-

tively. Aspets of the ompilation environment an also be aptured from the value

of environmental maros, suh as STDC , a boolean that determines whether

the ompiler is Standard-C ompliant, or DATE , that provides the system's

date. Due to the nature of the C preproessor, ertain information is not aessible

through maros. In partiular, the preproessor is blind to funtion names and any

sope onsiderations, whih fored the C99 standard to extend the introspetive

information in a di�erent way by introduing the prede�ned identi�er fun ,

whih is delared impliitly (if used) within a funtion as:

stati onst har fun [℄ = "funtion-name";

where funtion-name is the name of the funtion the identi�er is used in.

Other introspetive information the C ompiler makes available is aessible

through a somewhat inonsistent and disonneted interfae, onsisting of the oper-

ators address-of (&), sizeof and o�setof , and alignof , typeof , and address-

of-label (&&) as g extensions. Aess to the environment is also done in C via

operating-system alls.

Introspetion of types is partiularly useful, as it allows programmati aess

to strutural properties that are important for transmission or manipulation of

data in the program. The only information C disloses on a type is lower-level

representation information, via sizeof , o�setof , et. In C++, better introspetion

failities an be built via onventions and abstration mehanisms, whih allow for

the ompile-time annotation of types.

A C++ idiom, known as trait lasses [95℄, is used to annotate types at ompile

time. A trait lass is a ompile-time devie that permits the annotation of a type

with information suh as assoiated values and types. A trait is a template lass

that enodes values and types assoiated with its type parameter. This idiom relies

on partial template speialization, whih permits the template reator to speify a

1

These apabilities onstitute one of the reasons why the C preproessor is so diÆult to eradiate,

despite its myriad detrators.

101

template <typename T> strut my type traits f

stati string get string() f return "unknown"; g

g;

template <typename T> strut my type traits<T *> f

stati string get string() f

return "pointer to " + my type traits<T>::get stringrep();

g

g;

template <> strut my type traits<int> f

stati string get string() f return "int"; g

g;

err << my type traits<int>::get string() << endl; // \int"

err << my type traits<int *>::get string() << endl; // \pointer to int"

err << my type traits<har *>::get string() << endl;// \pointer to unknown"

Figure 5.1: Example of C++ trait lasses

\primary template" for general types, more speialized versions for types of ertain

struture and ompletely speialized versions for spei� types. With this meha-

nism, C++ provides a minimal pattern language, based on type onstrutors (not

to be onfused with lass onstrutors). An example of a trait lass is shown in

�gure 5.1.

There are several libraries that enapsulate information about a type in trait

lasses. Among these, the best known is type traits by Maddok et al. [89℄. The

information ontained in these lasses inludes inheritane details (e.g., whether a

lass is derived from a partiular base lass), and type ordering (whether there is an

impliit onversion from a type to another). Providing this information as a library

has the advantages that no language or ompiler modi�ations are neessary, and

that extensibility is guaranteed. However, the information aessible in this way is

limited. Proposals for linguisti support for type information have been submitted

to the C++ Standardization Committee [121℄, as have proposals for more general

ompile-time reetion failities [134, 73℄.

102

For programmatially-aessible annotation of program entities, types, in par-

tiular a C programmer must resort to the reation of a runtime type system, like

that of the GNOME GObjet library [128℄, a framework that provides aspets of

the C type system at runtime. In partiular, eah (registered) type in the system is

uniquely identi�ed by a number, whih then allows for the assoiation of arbitrary

information via a ditionary.

C++'s runtime type information (RTTI) faility allows for the annotation of

types, both built-in and user-de�ned [123℄. The ompiler generates some informa-

tion per type (inluding a string representation of the type name and a suitable

equality test between type data-objets) and stores it in instanes of lass type info,

whih are (read-) aessible via the funtion typeid. typeid takes the name of a type

or an expression, and returns the orresponding type info objet. The design of

type info allows for extending type information, e.g., by building ditionaries in-

dexed by type name. This form of introspetion, although useful, is limited. For

example, an instane of a lass annot be queried at runtime for its publi methods.

Compared to C and Ada, Java inludes powerful introspetion apabilities, that

allow for the easy development of meta-language failities suh as lass browsers

and interative program generators. More interestingly, they provide for objet

serialization in the form of a library, where serialization is the proess of writing

or reading an objet to or from a persistent storage medium, suh as a disk �le.

5.3 C8 attributes

Beause C8 is based on C, it an use C's previously mentioned mehanisms to aess

information about a program and its exeution environment. Interestingly, C's ad

ho introspetion mehanism for types (e.g., INT MAX) an be better expressed

through C8's powerful type system by using programming idioms and onventions.

This solution, however, does not apply to all introspetion needs. To provide for

these additional needs, I have designed and implemented a new mehanism, inspired

by Ada attributes that integrates well into the existing syntax and semantis of

C8. This mehanism uni�es several ad ho mehanisms in C, its preproessor

103

and runtime system. Both programming onventions and the new mehanisms for

introspetion are desribed in this setion.

5.3.1 Idioms and onventions

All the introspetion apabilities desribed above for C also apply in C8. Moreover,

ompile-time type annotation is also available, as in C++, via the overloading

resolution mehanism, e.g.:

forall (type T) string get type string(T t) f return "unknown"; g

forall (type T) string get type string(T *t) f

string ret = "pointer to ";

return ret + get type string(*t);

g

string get type string(int i) f return "int"; g

Sine the C8 type system allows for overloading of variables, this tehnique is

also useful to designate speial values assoiated with a type. The exat relation

of the value with the type is given by an appropriately desriptive variable name.

Consider, for example, types with a maximum value, like those shown below.

int max = INT MAX;

oat max = FLOAT MAX;

forall(type T j f T max; T end; Bool ?!=?(T, T);

Bool ?<?(T, T); Bool ?>=?(T, T);

T >>(istream is);g)

104

T �nd min(T lower bound) f

/* read Ts from an input stream, �nd min from read values

greater than lower bound */

T ur = max;

while(ur != end) f

T temp;

is >> temp;

if (temp < ur && temp >= lower bound)

ur = temp;

g

return ur;

g

�nd min(7); // uses max = INT MAX

�nd min(�3.14); // uses max = FLOAT MAX

Although naming onventions allow for ertain forms of type annotation, it is

not useful for the assoiation of arbitrary data with types. Therefore, a speialized

mehanism is needed.

5.3.2 Attribute mehanism

There is interesting information about the program that is inaessible through the

overloading resolution proess or any other mehanisms within the language. To

gain aess to it, a new mehanism is neessary, that of attributes.

Rather than Ada's suÆx notation, C8 adopts a pre�x funtion-like notation,

whih makes lear that the assoiation is done on types, while reusing a familiar

syntax. C8's attributes are regular C identi�ers pre�xed with the harater `�'.

Their use in expressions follows the grammar in �gure 5.2.

Attributes allow for the provision of a minimal program representation through

whih limited introspetive apabilities are provided. Most reetive systems assure

onsisteny between the rei�ed program representation and the atual program by

\opening" the ompiler and providing hooks into the intermediate representations.

C8 takes an alternative approah, whih an be desribed as lightweight [49℄: the

105

hattribute expressioni ::= hattribute identiferi

j hattribute identiferi '(' htype namei ')'

j hattribute identiferi '(' [hassignment expressioni ℄

;

')'

Figure 5.2: C8 attributes grammar

translator generates language objets that provide aess to the ompiler's program

representation. This strategy removes the tension between having a representation

that is onvenient to manipulate by the programmer and at the same time eÆ-

ient to implement by the system. On the other hand, sine the representation

of the program is reated by the ompiler from what the ompiler itself is using,

onsisteny is also guaranteed. Consider the following example:

enum work week f MON, TUE, WED, THU, FRI, g;

for(enum work week day = �enum �rst(work week);

day <= �enum last(work week); day= �enum next(day)) f

printf("Opening hour in day %s: %d\n", �enum name(day), op hour[day℄);

g

beomes:

enum work week f MON, TUE, WED, THU, FRI, g;

har * enum name(enum work week e) f

swith(e) f

ase MON:

return "MON";

. . .

g

g

106

enum work week enum next(enum work week e) f

swith(e) f

ase MON:

return TUE;

. . .

g

g

for(enum work week day = MON; day <= FRI; day = enum next(day)) f

printf("Opening hour in day %s: %d\n", enum name(day), op hour[day℄);

g

Notie that ertain built-in attributes are ompile-time onstants, and are inlined.

This strategy allows for delarations of the form:

int hours per day[�enum size(enum work week) ℄;

A listing of C8's expression-returning built-in attributes is presented in table 5.1.

The attributes �enum next() and �enum previous() allow enumerated values

mapping to a non-ontiguous set of integers. The introspetive apabilities into

strutures are fairly limited, and only permit the enumeration of the �eld names

and number of �elds. These attributes are provided as interesting examples, as it

is lear that the list an grow signi�antly.

Not all built-in attributes are related to types, for example, the �fun attribute,

provides the same kind of information as C99's fun identi�er, in providing the

name of the urrent funtion. This piee of information is useful, for instane, to

keep trak of the soure of an exeption:

terminate mkIO exeption(�fun());

As a result of the implementation of polymorphi alls, the C8 inner mahinery

maintains a runtime type desriptor, whih ontains suh information as the size

and alignment of a partiular type. It also ontains values and funtions that are

ommon to all types, suh as a string representation (like that of of C++ type info),

and an assignment funtion. This information is valuable in several situations.

107

Prototype Meaning

har *�fun(void) Name of urrent funtion

unsigned int �enum size(enum type) enumeration size

har *�enum name(enum type elm) string representation of

enum onstant

enum type �enum previous(enum type elm) previous value in enu-

meration

enum type �enum next(enum type elm) next value in enumera-

tion

enum type �enum first(enum type) Takes enum name or

value and returns �rst

onstant in enum

enum type �enum last(enum type) Takes enum name or

value and returns last

onstant in enum

har ** �strut fieldnames(strut type) name of �elds in strut

unsigned int �strut numfields(strut type) Number of �elds in strut

har * �typename(type) string representation of a

type

Table 5.1: Built-in attributes in C8

108

Consider a programmer wishing to �nd out what type is instantiated by the system

for a partiular polymorphi all:

forall(type T) void polyfun(T t) f

printf("Type T was instantiated in funtion %s as: %s", �fun(), �typename(T));

// . . .

g

A programmer an override the behaviour of a generated funtion by providing

their own implementation, as long as the interfae is respeted. This informa-

tion, ombined with riher metaprogramming failities, would allow programmers

to ontrol or speify the automati generation of ode (�a la maros or templates).

Although C8 is urrently nowhere near this stage, the attribute mehanism is a

step in the right diretion.

5.4 Related Work

Current programming tasks require exibility (e.g., loalization) and interation

with external data and omputational soures. These requirements suggest that it

would be bene�ial for the programmer to have a single form to provide all auxiliary

information on program elements [138℄. This information an then be used by

development tools, development tools, deployment tools (e.g., stub generators), or

run-time libraries. Already inorporated in C# in the form of attributes, metadata

failities have been proposed for the upoming version of the Java programming

language [17℄, and furnish Java with a means of assoiating arbitrary attribute

information with partiular lasses/interfaes/methods/�elds.

The integration of annotations with the C programming language has not been

widely explored. The intensional programming language Intensional C i [74℄

allows the annotation of identi�ers (funtions and variables) with versioning spe-

i�ations, and inludes algorithms to best math versions of software omponents.

This information is aessible at runtime via a new keyword, \vswith".

The automati generation of funtions that aess ompliated data objets

109

has been studied by Sheard [115℄ in the ase of reursive types, and by Grossman

[62℄ and Chuang et al.[29℄. Closer to the approah presented here is the work by

Willink et al. [137℄, whih relies on a deeply embedded objet-oriented preproessor

in C++, enrihed with meta-funtions and meta-variables.

libpdel [2℄ is a library that allows a user to desribe a C type in a homogeneous

struture, and then works on this struture to provide marshalling into XML-RPC

and other protools. It also allows for introspetion of �eld names. The Gnome

GObjet [128℄, in addition to these features, develops a omplete dynami-type

system for C.

110

Chapter 6

C language ompatibility

One of the C8 programming language design objetives is to be bakwards om-

patible with C, as the latter is de�ned in its Standard [6℄. This goal was met to

a large extent, but due to the new onstruts introdued in C8, and a desire to

�x problems in C, a small number of inompatibilities exist. Among these, the

most obvious are the new keywords and the modi�ation to the behaviour of the

multibranh seletion-statement swith (setion 3.2). Beause of these hanges,

C8 marks as invalid some legal C programs. This hapter is a �rst approximation

to estimate the number of C programs that might be in this situation. To this end,

a large body of ode is searhed for instanes of the prognostiated inompatibili-

ties. The mahinery set in plae to arry out this task also allows, as a side bene�t,

an estimation of the usefulness of ertain C8 extensions.

6.1 Experimental setup

This hapter desribes an experiment onsisting of sanning a orpus of valid C

ode for ode fragments that have been made invalid in C8, and ode fragments

that ould bene�t from new features of C8. C8's inompatibilities arise from the

introdution of new keywords and hanges to ontrol statements, in partiular the

hange to the behaviour of the swith statement (x3.2). The �rst language hange

is unavoidable, and designers of every language that extends another must hoose

111

new keywords arefully, so as to ause the least disruption in existing ode. The

hypothesis of the experiment is that C8 keywords seldom onit with existing C

variable names and other identi�ers. As for the hanges in the swith onstrut,

I maintain that hanges in C8 odify existing best praties, already respeted by

programmers. Evindene to support these ontentions is presented, giving redene

to the laim that few onits should our in legay ode.

The patterns searhed for in the orpus of C ode are:

Identi�er lashes If a C program inludes among its identi�ers (variables, fun-

tions, formal parameters, et.) uses of C8 keywords, it is not valid C8.

Changes to the swith statement C8 has disallowed statements in between

the swith and �rst ase, whih prevents usage suh as Du�'s devie. It

also modi�es the behaviour of delarations in this position by guaranteeing

that initialization is performed. How limited the impat of these C8 hanges

is an be asertained by observing the following properties of the orpus:

� The number of swithes. The e�ets of hanges to a language onstrut

are neessarily more loalized if the onstrut is used sparingly.

� Whether swithes are intertwined with other ontrol strutures. Any

ode that exhibits this property would be disallowed in C8.

� Little or no ode is plaed between the swith and the �rst ase. Any

ode that exhibits this property ould have its meaning hanged in C8.

Fall-through ase lauses The usefulness of ertain C8 extensions an be esti-

mated by how often a C pattern (idiom) is used that an be replaed by a

simpler C8 mehanism. There are two main idioms for using fall-through.

112

The �rst one is for asading a series of options that overlap, e.g.:

swith (arg) f

ase 3:

// open out�le �le

// fall through to handle input �le

ase 2:

// open input �le

break;

default:

// print usage message

g

The seond is to onatenate ases in suh a way as to make up for C's lak

of lists and ranges as ase guards. By examining the use of fall-through ase

lauses, it is possible to determine when this idiom an be replaed by C8's

ase ranges or lists. This, of ourse, is just an initial approximation, as new

idioms and styles of programming may arise from having more ompliated

ase guards, and ombining it with other failities in the language.

Subsequent setions desribe the orpus of ode examined, how this population

is sampled, the tools and tehniques by whih the sample is analysed and, �nally,

the results of the analysis. These results provide the evidene to onlude that the

modi�ations made in C8 do not a�et a large amount of existing C ode. This

outome suggests that the restritions C8 imposes are onsistent with existing

oding onventions; as a result, programmers who observe these onventions will

not enounter the inompatibilities.

6.2 Corpus

The ode that onstitutes the orpus over whih the searh is onduted is ob-

tained from the \open soure" movement. Many of these programs, freely available

in soure form, are intended to be prodution-quality, to be used in day-to-day

113

operations. Most of them have been written adhering to some oding standard and

have been subjet to some minimal editorial review or peer examination, guaran-

teeing at least a minimal level of quality. Code ompliant with this riteria and

still deemed illegal by a C8 implementation annot be dismissed as an example of

poor C oding praties, but as evidene against the assumptions that informed

the design of C8.

The GNU projet is a prime example of open-soure ode. Also, its repository

is onveniently aessible and extensively mirrored. The ode it hosts has no par-

tiular bias towards any appliation domain nor are partiular restritions plaed

on program size. However, this software olletion is enormous. In 2002, Wheeler

[136℄ estimated the size of a typial GNU/Linux system at over 30 million lines

of ode, 71% of whih are written in C. Clearly some sampling is needed to keep

these numbers within a manageable size for this experiment, and yet maintain a

signi�ant ross-setion of appliation domains and program size, i.e., it is desirable

for the study to inlude programs ranging from the size of the Unix word ounter

w to that of database management systems.

The GNU projet organizes its software in pakages, eah of whih omprises

ode and doumentation for a program or a related set of programs. The disussion

that follows refers to pakages as the unit of distribution. Pakages that inlude a

large number of exeutables are likelier to inlude a set of smaller omplete programs

than pakages of similar size that inlude only one exeutable. It is reasonable to

assume that omplete programs are desribed in fewer soure �les, i.e., that shorter

programs are ontained in these pakages than, say, emas, a pakage ontaining

thousands of soure �les that result in approximately ten exeutables. The infor-

mation on the exeutable density of a pakage an also be obtained from the GNU

diretory.

The experimental sample omprises various appliation domains, ranging over

suh areas as language proessing, ommuniations, system tools, statistis, plot-

ting, et. Pakages whose ontent is deemed too similar have been dropped from the

examined set. An example of this are the marst Algol-to-C and the im Simula-to-C

translators, only the latter of whih was inluded in the examined set.

Further riteria have been onsidered for the sampling proess. In partiular,

114

Pakage Version LOC Desription

Termutils 2.0 2812 Programs for ontrolling terminals

Wget 1.9 20688 A network utility to retrieve �les from the Web

Gsl 1.4 146420 A olletion of routines for numerial omputing

Emas 21.3 211129 The extensible display editor

Cim 3.30 22346 A ompiler for the Simula language

Bison 1.875 19168 Parser generator (ya replaement)

Path 2.5.4 7147 Apply a di� �le to an original soure

Plotutils 2.4.1 71743 Utilities for plotting sienti� data

Sed 4.0.9 18015 Stream Editor

Textutils 2.1 34662 Text utilities

Uup 1.07 48341 File opying program

Total 602471

Table 6.1: Seleted pakages

the popularity of a pakage has been used as a measure for tiebreaking. Popularity

is a measure that reets the use of a pakage in terms of the number of times

it has been downloaded and the frequeny of maintenane releases (it does not

disriminate, however, between feature addition and error orretion). Although

not wholly reetive of the quality or even usage of the ode (some widely used

programs are famous for the irregularity of new releases), popularity is a good

measure of how losely a pakage is examined and tested, and as suh, beame the

deiding fator in the ase of onit between similar pakages. For example, in the

ase of im against marst desribed above, the more popular im made it into the

sample. Popularity information is maintained in the GNU repository itself (in the

form of number of downloads) or, more systematially, by independent open-soure

projets diretories, suh as freshmeat [1℄.

The GNU Projet lists 248 pakage in its diretory [54℄. 151 ould be obtained

automatially. Of these, 11 pakages, omprising over 500,000 lines of ode were

seleted. Lines of ode (LOC) ounts were obtained with the ount [46℄ statistis

gatherer, whih parses C ode and disards lines ontaining only omments in its

results. The seleted pakages and their sizes are shown in table 6.1.

115

6.3 Code Analysis Infrastruture

For day-to-day programming, high-level ode examination is often performed via

generi text-searhing tools, suh as the well-known grep. However, the ode pat-

terns required by this analysis are onsiderably more ompliated, and therefore

more elaborate means are alled for.

Tools for the analysis of soure ode, other than language translators, inlude tag

generators, lines-of-ode ounters and a variety of others. In partiular, tools to aid

program understanding and reverse engineering are partiularly well known. Cox's

omparative survey [36℄ provides a omprehensive overview. The most notieable

di�erene between these tools is the representation they use for the analysed ode.

These representations range from relational databases (as in the ase with AT&T

Researh Labs' iao [83℄) to strutured text forms (like the XML speializations

GXL [68℄, or CPPML). Cox adopted yet another approah in his Jupiter/Merury

system [35℄, whih relies on the MultiText text-retrieval engine. MultiText provides

eÆient aess to the gathered information, regardless of the size of the stored

orpus, whereas Merury supplies an expressive query language. The ombination

allows for fast and onvenient searhing of rih patterns in potentially vast quantities

of ode.

The partiulars of the internal doument representation, retrieval model and

query language of MultiText are explained by Clarke, et al. [30℄. It is enough

for the purposes of the urrent disussion to say that MultiText tokenizes and

annotates the doument, and then indexes this extended stream of tokens. An-

notations onsist of tags that provide some information as to the semanti rôle of

eah token in the doument. Jupiter relies on a ompiler front-end (the ombination

lexer/parser/symbol table) to provide these tags.

In its original version, Jupiter inludes a parser, ag, based on the Roskind

grammar [110℄, whih does not handle C99 or g-extensions. Sine a good amount

of the examined GNU ode makes use of these features, the system ould not be

used \out-of-the-box". The modular arhiteture of Jupiter allows for the parser

to be replaed by a more suitable one. Clearly, adapting the C8 translator parser

to perform this funtion would not be an independent measuring apparatus. A

116

workable alternative is kit, a C ompiler front end from Bell Labs. Extensively

tested and able to handle C99 and some g extensions, kit has an extensible

arhiteture that makes it possible to write plug-in modules, suh as the ode

annotator for Jupiter, with relative ease

1

.

The new annotator has a slightly riher set of tags than the original Merury

(it reintrodues several tags of the earlier Mars [37℄ system). In partiular, besides

deorating the soure ode, the new annotator keeps �le and pakage information.

This metainformation beomes relevant when disriminating ertain aspets of the

ode, e.g., multiple inlusions of the same �le.

Building a repository from a great number of soures is a tedious and error-prone

task, so the highest degree of automation is desirable. First, a wrapper around the

annotator was reated that an be used as a plug-in replaement for the C ompiler.

This wrapper allows the reuse of the pakage-provided Makefiles.

One the soure ode repository is built, the information extration is done via

the last omponent of the system, the Merury interpreter. Merury is a modi�ed

Sheme interpreter that subsumes the MultiText query language GCL. Queries

expressed in GCL inlude \literal", e.g., the number of ourrenes of a string

within a �le, as well as \strutural" expressions, e.g., the number of uses of an

identi�er, as opposed to its delaration.

The proess of building and using the repository is illustrated in �gure 6.1. Af-

ter pakages have been obtained and on�gured (whih is the only operation in

the system that requires signi�ant manual intervention

2

), they are built. Via the

wrapped annotation generator, the build proess transparently populates the Multi-

Text bakend database. This database stores the stream of tokens, and annotations

and meta-annotations that are obtained from eah soure �le after preproessing.

1

There is a very similar projet, alled il. The ostensible di�erene with kit is that il

is implemented in the ompeting dialet OCaml. The reasons kit was hosen over il for

onduting the experiments desribed in this hapter are more irumstanial than tehnial.

However, kit has been more extensively tested with large bodies of ode, whereas I was unable

to determine whether the same was true for il.

2

Using the GNU Projet for ode samples presents the additional advantage that these programs

onform to a ommon on�guration and building mehanism, whih suggests that this part of the

proess an be largely automated as well.

117

build system
(Makefiles)

ckit Parser

(Text server)

textd

Mercury

database

CPP

(Index Server)

indexd

Figure 6.1: Soure ode analysis system

In the �gure, the dashed lines represent the progress of a stream of data into the

system. One inside the repository, Merury is used in bath mode to query the

database and gather statistis (the solid lines in the �gure represent query-answer

dialogues).

6.3.1 Noise-introduing fators

A further problem in determining the exat number of ompatibility errors is due

to the fat that two or more �les might textually inlude the same problemati

C �le. These errors inlude delaration of symbols that lash with new keywords.

Errors of this kind would be reported as many times as a �le is inluded. The

metainformation inluded in the repository allows for a query to speify that eah

�le is to be onsidered only one, thus eliminating this situation.

Automatially generated C programs an also slant results, as generators use

the same form of output. Errors within these �les are due more to the generator

than to the use of C, so pakages that involve the use of these kind of �les should be

handled espeially. For the pakages in table 6.1, the only ode generators involved

118

are flex and bison, whose output posed no partiular problems.

6.4 Searh patterns

With the infrastruture desribed above, the C ode sample an be analysed with

respet to the hanges in C8. As outlined in the introdution, there are two hanges

in C8 that seem the most likely to ause inompatibility problems. The �rst is the

the introdution of keywords that may be used as identi�ers in valid C. The seond

are the modi�ations to the syntax of the swith statement, whih in C may inlude

any number of delarations and exeutable statements between the keyword swith

and the �rst ase, whereas C8 only allows for the inlusion of delarations in this

position. Also, C allows a swith to be interwoven with other ontrol statements,

a behaviour that C8 disallows syntatially. Finally, understanding fall-through

ase lauses is interesting with respet to C8 extensions. Uses of these onstruts

are searhed for, to estimate their frequeny in atual ode.

Identi�er lashes All the delarations of variables and funtions are ol-

leted, and then an intersetion of them with the 12 new C8 keywords

(hoose, ontext, dtype, fallthru, �nally, forall, ftype, lvalue, resume,

terminate, try and type) is performed.

Swith frequeny One pattern looks for all swith statements to determine how

frequently they our.

Unreahable ode in swithes statements between a swith and the �rst ase

(or default), either exeutable or delarations, are heked for.

Intertwined ontrol statements Loop statements that are not ompletely on-

tained within a ase blok are searhed for.

Uses of falling-through ases ases that do not inlude a break or return be-

fore the next ase in the swith are onsidered an instane of falling through

ases.

119

Fall-through to simulate lists or ranges A ase followed by another ase with-

out intervening statements are onsidered as an instane of ase lists.

6.5 Results

Results are reported per pakage, beause a pakage provides a better sense of how

onstruts are used in omplete programs, rather than funtions or �les. Queries

for the foreseen problemati patterns were submitted to the repository, with the

following results:

Identi�er lashes: In the 11 examined pakages only the keywords type and

ontext appeared as identi�ers. The lashing identi�ers are shown in the

seond olumn of table 6.2. For eah lash, the �rst number denotes the

number of delarations of the lashing identi�er and the seond number de-

notes the total number of identi�ers delared in the pakage.

Swith frequeny: swith frequeny (ompared against the total number of state-

ments) is shown in the third olumn of table 6.2. The usage of swith state-

ments is even lower than I had expeted.

Unreahable ode in swithes: There was not a single ourrene of delara-

tions or exeutable ode after a swith but before the �rst orresponding

ase.

Intertwined ontrol strutures: In the ode examined, there was not a single

ourrene of a swith intertwined with another ontrol struture (i.e., Du�'s

devie).

Uses of falling-through ases: Ourrenes of fall-through ases are reported in

the fourth olumn of the table. The �rst number denotes the total number

of onseutive ase lauses without intervening statements (ase lists), and

the seond number is the total number of ourrenes of onseutive ase

lauses with intervening statements. Note that a little over half of the uses of

fall-through ases are for ase list/ranges.

120

Pakage Identi�er lashes swith Frequeny(%) Fall through ases

Termutils 1.10395 36/47

Wget type (2/66422) 0.52091 38/65

Gsl 0.01778 25/34

Emas type(16/115353) 0.63812 201/456

Cim type (1/4262) 1.39616 58/129

Bison ontext (3/16992) 0.59113 198/211

Path ontext (7/7948) 0.00608 30/58

Plotutils type(22/5289) 0.70640 97/137

Sed 0.51948 23/35

Textutils ontext (5/891) 0.64199 273/476

Uup type(3/3527) 0.51194 155/186

Table 6.2: Results

It is lear from the results that the most problemati issue when ompiling ANSI

C appliations via the C8 translator is the lashing of identi�ers, in partiular, the

identi�er type. Sine the use of type is entral to C8's parametri polymorphism

mahinery, and the use of any other word would lead to onfusion, C8's designers

deided to inlude the type keyword in the language, at the expense of minor

adjustments in C legay ode. It is important to note that C++ introdued a

similar number of new keywords and large systems of legay C ode were adjusted

to work with it.

Next, the C8 hanges with respet to the swith statement do not present

problems beause programmers, in general are not using the features that were

eliminated. It is my opinion that further examination of a larger sample omplying

with a set of oding standards would only on�rm the results presented here in

regards to delarations and ode in between swithes and their �rst ase, or the

popularity of Du�'s devie and its variants. Their absene in the examined sample

is indiative of their rarity in pratial ode.

Finally, the observed use of fall-through in swithes suggests that the ombina-

tion of C8's hoose and ase lists and ranges over half of the situations where this

problemati feature is neessary, with bene�ts to readability and maintainability.

Hene, these extensions appear to be warranted.

121

6.6 Related work

Soure ode analysis is normally assoiated with program understanding and reverse-

engineering (for example, see [33℄). However, there are some instanes of empirial

analysis of soure-ode orpora as a means to settle language design disussions,

e.g., Wright's [139℄ study of ML soure ode resolved the dispute in regards to the

introdution of the value restrition rule in the language. Partiularly relevant to

the study desribed in this hapter is Ernst et al. [52℄, whih examined C preproes-

sor usage to determine the importane of preproessor-aware tools for soure-ode

analysis.

The existene of a large variety of dialets of the C language have motivated

ompatibility studies. The analysis of the ompatibility between C and C++ has

drawn, understandably, partiular interest. Most of this studies, however, use a

high-level approah, e.g. Stroustroup [124, 125℄ or Tribble [133℄. To my knowledge,

analysis of a large soure-ode base to measure ompatibility with an extended

language has not been done for C.

122

Chapter 7

Conlusions

William Bragg said that the important thing in Siene is not so muh to obtain

new fats as to disover new ways of thinking about them. In a similar vein, muh

of this thesis is about seletively hoosing a number of existing language ideas and

blending (engineering) them together to produe a set of onsistent, orthogonal and

expressive extensions to C. Unfortunately, it is diÆult to quantitatively measure

the suess of this work beause all useful programming languages are Turing-

omplete and all Turing-omplete programming languages are equivalent in some

broad sense. Nevertheless, there are di�erenes among programming languages be-

ause programmers often hose a languages to �t an appliation problem, implying

one language has at least subjetive advantages over another in ertain spei�

situations. Given that many of the di�erenes among programming languages are

subjetive, are there some general observations that an be made about what is

good or bad?

There is strong evidene that supports the laim that the variety of problems

omputers are used to solve, and of programmers writing solutions for them, esape

the sope of any single programming language. Di�erent languages rely and imple-

ment a di�erent \luster of programming notions" [43℄. Trying to make this luster

as large as possible for a partiular language results in \kithen sink" languages

like PL/I and Ada, whih are extremely powerful but have not enjoyed widespread

aeptane.

123

An alternative to the \kithen sink" approah for language design is to provide

a set of powerful mehanisms and let programmers build libraries to generalize

the language into multiple appliation domains. What is ruial in this approah

is that the mehanism for extension must meld with the builtin language features

and with the extensions generated by programmers, resulting in a seamless language

system. C++ made an exellent attempt at this approah, integrating builtin and

user-de�ned types within a omplex, extensible type-system supporting inheritane,

overloading and generis.

However, another omponent of C++'s suess is its extension from the simple

programming model of C, a language already popular, in onsistent and unsur-

prising ways to make use of well-hosen abstrations. This shool of design is the

\evolutionary" approah, and it involves a more onstrained design spae than its

\revolutionary" ounterpart (like Java). Whereas the latter approah requires a

lear notion of the new language and its abstration, the former also presupposes

a thorough understanding of the substrate language, both in design and how it

is used. Careful syntati extensions and a �rm grasp of the interations of the

added abstrations are neessary to make the extensions �t with existing notions.

Interestingly, the urrent growth of C++ reets its adoption by more ambitious

programming projets, and these projets are orrespondingly using more of the

advaned languages features (espeially the generi Standard Template Library).

C8 mimis the approah taken by C++ but adopts a di�erent set of abstrations

mehanisms to ahieve its goals. First, C8 attempts to remain bakwards ompat-

ible with the large orpus of legay C ode (as did C++). Seond, C8 attempts

to �x some of the more obvious aws in C in an attempt to make the language

aessible to a broader range of programmers, even beginning programmers (unlike

C++). Third, C8 introdues a number of new language abstrations and meha-

nisms that I believe signi�antly extend the power of the language and simplify the

programming task.

C8, as presented initially by Dith�eld [47℄, introdued to C a type system that

provides for advaned overloading and polymorphi funtions, while preserving the

semantis of the existing type system. C8 programmers an speify the behaviour

of funtions without extensionally refering to types but by intensionally desribing

124

types in terms of the operations the funtion uses. Bilson's implementation of this

type system [16℄ introdues extensions (MVR funtions) and artifats that serve as

starting points for the features desribed in this thesis.

In this thesis, both orretive and proative hanges have been made to C. In

hanging the swith statement I have revisited an existing ontrol struture to

prevent some egretious mistakes and misuses. In adding new syntax for dela-

rations, new loop ontrol statements and the hoose statement, I have provided

more strutured and less error-prone mehanisms that an o-exist with their tra-

ditional ounterparts for the sake of legay ode. In adding tuples, exeptions and

attributes, I have enabled new ways of writing programs that an redue the e�ort

involved and inrease robustness. Finally, I have demonstrated that these hanges

have minimal impat on existing C programs.

The litmus test of the e�etiveness of a programming language is usage. Cur-

rently there is only a very small amount of C8 ode, in the form of test pro-

grams used to asertain the orretness of spei� mehanisms. There are no

medium/large programs to demonstrate the appliability of these mehanisms to

spei� programming tasks. Nevertheless, languages with similar failities, like

Java, C++ and ML, have shown that similar features are useful and usable, but

only time and use will tell the true e�etiveness of these features, as well as the

tasks they are most adequate for.

7.1 Future Work

Although C8 goes a long way toward �xing the most insidious shortomings of C,

there are still areas that need addressing. First, the built-in support for arrays in C

is error-prone and diÆult for beginners to understand, but is so deeply ingrained

in the language that it is impossible to hange in any signi�ant way. A better

ad ho array mehanism is feasible, but I feel a more general solution, generi

types, is preferable. Suh an addition to the C8 type system would permit the

enapsulation of adequate array handling failities in a library, as well as provide

support for generi ontainer libraries. To this end, some initial design work has

been done on generi types for C8, but it is still far from ompletion.

125

Two other glaring defets in C are urrently unaddressed by C8: onurreny

mehanisms, and advaned support for modularity. Conurreny opens the door for

a new way of thinking about programming and struturing programs. Modularity

failitates the development of large systems. Of the two, the one that requires

the greatest design e�ort is, without a doubt, onurreny, given the diversity of

onurreny mehanisms and approahes. Both onurreny and modularity are

ruial for modern programming tasks, and inrease the possibilities of suess for

a language.

Also ruial for the suess of a language is the availability of development

tools. Features like attributes, that allow for additional ommuniation between

the program and language proessing systems, allow for powerful tools. Traditional

support tools like debuggers and pro�lers are likely to be similar to those in ex-

istene, but the sophistiated type system inorporated in C8 will likely require

a onstrutive tool that furnishes programmers with information about the over-

loading resolution and type speialization proess. To this end, I am developing

an explainer, in the spirit of the one desribed by Duggan [50℄, that presents the

proess of type seletion in a meaningful way.

Another area that remains unexplored in this work is the optimization that the

new forms in the language allow. The expressiveness gained in C8 indiates that

there is more information available to an optimizer for generating more eÆient

ode. To exploit these hypothetial gains, however, would require the reation of

a true C8 ompiler, rather than the urrent translator approah. In addition, the

sound theoretial basis that the C8 type system provides is likely to help verify the

orretness of ode optimizations.

Finally, the C8 type system is built upon an elegant formalism. Wanting equally

solid theoretial standing for the extensions presented in this thesis, I looked for

appropriate formalisms to over tuples, exeptions and attributes. Interestingly, I

believe now that I have found a single formalism that overs all these features. The

intuitionisti modal logi S4, when mapped into a type system, enompasses the

stati and dynami aspets of all the extensions disussed in the text. Experimen-

tal languages like Template Haskell and MetaML, based on variants of this type

system are beoming inreasingly important within the researh ommunity, and

126

are also starting to draw the attention of pratitioners, sine they provide a solid

foundation for persistene, distributed programming and other dynami program-

ming tasks. If the C8 type system is extended in this diretion, not only would the

bene�ts of a more dynami style of programming be reaped, but they would also be

attained without detriment to legay ode, or a steep learning urve. A language

traditionally onsidered low- to mid-level, that ould traverse the whole spetrum

of omputation and stand together with languages that enable the highest level

of abstration, would be the ultimate argument for the evolutionary approah of

programming language design.

127

Bibliography

[1℄ freshmeat Unix and ross-platform Software Diretory. http://freshmeat.

net.

[2℄ The paket design embedded library. http://www.dellroad.org/pdel.

[3℄ Risks the programming language is aountable for. http://atless.nl.

a.uk/Risks/9.69.html.

[4℄ From C to C++: Interviews with Dennis Rithie and Bjarne Stroustrup.

Dr. Dobb's Journal C Sourebook, 1990.

[5℄ The libunwind projet. http://www.hpl.hp.om/researh/linux/

libunwind/, Deember 2003.

[6℄ ISO/IEC 9899. Programming languages { C. 1999.

[7℄ Andrei Alexandresu. Modern C++ design. Addison-Wesley Publishing Com-

pany, 2001.

[8℄ Eri Allman and David Been. An exeption handler for C. In USENIX

Assoiation Summer Conferene Proeedings, pages 25{45, Portland. Oregon,

USA, June 1985.

[9℄ Amerian National Standards Institute. Information Proessing Systems

Committee X3 and Computer and Business Equipment Manufaturers As-

soiation. Rationale for draft proposed Amerian National Standard for in-

formation systems: programming language C: X3J11/88-15: Projet: 381-D.

Tehnial report, 1988.

129

[10℄ Brue Anderson. Type syntax in the language C: An objet lesson in syntati

innovation. ACM SIGPLAN Noties, 15(3):21{27, Marh 1980.

[11℄ Andrew W. Appel and David B. MaQueen. Separate ompilation for stan-

dard ML. In SIGPLAN Conferene on Programming Language Design and

Implementation, pages 13{23, 1994.

[12℄ J. Mihael Ashley and R. Kent Dybvig. An eÆient implementation of mul-

tiple return values in Sheme. In 1994 ACM Conferene on LISP and Fun-

tional Programming, June 1994.

[13℄ Lennart Augustsson. Cayenne, a language with dependent types. In Pro-

eedings of the third ACM SIGPLAN international onferene on Funtional

programming, pages 239{250, 1998.

[14℄ Matt H. Austern. Generi Programming and the STL. Professional omputing

series. Addison-Wesley Publishing Company, 1999.

[15℄ D.W. Barron, J.N. Buxton, D.F. Hartley, E. Nixon, and C. Strahey. The

main features of CPL. The Computer Journal, 6(2):134{143, July 1963.

[16℄ Rihard Bilson. Implementing overloading and polymorphism in Cforall. Mas-

ter's thesis, University of Waterloo, Waterloo, Ontario, February 2003.

[17℄ Joshua Bloh. JSR 175: A metadata faility for the Java programming lan-

guage. http://www.jp.org/en/jsr/detail?id=175.

[18℄ Matthias Blume. No-longer-foreign: Teahing an ML ompiler to speak C

\natively". In Nik Benton and Andrew Kennedy, editors, Eletroni Notes in

Theoretial Computer Siene, volume 59. Elsevier Siene Publishers, 2001.

[19℄ The boost library. http://www.boost.org, 2000.

[20℄ Gilad Braha, Martin Odersky, David Stoutamire, and PhilipWadler. Making

the future safe for the past: Adding generiity to the Java programming

language. In Craig Chambers, editor, ACM Symposium on Objet Oriented

Programming: Systems, Languages, and Appliations (OOPSLA), pages 183{

200, Vanouver, BC, 1998.

130

[21℄ Timothy A. Budd. An implementation of generators in C. Computer Lan-

guages, 7(2):69{87, 1982.

[22℄ Peter Buhr, Ashif Harji, and W.Y.Russel Mok. Advaned exeption handling.

IEEE Transations on Software Engineering, 26(9):820{836, September 2000.

[23℄ Peter A. Buhr. A ase for teahing multi-exit loops to beginning programmers.

SIGPLAN Noties, 20(11):14{22, Nov 1985.

[24℄ Peter A. Buhr. Are safe onurreny libraries possible? Communiations of

the ACM, 38(2):117{120, February 1995.

[25℄ Peter A. Buhr, Hamish I. Madonald, and C. Robert Zarnke. Synhronous

and asynhronous handling of abnormal events in the �System. Software|

Pratie and Experiene, 22(9):735{776, 1992.

[26℄ Peter A. Buhr, David Till, and C.R. Zarnke. Assignment as the sole means

of updating objets. Software|Pratie and Experiene, 24(9):835{870,

September 1994.

[27℄ D. Cameron, P. Faust, D. Lenkov, and M. Mehta. A portable implementation

of C++ exeption handling. In Proeedings of the C++ Conferene, pages

225{243. USENIX Assoiation, August 1992.

[28℄ Morten Mikael Christensen. Methods for handling exeptions in objet-

oriented programming languages. Master's thesis, Odense University, Den-

mark, January 1995.

[29℄ Tyng-Ruey Chuang, Chuan-Chieh Jung, Wen-Min Kuan, and Y. S. Kuo. Ob-

jetstream: Generating stream-based objet I/O for C++. In 24th Interna-

tional Conferene on Tehnology of Objet-Oriented Languages and Systems,

pages 81{90, Beijing, China, September 1997.

[30℄ Charles L.A. Clarke, Gordon V. Cormak, and Forbes J. Burkowski. An

algebra for strutured text searh and a framework for its implementation.

The Computer Journal, 38(1):43{56, 1995.

131

[31℄ The C Language Standardization Committee. The C language standardiza-

tion harter. http://std.dkuug.dk/JTC1/SC22/WG14/www/harter.

[32℄ Curtis R. Cook. Information theory metri for assembly language. Software

Engineering Strategies, pages 52{60, Marh/April 1993.

[33℄ Tama Communiation Corporation. Soure ode tours. http://www.

tamaom.om/tour.html.

[34℄ Adam M. Costello and Cosmin Truta. CEXCEPT exeption handling in C.

http://exept.soureforge.net.

[35℄ Anthony Cox. Jupiter user manual and Merury language referene. Draft.

[36℄ Anthony Cox and Charles Clarke. A omparative evaluation of tehniques for

syntati level soure-ode analysis. In 7th Asia-Pai� Software Engineering

Conferene (APSEC), Singapore, Deember 2000.

[37℄ Anthony Cox and Charlie Clarke. A funtional approah to omplex retrieval

tasks. In Ninth International Workshop on Funtional and Logi Program-

ming, pages 486{498, Beniassim, Spain, September 2000.

[38℄ Brad J. Cox and Andrew J. Novobilski. Objet Oriented Programming:

An Evolutionary Approah. Addison-Wesley Publishing Company, Reading,

Mass., USA, 1991.

[39℄ C.T.Zahn. C Notes: A guide to the C programming language. Yourdon Press,

1979.

[40℄ Krzysztof Czarneki and Ulrih W. Eiseneker. Generative programming:

methods, tools, and appliations. Addison-Wesley Publishing Company, 2000.

[41℄ Laurent Dami. Objet-Oriented Software Composition, hapter Funtions,

Reords and Compatibility in the � N-Calulus, pages 153{174. Prentie

Hall, 1995.

[42℄ C. J. Date. An introdution to database systems: vol. I (4th ed.). Addison-

Wesley Publishing Company, 1986.

132

[43℄ Jao de Bakker and Erik de Vink. Control ow semantis. MIT Press, 1996.

[44℄ Universidad de Oviedo's Computational Reetion Group. The nitrO system.

http://www.di.uniovi.es/refletion/lab.

[45℄ Robert B.K. Dewar and Edmond Shonberg. The elements of SETL style. In

Proeedings of the 1979 annual onferene, pages 24{32. ACM Press, 1979.

[46℄ Thomas E. Dikey. ount, the C language line ounter. http://dikey.

his.om/_ount/_ount.html.

[47℄ Glen Je�rey Dith�eld. Contextual Polymorphism. PhD thesis, University of

Waterloo, 1994.

[48℄ V�eronique Donzeau-Gouge, Gilles Kahn, and Bernard Lang. Formal de�ni-

tion of the Ada programming language. Tehnial report, Honeywell, CII

Honeywell Bull, INRIA, November 1980. (preliminary).

[49℄ R�emi Douene and Mario S�udholt. On the lightweight and seletive intro-

dution of reetive apabilities in appliations. In ECOOP'00 Workshop on

Reetion and Meta-Level Arhitetures, 2000.

[50℄ Domini Duggan and Frederik Bent. Explaining type inferene. Siene of

Computer Programming, 27(1):37{83, 1996.

[51℄ Daniel Edelson and Ira Pohl. C++: Solving C's shortomings? Computer

Languages, 14(3):137{152, September 1989.

[52℄ Mihael D. Ernst, Greg J. Badros, and David Notkin. An empirial anal-

ysis of C preproessor use. IEEE Transations on Software Engineering,

28(12):1146{1170, Deember 2002.

[53℄ Mihael J. Fisher. Lambda-alulus shemata. LISP and Symboli Compu-

tation, 6(3/4):2599{288, November 1993.

[54℄ Free Software Foundation. FSF/UNESCO Free Software Diretory. http:

//www.gnu.org/diretory/.

133

[55℄ Daniel P. Friedman and David S. Wise. Funtional ombination. Computer

Languages, 3(1):31{35, 1978.

[56℄ Rihard P. Gabriel. Worse is better. http://www.dreamsongs.om/

WorseIsBetter.html.

[57℄ Rihard P. Gabriel. The end of history and the last programming language.

Journal of Objet Oriented Programming, 20(7), July 2002.

[58℄ Ronald Garia, Jaakko J�arvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah

Willok. A omparative study of language support for generi programming.

In Proeedings of the 18th ACM SIGPLAN onferene on Objet-oriented

programing, systems, languages, and appliations, pages 115{134, 2003.

[59℄ Jaques Garrigue and Hassan A��t Kai. The typed polymorphi label-seletive

�-alulus. In Pro. of the 21st ACM Symposium on Priniples of Program-

ming Languages, Portland, 1994.

[60℄ John B. Goodenough. Exeption handling: Issues and a proposed notation.

Communiations of the ACM, 18(12), Deember 1975.

[61℄ Paul Graham. ANSI Common Lisp. Prentie Hall, 1995.

[62℄ Mark Grossman. Objet I/O and runtime type information via automati

ode generation in C++. Journal of Objet Oriented Programming, 6(4):34{

42, July/August 1993.

[63℄ The OMG Group. C language mapping spei�ation. http://www.omg.org/

gi-bin/do?formal/99-07-35, 1999. (OMG formal/99-07-35).

[64℄ W.T. Hardgrave. Positional versus keyword parameter ommuniation in

programming languages. ACM SIGPLAN Noties, 11(5):52{58, May 1976.

[65℄ Robert Harper, Brue F. Duba, and David MaQueen. Typing �rst-lass

ontinuations in ML. In Conf. Reord 18th Ann. ACM SIGPLAN-SIGACT

Symp. on POPL 91, Orlando, FL, January 1991.

134

[66℄ C.A.R. Hoare. Hints on programming language design. ACM Symposium on

Priniples of Programming Languages, pages 1{30, 1973.

[67℄ C.A.R. Hoare. ACM Turing Award Letures. The �rst twenty years 1966{

1985, hapter The emperor's old lothes. ACM Press/Addison-Wesley Pub-

lishing Co., 1987.

[68℄ Rihard C. Holt, Andreas Winter, and Andy Sh�urr. GXL: Toward a standard

exhange format. In Seventh Working Conferene on Reverse Engineering,

pages 162{171, Brisbane, Queensland, Australia, November 2000.

[69℄ IEEE. IEEE Std 1003.1-2001 Standard for Information Tehnology |

Portable Operating System Interfae (POSIX) Base De�nitions, Issue 6,

2001.

[70℄ Samuel Harbison III and Guy Lewis Steele Jr. C A referene manual. Prentie

Hall, 5th edition, 2002.

[71℄ International Organization For Standardization, International Eletroteh-

nial Comission, Intermetris In. Annotated Ada Referene Manual, v6.0

edition, Deember 1994. ISO/IEC 8652:1995.

[72℄ Jaakko J�arvi. Tuple types and multiple return values. C/C++ Users' Journal,

19:24{35, August 2001.

[73℄ Jaakko J�arvi and Bjarne Stroustrup. Mehanisms for querying types of ex-

pressions: deltype and auto revisited. Tehnial Report N1571, Proposal

to the C++ Standard Committee.

[74℄ Xing Jin. Intensional C ompiler. http://i.s.uvi.a/~jinxing/i.

[75℄ Mark P. Jones. Type lasses with funtional dependenies. In Proeedings of

the 9th European Symposium on Programming Languages and Systems, pages

230{244, 2000.

[76℄ Rihard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised

5

Report on the Algorithmi Language Sheme. ACM SIGPLAN Noties,

33(9):26{76, 1998.

135

[77℄ Brian W. Kernighan. A desent into Limbo. http://www.vitanuova.om/

inferno/papers/desent.html.

[78℄ Brian W. Kernighan and Dennis M. Rithie. The C Programming Language.

Prentie Hall, �rst edition, 1978.

[79℄ Gregor Kizales, Jim Des Rivi�eres, and Daniel G. Bobrow. The Art of the

Metaobjet Protool. The MIT Press, 1991.

[80℄ Jorgen Lindskov Knudsen. Advanes in Exeption Handling Tehniques, vol-

ume 2022 of Leture Notes in Computer Siene, hapter Fault Tolerane and

Exeption Handling in BETA, pages 1{17. Springer-Verlag, 2000.

[81℄ Donald E. Knuth. Strutured programming with go to statements. ACM

Computing Surveys, 6(4):261{301, Deember 1974.

[82℄ Andrew Koenig. C traps and pitfalls. Tehnial report, Bell Labs, July 1986.

CSTR #123.

[83℄ Balahander Krishnamurthy, editor. Pratial reusable UNIX software. John

Wiley & Sons, In., 1995.

[84℄ Thomas S. Kuhn. The Struture of Sienti� Revolutions. University of

Chiago Press, 1962.

[85℄ K. L�aufer and M. Odersky. Self-interpretation and reetion in a statially

typed language. In Pro. OOPSLA Workshop on Reetion and Metalevel

Arhitetures. ACM, Otober 1993.

[86℄ Doug Lea. User's Guide to the GNU C++ Library (version 2.0), April 1992.

[87℄ Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kristen Nygaard.

Objet-oriented programming in the BETA programming language. ACM

Press/Addison-Wesley Publishing Co., 1993.

[88℄ Barbara Liskov. A history of CLU. ACM SIGPLAN Noties, 28(3):133{147,

1993.

136

[89℄ John Maddok and Steve Cleary. C++ type traits. Dr. Dobb's Journal,

Otober 2000.

[90℄ Jan Messershmidt and Reinhard Wilhelm. Construtors for omposed ob-

jets. Computer Languages, 7(2):53{59, 1982.

[91℄ James G. Mithell, William Maybury, and Rihard Sweet. Mesa language

manual (version 5.0). Teh. Report CSL-79-3, Xerox Palo Alto Researh

Center, Palo Alto, CA, USA, April 1979.

[92℄ R. P. Mody. C in eduation and software engineering. ACM SIGCSE Bulletin,

23(3), September 1991.

[93℄ P.J. Moylan. The ase against C. Tehnial Report EE9240, Centre of Indus-

trial Control Siene, Department of Eletrial and Computer Engineering,

University of Newastle, Australia, July 1992.

[94℄ Frank Mueller and David B. Whalley. Avoiding unonditional jumps by ode

repliation. In Proeedings of the ACM SIGPLAN 1992 onferene on Pro-

gramming language design and implementation, pages 322{330. ACM Press,

1992.

[95℄ Nathan C. Myers. Traits: a new and useful template tehnique. http:

//www.antrip.org/traits.html.

[96℄ Matthias Neubauer and Mihael Sperber. Down with Emas Lisp: dynami

sope analysis. In Proeedings of the sixth ACM SIGPLAN international

onferene on Funtional programming, pages 38{49, 2001.

[97℄ W. W. Peterson, T. Kasami, and N. Tokura. On the apabilities of while,

repeat and exit statements. Communiations of the ACM, 16(8):503{512,

Aug 1973.

[98℄ Matt Pietrek. A rash ourse on the depths of Win32 strutured exeption

handling. Mirosoft Systems Journal, January 1997.

[99℄ Rob Pike. How to use the Plan 9 C ompiler. Tehnial report, Computing

Sienes Researh Center, Bell Laboratories, Murray Hill, NJ, USA, 2000.

137

[100℄ Gordon Plotkin. Call-by-name, all-by-value, and the lambda-alulus. The-

oretial Computer Siene, 1:125{159, 1975.

[101℄ Ira Pohl and Daniel R. Edelson. A{Z: C language shortomings. Computer

Languages, 13(2), 1988.

[102℄ Norman Ramsey and Simon Peyton-Jones. A single intermediate language

that supports multiple implementations of exeptions. In Proeedings of the

ACM SIGPLAN 2000 onferene on Programming language design and im-

plementation, pages 285{298. ACM Press, 2000.

[103℄ Jean-Claude Raoult and Ravi Sethi. Properties of a notation for ombining

funtions. Journal of the Assoiation for Computing Mahinery, 30(3):595{

611, 1983.

[104℄ Derek Rayside and Gerard T. Campbell. An Aristotelian understanding of

Objet-Oriented programming. In Proeedings of the onferene on Objet-

oriented programming, systems, languages, and appliations, pages 337{353.

ACM Press, 2000.

[105℄ Martin Rihards and Colin Whitby-Stevens. BCPL { The language and its

ompiler. Cambridge University Press, 1979.

[106℄ Dennis M. Rithie. The development of the C programming language. In

Thomas G. Bergin and Rihard G. Gibson, editors, History of Programming

Languages. ACM, Addison-Wesley Publishing Company.

[107℄ Dennis M. Rithie. Very early C ompilers and language. http://www.s.

bell-labs.om/who/dmr/primevalC.html.

[108℄ Dennis M. Rithie. The development of the C language. In The seond

ACM SIGPLAN onferene on History of programming languages, pages 201{

208. ACM Press, 1993. http://m.bell-labs.om/m/s/who/dmr/hist.

html.

138

[109℄ Eugene J. Rollins. Souregroup: a seletive-reompilation system. In Robert

Harper, editor, Third International Workshop on Standard ML, September

1991.

[110℄ Jim Roskind. LALR(1) C Grammar. http://www.empathy.om/pts/

roskind.html.

[111℄ Tom Shotland and Peter Petersen. Exeption handling in C without C++.

Dr. Dobb's Journal, pages 102{112, November 2000.

[112℄ Ravi Sethi. Uniform syntax for type expressions and delarators. Software|

Pratie and Experiene, 11(6):623{628, June 1981.

[113℄ Andrew Shalit. The Dylan Referene Manual. Apple Press/Addison Wesley,

1996.

[114℄ Mary Shaw, William A. Wulf, and Ralph L. London. Abstration and veri�-

ation in alphard: de�ning and speifying iteration and generators. Commu-

niations of the ACM, 20(8):553{564, 1977.

[115℄ Tim Sheard. Automati generation and use of abstrat struture operators.

ACM Trans. Program. Lang. Syst., 13(4):531{557, 1991.

[116℄ Dorai Sitaram. unwind-protet in portable Sheme. In Matthew Flatt, editor,

Proeedings for the 4th Workshop on Sheme and Funtional Programming,

pages 48{52, University of Utah, November 2003. http://www.s.neu.edu/

home/dorai/uwall/uwall.html.

[117℄ Brian Cantwell Smith. Reetion and semantis in Lisp. In Eleventh An-

nual ACM Symposium on Priniples of Programming Languages, pages 23{35.

ACM, January 1984.

[118℄ Eri S.Raymond, Guy L. Steele Jr., and Rihard Stallman et al. The Jargon

�le. http://www.atb.org/~esr/jargon/.

[119℄ Guy Steele. Growing a language. In OOPSLA '98, Otober 1998. Invited

talk.

139

[120℄ D. Stemple, R. Morrison, G.N.C. Kirby, and R.C.H. Connor. Integrating

reetion, strong typing and stati heking. In 16th Australian Computer

Siene Conferene (ACSC'93), Brisbane, Australia, pages 83{92, 1993.

[121℄ Bjarne Stroustroup. XTI: The extended type information library. Tehnial

report, AT&T Labs { Researh.

[122℄ Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley

Publishing Company, 1994.

[123℄ Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Pub-

lishing Company, 3 edition, 1997.

[124℄ Bjarne Stroustrup. C and C++: Case studies in ompatibility. C/C++

Users' Journal, 20(9):22{31, September 2002.

[125℄ Bjarne Stroustrup. C and C++: Siblings. C/C++ Users' Journal, 20(7),

July 2002.

[126℄ Stefano Tashini, Markus Emmenegger, Henry Baltes, and Jan G. Korvink.

Smart enumeration in C++: virtual onstrution, message dispathing and

tables. Software|Pratie and Experiene, 29(1):67{76, 1999.

[127℄ The Cylone Programming Language Team. Cylone homepage. http://

www.s.ornell.edu/projets/ylone.

[128℄ The GTK+ team. GObjet referene manual (for glib 2.5). http://

developer.gnome.org/do/API/2.0/gobjet/, Marh 2004.

[129℄ Robert D. Tennent. Language design methods based on semanti priniples.

Ata Informatia, 8:97{112, 1977.

[130℄ Hayo Thieleke. Comparing ontrol onstruts by double-barrelled CPS.

Higher-order and Symboli Computation, 15(2/3):141{160, 2002.

[131℄ David Till. Tuples in imperative programming languages. Master's thesis,

University of Waterloo, 1989.

140

[132℄ Andrew Peter Tolmah. Debugging standard ML. PhD thesis, 1992.

[133℄ David R. Tribble. Inompatibilities between ISO C and ISO C++. http:

//david.tribble.om/text/diffs.htm, August 2001.

[134℄ Daveed Vandevoorde. Reetive metaprogramming in C++. Tehnial Re-

port N1471, Proposal to the C++ Standard Committee, April 2003.

[135℄ Ben Werther and Damian Conway. A modest proposal: C++ resyntaxed.

ACM SIGPLAN Noties, 31(11):74{82, 1996.

[136℄ David A. Wheeler. More than a gigabuk: Estimating GNU/Linux's

size. http://www.dwheeler.om/slo/redhat71-v1/redhat71slo.html,

July 2002.

[137℄ Edward D. Willink and Vyaheslav B. Muhnik. Preproessing C++: Sub-

stitution and omposition. iteseer.ist.psu.edu/259759.html.

[138℄ Gregory V. Wilson. Extensible programming for the 21st entury. http:

//www.third-bit.om/~gvwilson/xmlprog.html.

[139℄ Andrew K. Wright. Simple imperative polymorphism. LISP and Symboli

Computation, 8(4):343{355, 1995.

[140℄ W.A. Wulf. BLISS: A language for systems programming. Communiations

of the ACM, 14(12):780{790, Deember 1971.

[141℄ Hongwei Xi and Frank Pfenning. Dependent types in pratial programming.

In Proeedings of the 26th ACM SIGPLAN-SIGACT symposium on Priniples

of programming languages, pages 214{227. ACM Press, 1999.

141

Appendix A

Miselaneous failities

C8 ontains a number of minor features that ease the task of programming, or

failitate the reading and maintenability of C8 programs. These are extended

numeri literals and ompound literals for the initialization of omplex strutures.

A.1 Numeri Literals

In the interest of ease of readability and inspired in a similar feature found in Ada,

undersores embedded within a numerial onstant are allowed. As most ultures

have a similar onstrut, usually in the form of a omma or a period, this addition

makes reading and typing long onstants easier. This form of literals is invalid in

C, so the addition is bakwards ompatible. All numeri literal forms in C99 are

allowed in C8. Examples:

143

2 147 483 648 // deimal onstant

56 ul // deimal unsigned long onstant

0 377 // otal onstant

0 x � �; // hexadeimal onstant

0x ef3d aa5 / * hexadeimal onstant * /

3.141 592 654 / * oating point onstant * /

10 e +1 00 / * oating point onstant * /

0x �.�; // hexadeimal oating point

0x 1.�� �� p 128 l // hexadeimal oating point long onstant

Sequene of undersores, or undersores at the beginning or end of a sequene of

digits are not permitted in numeri onstants. Notie that 2, or 2 , for example,

are valid identi�er names. A numeri pre�x may end with an undersore; a numeri

in�x may begin and/or end with an undersore; a numeri suÆx may begin with

an undersore. For example, the otal 0 or hexadeimal 0x pre�x may end with

an undersore: 0 377 or 0x �; the exponent in�x E may start or end with an

undersore 1.0 E10, 1.0E 10 or 1.0 E 10. Type suÆxes U, L, et., may start with

an undersore: 1 U, 1 ll or 1.0E10 f.

A.2 Initializers

The C language did not use to have denotations for most aggregates (unions, arrays

and strutures), a situation that drove programmers to assign values to their mem-

bers in a one-by-one fashion, a pratie that is tedious, error-prone and that an

obsure the intent of the program, by interleaving initialization ode with the rest of

the algorithm. These onerns beome speially important when sparse aggregates

are used in a program, whih is often the ase, but they do with high frequeny in

several problem domains, for example, numerial analysis.

In view of this situation, the C99 ommittee deided to inorporate some form

of ompound literals in the data initialization sublanguage, probably inspired by

the of a designated initializers extension inluded in the g ompiler. Although

144

these additions an be pereived as mere syntati sugar, ompound denotations

an expedite ompilation and even run-time eÆieny, sine (with a proper imple-

mentation) aggregate assignments an be done with little or no analysis, whereas

the alternative element-wise assignment, almost ertainly done with nested loops,

an only be optimized by some non-trivial data-ow analysis [90℄.

C89 initializers onsist of lists of salar literals or ompile-time onstant expres-

sions (another C99 extension allows these expressions to be non-onstant). The

idea behind these lists is to represent visually the approximate layout of the objet

in memory. In C99, eah element of the initializer list an be optionally designated,

that is, identi�ed by either a name or a number. This identi�er must orrespond

to the names of one of the aggregate members of the aggregate being initialized,

or, in the ase of arrays, a number (a single number, sine no \sliing" is allowed)

within its boundaries.

Designated and non-designated initializers an be freely intermixed. The exat

result of eah initializer spei�ation depends on the kind of entity being initialized.

In the ase of an strut, a positional initializer following a designated one will

orrespond to the position immediately after that of the designated initializer. C8

allows for designated initializers, and extends the designator faility to inlude tuple

designations.

145

