
� C++ Monitoring, Visualization and Debugging
Annotated Reference Manual

Preliminary Draft

Version 1.0

Peter A. Buhr and Martin Karsten c
�

1993, 1995

November 15, 1996

Contents

Preface 1

1 Framework 3
1.1 Introduction . 3
1.2 Framework . 3
1.3 Statistical Monitoring . 4
1.4 Exact Monitoring . 5
1.5 Implicit/Explicit Monitoring and Visualization . 5
1.6 Debugging/Debugger . 5
1.7 � C++ MVD Toolkit . 5
1.8 Organization . 6

2 Implicit Statistical Monitoring 7
2.1 Kernel Display . 7
2.2 Cluster Display . 7
2.3 Task Display . 7

3 Exact Monitoring 11
3.1 Model . 11
3.2 Event Ordering . 12
3.3 Producer-Consumer Example . 13
3.4 Task Trace . 14
3.5 Monitor Trace . 14
3.6 Semaphore Trace . 17
3.7 Coroutine Trace . 17
3.8 Event Information . 19

3.8.1 Thread-Ready Event . 19
3.8.2 Synchronization Event . 21

4 Working with X Window/Motif 23
4.1 Structure of X . 23
4.2 X Window System and � C++ . 23
4.3 X Window Callbacks and C++ . 24
4.4 The � X Package . 25

iii

iv CONTENTS

5 Explicit Statistical Monitoring 29
5.1 Watcher Object . 29
5.2 Sampler Object . 30
5.3 Coding Conventions . 32
5.4 Animated Bounded Buffer Example . 32

5.4.1 Display Widget . 32
5.4.2 Buffer Sampler . 33
5.4.3 Visual Bounded Buffer . 33
5.4.4 Driver . 34

6 Debugger 39
6.1 Before Starting kdb . 39
6.2 Accessing kdb . 39
6.3 Interface . 39
6.4 Starting kdb . 39
6.5 Terminating kdb . 40
6.6 Reusing kdb . 40
6.7 Main Window . 40

6.7.1 uTask list . 42
6.7.2 uCluster list . 42
6.7.3 uProcessor list . 43
6.7.4 Control Buttons . 43

6.8 Task Window . 43
6.8.1 Control Buttons . 44
6.8.2 Backtrace . 44
6.8.3 Commands . 46
6.8.4 Breakpoint Selection . 46
6.8.5 Examining a Running Task . 47

6.9 Thread Groups . 48
6.9.1 Operational Group Window . 49
6.9.2 Behavioural Group Window . 49

7 Miscellaneous 51
7.1 Contributors . 51

A Numeric Sampler 53

B Visual Bounded Buffer Widget 55

Bibliography 57

Index 58

Preface

The goal of this work is to provide a framework and a set of tools in that framework to help understand the
dynamic execution of concurrent programs. The dynamic execution of concurrent programs is significantly
more complex than in sequential programs; understanding that complexity is aided by monitoring, visual-
ization and debugging tools. Furthermore, a concurrent program introduces new kinds of errors, such as
race-conditions, livelock and deadlock, that do not occur in a sequential program. This work provides tools
to monitor and visually display how much parallelism is actually occurring in a concurrent program, and
other tools to determine how and why a concurrent program failed.

This manual is strictly a reference manual for monitoring, visualization and debugging in � C++. A reader
should have an intermediate knowledge of X/Intrinsic/Motif windows and concurrency to understand all the
ideas presented in this manual as well as some experience programming in � C++.

This manual contains annotations set off from the normal discussion in the following way:

�
Annotation discussion like this is quoted with quads.

�

An annotation provides rationale for design decisions or additional implementation information. Also a
chapter or section may end with a commentary section, which contains major discussion about design alter-
natives and/or implementation issues.

Each chapter of the manual does not begin with an insightful quotation. Feel free to add your own.

1

2 CONTENTS

Chapter 1

Framework

1.1 Introduction

A framework is presented and a set of tools in that framework to help understand the dynamic execution
of concurrent programs and debug them. A holistic view is taken to understanding a concurrent program
by providing a number of different capabilities. Furthermore, by adopting a toolkit approach, both users
and implementors of the concurrency system can use the same tools to build monitoring, visualization and
debugging capabilities.

The toolkit is built around � C++ [BS95], which is an extended version of C++ providing light-tasking
facilities using a shared-memory model. Most of the ideas presented here are language independent, and
thus, are applicable to a large number of concurrent and non-concurrent languages. Finally, this work is
based in UNIX1, using X/Intrinsic/Motif because of their current popularity and availability.

1.2 Framework

The following three components form the framework:

Monitoring is the process of asynchronously (or synchronously) collecting information about a program’s
execution, which can be displayed during the program’s execution or afterwards. When monitoring a
sequential program, it is generally true that the monitoring does not change the data values generated
or the order that the values are generated. However, the non-determinism and temporal aspects of
concurrency make it impossible to monitor a concurrent program without affecting its execution.
Hence, as soon as a probe is attached to monitor behaviour, the probe affects the system it is measuring
so that the system may not behave as it did before the probe was attached, called the probe effect. At
best, a designer of monitoring tools can only strive to minimize probe effects.

Both statistical and exact monitoring capabilities are needed. Statistical monitoring is done by peri-
odically probing a target program’s memory from a separate task. This form of monitoring provides
imprecise information about a program, but has a lower probe effect than exact monitoring. Ex-
act monitoring requires that the target program generate events whenever interesting operations occur.
This form of monitoring provides precise information about the program, but has a much higher probe
effect.

Monitoring may be on data or events, where data monitoring show a variable as it changes and event
monitoring show when an event has occurred. Data monitoring can be considered as event monitoring,

1UNIX is a registered trademark of AT&T Bell Laboratories

3

4 CHAPTER 1. FRAMEWORK

where the event is assignment to the variable; however, it is the value that is important and not the fact
that the assignment occurred.

Both statistical and exact monitoring can be done implicitly and explicitly, i.e., the monitoring is per-
formed automatically by the underlying runtime system or the user explicitly is involved in specifying
the monitoring.

Visualization is the process of displaying monitored information in a concise and meaningful way. The
raw monitored data can be presented directly as a sequence of data values; however, there is usually
too much data for people to interpret and comprehend. Instead, the raw data is transformed into
another form that allows large amounts of data to become comprehendable. For example, displaying
data in the form of a graph may allow large amounts of information to be understood at a glance.
Just as some graphs can represent multiple dependent and possibly independent variables [Tuf83,
p. 40], so can a visualization display represent multiple values and events. As more information is
represented by a single display, the more complex the display becomes, and usually, the more difficult
it is for a user to understand the display and comprehend its meaning. Colour is often an essential
element of visualization because it provides yet another mechanism for condensing and differentiating
information in a display.

Debugging is an interactive process where a program can be stopped, restarted and executed stepwise. The
program’s data can be looked up and modified when the program is stopped. When debugging a
sequential program, this process is synchronous between the debugger and the target. However, for
debugging a concurrent program, control and manipulation mechanisms have to be provided indepen-
dently for every thread of control. Debugging affects the execution of a concurrent program in the
same way monitoring does. This influence is partly determined by the requests of the programmer de-
bugging the application. Hence, there is a similar motivation to minimize the influence that is caused
by user requests.

It is true that monitoring and visualization can be used to help debug a program. However, both
monitoring and visualization can be used for other purposes, e.g., to help optimize an algorithm or
program, and therefore, are orthogonal issues to debugging.

1.3 Statistical Monitoring

In general, a program generates too many data values and too many events occur during execution to be of
interest to or understood by a programmer. A programmer can often tell if a program is working according
to its design simply by examining its general behaviour. For example, are approximately the right number of
tasks created, blocked, or destroyed at approximately the right time? A program’s general behaviour can be
shown by statistically sampling its execution. For example, program profilers, like gprof [GKM82], provide
information about execution “hot spots” by sampling the current execution location. Execution hot spots
can then be examined as possible locations for optimization to improve program performance. Statistical
information may be valuable for debugging a new algorithm or simply to understand the differences among
algorithms (that are already debugged). Statistical sampling can often be done without having to insert
code in an application so sampling can be done on existing execution modules. Furthermore, the probe
effect may be lessened on multiprocessor shared-memory architectures as the sampling can occur on a
separate processor (special sampling hardware can also be used). The drawback to statistical sampling is
that important events may occur between sampling, and hence, be missed.

In a concurrent program, a statistical examination of tasks that form a program, can tell a programmer
about the level of concurrency that is provided by a particular algorithm or by different data manipulated by
an algorithm. Statistical feedback about the communication among tasks can also be extremely informative.

1.4. EXACT MONITORING 5

1.4 Exact Monitoring

Exact monitoring is sampling with the guarantee that all events of a particular kind are observed. Exact
monitoring are often necessary to find concurrency errors like race conditions or event sequences that lead
to deadlock. As a result, exact monitoring is often considered a debugging technique; however, it is useful
for other purposes. For example, knowing an exact sequence of events can explain why one algorithm
provides more concurrency than another. The drawback with exact monitoring is that enormous amounts
of data may be generated. Handling this data invariably increases the probe effect, hence making it more
difficult to observe just those events that are trying to be captured by collecting exact events (catch-22).

Because large amounts of information are generated, it is usually post-processed. Post-processing has
advantages like multiple replay and reverse replay. However, because of the volume of information, facilities
must exist to elide irrelevant information or search for particular kinds or patterns of event sequences.

1.5 Implicit/Explicit Monitoring and Visualization

In general, it does not seem possible to provide totally automated monitoring and visualization. That is,
no visualization system can anticipate all the different ways that users will want to collect and display their
information. Therefore, tools must be directly available to users so they have the freedom to experiment with
different approaches. On the other hand, some predefined facilities can be provided so that casual users do
not have to become experts to produce simple animation components. Therefore, a monitoring/visualization
system is best designed as a toolkit, which provides capabilities at a variety of levels.

This toolkit allows users to participate in the design activity by providing their own tools. Users can
easily build their own monitoring and displaying tools from existing tools. Furthermore, these same tools
are available to the system implementors to build low-level monitoring and visualization tools for the runtime
kernel.

1.6 Debugging/Debugger

The definition of debugging used here encompasses debugging by a traditional interactive debugger, such as
dbx or gdb. This process involves an interactive session where the debugger is used to control the execution
of an application program by stopping its execution, examining it, possibly changing it, and restarting its
execution so the cycle can begin again. A symbolic debugger provides the additional capability to refer
to data storage using variable names, and refer to code using file names and statement numbers from the
original source program.

Unfortunately, most interactive debuggers do not work with concurrent programming languages or en-
vironments (some exceptions are pdbx on the Sequent and dbx on the SGI machines). With shared memory
concurrency, the debugger must know about the multiple stacks that exist for the objects with independent
execution states and deal with setting breakpoints in a single code image shared by these objects. Debugging
each of these objects is done sequentially, but the debugger must be able to concurrently present sessions
for multiple threads of control and provide mechanisms to handle them independently. With non-shared
memory concurrency, the debugger must handle multiple independent address spaces, possibly on different
machines, which often requires interaction with the operating system.

1.7 � C++ MVD Toolkit

The � C++ Monitoring, Visualization and Debugging (MVD) toolkit supports the following facilities:

6 CHAPTER 1. FRAMEWORK

� There is a general facility to construct statistical monitoring tools. These monitoring tools can be
connected to a (currently small) set of Motif visualization tools to display the monitored results. The
statistical monitoring and visualization can occur in real-time or monitored data can be written to a file
for post-processing visualization. A user may explicitly indicate in a program the variables that are to
be monitored and possibly how they are visualized. There is also an implicit visualization capability
to monitor the � C++ runtime kernel.

� There is an exact monitoring facility that is connected to a powerful post-processing event-replay
facility [Tal92]. All � C++ objects can have certain critical events traced by simply compiling the
program with an appropriate flag.

� There is a symbolic debugger that understands multiple shared-memory execution states. It concur-
rently presents sessions for an arbitrary number of tasks in a � C++ program and allows independent
control of each task. As well, it provides facilities to look up local data relative to any task’s execution
stack. Currently, it has limited support to control non-shared memory applications.

1.8 Organization

This manual discusses implicit statistical and implicit exact monitoring first to allow users to use the mon-
itoring and visualization tools as quickly as possible. Only minimal effort is required to learn how to
manipulate the displays that are implicitly generated. Next explicit statistical and explicit exact monitor-
ing are covered. These concepts require substantially more understanding because of the additional user
involvement. Finally, the debugger is discussed.

Chapter 2

Implicit Statistical Monitoring

By including file:
#include "/u/usystem/software/MVD/src/uKernelSplr.h"

after <uC++.h>, implicit monitoring and visualization of the � C++ kernel is presented. The runtime monitor
is built using the same facilities detailed in Chapter 5. The only additional capability of the � C++ runtime
sampler is that it is allowed to reference variables internal to the runtime system, which are normally hidden.

2.1 Kernel Display

The � C++ runtime system groups tasks and processors together into entities called clusters (see “ � C++ An-
notated Reference Manual”). When the application begins execution, a list of clusters in displayed (left
window in Figure 2.1). On a uniprocessor there is only one cluster, called the uSystemCluster. The slider
at the top of the window dynamically controls the sampling and display frequency of the information in the
window. The polling and display frequencies are combined because there is no state that is saved on each
poll; the cluster list simply traversed and displayed.

2.2 Cluster Display

By selecting a cluster from the list of clusters, detailed information about that cluster’s execution is pre-
sented. For example, cluster uSystemCluster has been selected (indicated in reverse video in the left win-
dow) and its detailed information is shown in the right window in Figure 2.1. The lower portion of the
right window shows the tasks currently executing on the cluster (left column) and which tasks are actually
executing on processors (right column). The first five tasks are administrative tasks and tasks fred, mary, and
john are user tasks. Task uWatcher is currently executing. (The example was run on a uniprocessor). The
slider at the top of the window dynamically controls the sampling and display frequency of the information
in the window. The polling and display frequencies are combined because there is no state that is saved on
each poll; the cluster list simply traversed and displayed.

2.3 Task Display

By selecting a task from the list of clusters, detailed information about that task’s execution is presented. For
example, tasks uMain and uWatcher have been selected (indicated in reverse video in the left column) and
their detailed information is shown in the right window in Figure 2.2. The sliders at the top of the window
dynamically controls the sampling and display frequency of the information in the window. The polling and
display frequencies are separate because there is state, stack high-water mark and task status information,

7

8 CHAPTER 2. IMPLICIT STATISTICAL MONITORING

Figure 2.1: Cluster Displays

that is saved on each poll. By polling at a high frequency, more precise stack high-water mark and task
status information is acquired.

Figure 2.2: Task Displays

A task display shows the status of the task’s stack and execution status; more information may be added.
The stack display shows the size of the stack the last time the task performed a context switch (bottom
number in the column). This value is displayed in a range from 0 to the task’s maximum stack size. As well,
there is a high-water mark indicator showing the maximum amount of stack space observed thus far (top
number in the column). This information is useful for setting the amount of stack space for a task. If a task
is using most of its stack, it could be increased. A task can exceed its stack limit between samples so just
because a task’s high-water mark has not exceeded the maximum do not assume the stack size is sufficient.

The status display shows the percentage of time a task spends in the running, ready and blocked states,
respectively. This information indicates which tasks are performing most of the work and can be used
to determine if a group of tasks are achieving expected levels of concurrency. Task uMain is spending
approximately half of its time in the ready and blocked state. Task uWatcher is spending all of its time in the
running state. On a uniprocessor, all tasks except uWatcher will have zero running state because the kernel
watcher is always running when it invokes the task samplers so a task sampler cannot see its task running.
On a multiprocessor, where the kernel watcher is on a separate processor, task displays will show all three

2.3. TASK DISPLAY 9

states.

10 CHAPTER 2. IMPLICIT STATISTICAL MONITORING

Chapter 3

Exact Monitoring

By compiling an entire program with the -trace compilation flag, i.e., all translation-units, events are gen-
erated for several fundamental � C++ operations. These events are implicitly generated from the user’s per-
spective because no code has to be written to cause their generation. Events for a particular object form a
trace of the operations performed by or to that object. These events are collected and possibly filtered by a
collector task and then sent to the � C++ event tracer [Tal92] (see Figure 3.1).

application

collector event
tracer

terminal

tracer
event

display

Figure 3.1: Event Tracer Structure

The event tracer may be on the same or a different computer; hence the link to the event trace may be
through shared memory or over a communication channel. The event tracer organizes the events it receives
and displays the event information in a graphical form, with traced objects on one axis and relative time
along the other axis. No knowledge of the event tracer is required to understand this discussion. (See the
document “Hermes Debugger Prototype–User Documentation” for a detailed explanation of all the features
and options available for displaying event information.)

3.1 Model

Everything that happens in a � C++ program is done by the threads of tasks; the current tracing model focuses
on the activities of the threads within a program. In particular, thread movement among certain objects are
closely followed. For example, when one � C++ task calls a member routine in another, the callee is seen
blocking to accept the call, and the caller is seen petitioning for entry, moving into and then out of the callee,
after which the callee’s thread is seen to continue execution.

Currently, the following objects are traced in � C++: tasks, monitors, semaphores, coroutines and mutex
coroutines. Only certain operations on these objects generate events: for mutex objects, all interactions with
mutex members are indicated in the trace; for coroutines, all interactions with the coroutine body are traced.
Calls to non-mutex members and members of coroutines that do not resume the coroutine do not generate

11

12 CHAPTER 3. EXACT MONITORING

events nor do calls to free routines. Generating events for all calls would provide too much information in
an object’s trace, much of it unrelated to concurrent or coroutine execution.

Figure 3.2 shows part of an example trace for a disk, disk scheduler and several disk clients. Funda-
mentally, the current tracing model follows the activities of threads from creation, as they move through
traceable objects, and finally destruction. Each traceable object has its own trace-line in the event display.
Along any particular section of the trace-line, the form of the line indicates the status of threads, if any,
within the traceable object. When a traceable object contains a ready thread, its trace-line is solid. When a
traceable object contains only threads that are blocked, its trace line is dashed. A trace line is blank when
its object contains no threads.

Figure 3.2: Disk Scheduler Trace

In general, events that cause a thread to block are displayed with an empty square , and events that
cause a thread to be made ready are displayed with a filled square . Special cases exist for the creation and
destruction of traceable objects; both creation and destruction events are indicated with an empty square,
which is consistent for a task because its thread is blocked at these times. Also, the initial starting and final
stopping of a task’s thread are indicated with a filled square, stating that the thread is ready to execute its
main() member routine or its destructor routine, respectively.

A thread moves from one object to another by invoking a member routine of the other object; for mutex
objects, a thread may be blocked at the call to a member routine because another thread is using that object.
Whenever a call is made to a mutex object, a petition to enter is indicated with an empty circle . Once a
thread is admitted, it is seen to transfer from one trace line to another; it transfers back when the member
routine returns. Thread transfers are indicated by an arrow perpendicular to the trace-lines. An arrow
originates and ends with filled circles .

One traceable object is always present in every display, uMain. The uMain task is internal to � C++; a
user always supplies the body of this task, uMain::main(), and thus the uMain thread is always present.

3.2 Event Ordering

Events are places along a trace line based on relative, not absolute time. That is, events to the left of a
particular event occur before it and events to the right (or below) occur after it. In general, the events are

3.3. PRODUCER-CONSUMER EXAMPLE 13

evenly spaced along a trace line and the distance between them does not reflect the amount of time between
the events. Similarly, events on different trace lines have no time relationship. For example, task uMain
appears to terminate at the same time or before all other traced objects, when in fact it is always the last
object to be terminated. By imagining the trace lines as being elastic, it is possible to imagine stretching the
trace line for uMain so that it is always longer than any other trace lines.

Partial orderings between trace lines occur because of synchronization events (event and the arrows
between the trace lines). At a synchronization point, all events to the left of that point along both trace lines
occurred before the synchronization. Similarly, all events to the right of a synchronization point along both
trace lines must occur after the synchronization.

3.3 Producer-Consumer Example

The following four programs illustrating tracing of tasks, monitors, semaphores and coroutines, respec-
tively. The examples, and in particular their explanations, are intended to be read in the order in which they
are presented. All four example programs are solutions to a producer-consumer problem. The first three
programs all use a bounded buffer between the producer and consumer tasks to provide some asynchrony.
Since the producer and consumer tasks are the same for all three of the different bounded buffers, that code
is shown only once in Figure 3.3. The fourth producer-consumer solution uses coroutines, which have no
concurrency, so there is no buffer. In all the examples, a single element is generated by the producer and
given to the consumer.

uTask prod {
buffer &buf; // reference to shared buffer
void main() {

buf.query(); // check status of buffer
buf.insert(3); // insert an element

}
public:

prod(buffer &b) : buf(b) {}
};

uTask cons {
buffer &buf; // reference to shared buffer
void main() {

buf.remove(); // remove an element
}

public:
cons(buffer &b) : buf(b) {}

};

void uMain::main() {
buffer b; // create bounded buffer task
cons c(b); // create consumer task
prod p(b); // create producer task

}

Figure 3.3: Producer-Consumer Tasks

14 CHAPTER 3. EXACT MONITORING

3.4 Task Trace

The first example program (see Figure 3.4) illustrates interactions among tasks, which is visualized in Figure
3.5. Tasks c, of type cons, and p, of type prod, make calls to task b, of type buffer. Notice that the trace-lines
for tasks c, p, and b are named according to the object type, rather than according to the variable itself;
hence, multiple instances of the same traceable type have the same trace-line name (unless each object is
given an individual name using uSetName). To aid in debugging, the address of each object is printed after
it. These addresses can be used with a debugger to examine the individual instances.

The creation of tasks, and the starting of their threads, is indicated by the empty and filled squares at
the beginning of the trace-lines. The trace-line is dashed between these two events, indicating the thread
is blocked. After the filled square, the trace-line is solid, indicating the thread is ready. During the ready
period, tasks c and p call task b’s members buffer::insert() and buffer::remove(), respectively. Since b is a
mutex object and insert and remove are mutex routines, entry is not immediate. Task c and p must first
petition for entry, and wait for admission; the petition is indicated by the empty circle on the cons and prod
trace-lines. Following the empty circle, the line is dashed, indicating that the thread is blocked waiting for
entry. Finally, notice that prod::main() makes a call to a non-mutex member, buffer::query(). Because query
is a non-mutex member, it cannot affect a thread, and hence, there is nothing in the trace about this call.

Task b’s first action is to accept a call to its members insert and remove. (The accept of ~buffer is
discussed later.) The acceptance is indicated by the empty square on the buffer trace-line, and following the
acceptance event, the trace-line is dashed since b’s thread is blocked. Eventually, task p gains admission to
task b, which is indicated by an arrow from the prod trace-line to the buffer trace-line. This arrow indicates
the transfer of task p’s thread into task b.

Having gained permission to execute task b, task p’s thread executes the member routine buffer::insert(),
which is indicated by the solid line along the buffer trace-line. Using the caller’s thread to execute a mutex
member is an artifact of the implementation of � C++ [HN80]. The completion of buffer::insert() by p’s
thread is indicated by an arrow from the buffer trace-line to the prod trace-line, where p continues to execute
(continued solid line), terminates its main() routine, has its destructor executed, and is destroyed.

Task b now continues execute after p’s call has completed. This continuation is indicated by first re-
stating that the task is blocked (dashed line along the buffer trace-line), then the re-start (filled square) and
finally continued execution (solid trace-line). Task b now accepts calls to either its insert or remove member
routines, which blocks it (indicated by the empty square). The process is now repeated for task c, which has
been blocked since its petition to enter b (dashed line along the cons trace-line). After the call to remove by
c, task c stops and is destroyed. Finally, task b accepts a call to its destructor (made implicitly at the end of
the block in which b is declared), and it too stops and is destroyed.

Note that the task uMain is created, started, stopped and finally destroyed, as indicated by the top trace-
lines in the display, but took no part in the rest of the program.

3.5 Monitor Trace

The second example program (see Figure 3.6) illustrates interactions of tasks with a monitor, which is
visualized in Figure 3.7. In this case, tasks c and p make calls to a monitor b, of type buffer. As before, note
that traceable objects are labelled with their class types rather than their variable names.

The creation of the tasks, and the starting of their threads, is indicated as before by the empty and filled
squares at the beginning of the trace-lines. However, a monitor does not have a thread so its creation is
marked with an empty square and there is a blank trace-line and no starting indicator. Both tasks c and p
petition to enter the monitor, but the mutual exclusion property of the monitor only allows one thread in the
monitor at a time.

3.5. MONITOR TRACE 15

#include <uC++.h>

uTask buffer {
int front, back; // position of front and back of queue
int count; // number of used elements in the queue
int elems[5];

public:
buffer() { front = back = count = 0; }
uNoMutex int query() { return count; }
void insert(int elem) { elems[back] = elem; }
int remove() { return elems[front]; }

protected:
void main() {

for (;;) {
uAccept(~buffer) {

break;
} uOr uWhen(count != 5) uAccept(insert) {

back = (back + 1) % 5;
count += 1;

} uOr uWhen(count != 0) uAccept(remove) {
front = (front + 1) % 5;
count -= 1;

} // uAccept
} // for

}
};

#include "ProdConsTasks.cc"

Figure 3.4: Task Buffer

Figure 3.5: Task Trace

16 CHAPTER 3. EXACT MONITORING

#include <uC++.h>

uMonitor buffer {
int front, back; // position of front and back of queue
int count; // number of used elements in the queue
int elems[5];

public:
buffer() { front = back = count = 0; }
uNoMutex int query() { return count; }
void insert(int elem);
int remove();

};

void buffer::insert(int elem) {
if (count == 20) uAccept(remove); // no calls to insert
elems[back] = elem;
back = (back + 1) % 20;
count += 1;

}

int buffer::remove() {
if (count == 0) uAccept(insert); // no calls to remove
int elem = elems[front];
front = (front + 1) % 20;
count -= 1;
return elem;

};

#include "ProdConsTasks.cc"

Figure 3.6: Monitor Buffer

Figure 3.7: Monitor Trace

3.6. SEMAPHORE TRACE 17

Task c gains entry first (indicated by an arrow from the cons trace-line to the buffer trace-line), checks
if there is a data value (indicated by the solid line), and then blocks waiting for a call to insert because there
is no data in the buffer (indicated by the empty square). Task p now gains entry (indicated by an arrow from
the prod trace-line to the buffer trace-line), drops off a value (indicated by the solid line), leaves the monitor
(indicated by an arrow from the buffer trace-line to the prod trace-line), stops execution and is destroyed.
Task c now continues in the monitor, which is indicated by first restating that the task is blocked (dashed line
along the buffer trace-line), then the re-start (filled square) and finally continued execution (solid trace-line),
where task c picks up the data left by task p. Finally, task c leaves the monitor (indicated by an arrow from
the buffer trace-line to the cons trace-line), stops execution and is destroyed.

3.6 Semaphore Trace

The third example program (see Figure 3.8) illustrates interactions of tasks with counting semaphores, which
is visualized in Figure 3.9. In this case, tasks c and p make calls to a buffer b using semaphores to provide
mutual exclusion and synchronization. As before, note that traceable objects are labelled with their class
types rather than their variable names.

The creation of the tasks, and the starting of their threads, is indicated as before by the empty and filled
squares at the beginning of the trace-lines. However, class buffer is not a mutex object so it does not have a
trace-line; instead, the two semaphores within it have trace-lines. When a task calls the P or V routines of a
semaphore, it petitions for entry into the semaphores as for a mutex member of a task or monitor. Task c calls
the P routine of semaphore full (indicated by an arrow from the cons trace-line to the uSemaphore trace-
line), executes in the P routine (solid trace-line), and blocks because the semaphore count is 0 (indicated by
the empty square).

Task p calls the P routine of semaphore empty (indicated by an arrow from the prod trace-line to the
uSemaphore trace-line), executes in the P routine (solid trace-line), returns (indicated by an arrow from
the uSemaphore trace-line to the prod trace-line), and continues execution (solid trace-line). Because
semaphore empty is non-zero, task p does not block. Next task p calls the V routine of semaphore full
(indicated by an arrow from the prod trace-line to the uSemaphore trace-line), executes in the V routine
(solid trace-line), returns (indicated by an arrow from the uSemaphore trace-line to the prod trace-line), and
continues execution (solid trace-line). Because the V routine never blocks, calls to it always have this form.
Task p then stops and is destroyed.

Task c now continues execution after task p unlocks the semaphore full on which it was blocked. This
continuation is indicated by first restating that the task is blocked (dashed line along the uSemaphore trace-
line), then the re-start (filled square) and finally continued execution (solid trace-line). Task c now returns
(indicated by an arrow from the uSemaphore trace-line to the cons trace-line), and continues execution
(solid trace-line). Next task c calls the V routine of semaphore empty (indicated by an arrow from the cons
trace-line to the uSemaphore trace-line), executes in the V routine (solid-trace-line), returns (indicated by
an arrow from the uSemaphore trace-line to the cons trace-line), and continues execution (solid-trace-line).
Task c then stops and is destroyed.

3.7 Coroutine Trace

The fourth example program (see Figure 3.10) illustrates interactions of coroutines, which is visualized in
Figure 3.11. (Actually, there are two program traces in this visualization and each is discussed separately).
Like a monitor, a coroutine does not have its own thread, but it does have an execution-state, like a task. In
the case of task interactions with other tasks or monitors, the task’s thread always executes using its own
execution-state. When a task interacts with a coroutine, the task’s thread may execute with the coroutine’s

18 CHAPTER 3. EXACT MONITORING

#include <uC++.h>
#include <uSemaphore.h>

class buffer {
int front, back; // position of front and back of queue
int count; // number of used elements in the queue
uSemaphore full, empty; // synchronize for full and empty buffer
int elems[5];

public:
buffer() : full(0), empty(5) { front = back = count = 0; }
int query() { return count; }
void insert(int elem) {

empty.uP(); // wait if queue is full
elems[back] = elem;
back = (back + 1) % 5;
count += 1;
full.uV(); // signal a full queue space

}
int remove() {

int elem;

full.uP(); // wait if queue is empty
elem = elems[front];
front = (front + 1) % 5;
count -= 1;
empty.uV(); // signal empty queue space
return(elem);

}
};

#include "ProdConsTasks.cc"

Figure 3.8: Semaphore Buffer

Figure 3.9: Semaphore Trace

3.8. EVENT INFORMATION 19

execution-state. It is the transfers of a thread to and from a coroutine’s execution-state, called a context
switch, that is visualized for coroutines.

A context switch from a task’s execution-state to the coroutine’s execution-state occurs when a corou-
tine’s member-routine executes a uResume statement and the thread transfers to the coroutine’s last suspen-
sion point (often in main() routine). The thread then continues executing from that point using the coroutine’s
execution-state. Another context switch occurs when the coroutine’s main() routine executes a uSuspend
statement; control returns back to the point of the last resumption and the thread of the calling task is now
executing on its own execution-state. A context switch between execution-states is visualized by an arrow
between trace-lines. For example, an arrow from an object to the trace-line of a coroutine indicates that the
coroutine has been resumed.

Mutex coroutines are more complicated because the call to the coroutine’s member routine has to first
petition for entry, then it can attempt to resume the coroutine’s main() routine. While the petition to enter
the mutex coroutines is indicated in the event trace (empty circle), only the context switch is indicated by an
arrow between trace lines. Hence, if the mutex coroutine’s member-routine does not resume the coroutine,
the trace shows a petition to enter a mutex object but no transfer of thread to the particular mutex coroutine.
Currently, there is no obvious way to display both a mutex entry call and a coroutine resumption without
having coroutine member routines as traceable entities.

The first four trace lines of Figure 3.11 describe a no-mutex coroutine example. For the first time, task
uMain’s is explicitly involved. After all the objects have been created and started, the uMain task calls the
start member of coroutine p, which resumes the coroutine (indicated by an arrow from the uMain trace-line
to the prod trace-line). p’s main() routine calls the member routine delivery in coroutine c, which resumes
coroutine c (indicated by an arrow from the prod trace-line to the cons trace-line).

c’s main() routine suspends back to the point of last resumption implicitly (indicated by an arrow from
the cons trace-line to the prod trace-line) when its main() routine terminates (indicated by the empty square).
p’s main() routine suspends back to the point of last resumption implicitly (indicated by an arrow from the
prod trace-line to the uMain trace-line) when its main() routine terminates (indicated by the empty square).
Task uMain now stops and is destroyed.

The next four trace-lines of Figure 3.11 describe the execution of the coroutine example program
changed so that coroutine cons is a mutex coroutine. The lower traces are identical to the upper traces
except for the addition of a petition (indicated by the empty circle) when coroutine p calls cons::delivery(),
since cons::delivery() is now a mutex member.

3.8 Event Information

Each event display element (, , ,) can be clicked on and a popup window appears containing additional
information about that particular event. For example, clicking on the start-event () at the beginning of the
trace line for the consumer task in Figure 3.7:

cons(0xab1e0)
�

thread start [cons(0xab1e0), #1]

The event type is thread start, the object associated with the event is buffer, and this event is the second
event for buffer (numbered from zero).

3.8.1 Thread-Ready Event

A thread-ready event is generated when a blocked task is restarted. For example, clicking on a thread-ready
event () along the trace line for monitor bounded-buffer in Figure 3.7 produces:

thread ready "cons(0xab1e0)" [buffer(0xab2d0), #5]

20 CHAPTER 3. EXACT MONITORING

#include <uC++.h>

uCoroutine cons {
int elem;

void main() { /* consume elem */ }
public:

void delivery(int e) {
elem = e;
uResume; // restart cons::main

}
};

uCoroutine prod {
cons &c;

void main() { c.delivery(5); }
public:

prod(cons &c) : c(c) {}
void start() { uResume; } // restart prod::main

};

void uMain::main() {
cons c; // create consumer
prod p(c); // create producer
p.start();

}

Figure 3.10: Coroutine Producer/Consumer

Figure 3.11: Coroutine Producer/Consumer Traces

3.8. EVENT INFORMATION 21

The additional information in quotes is the name of the object restarted in the monitor. Thus, even if an
object’s delay point is off the trace window, it is possible to determine the particular object that restarted.

3.8.2 Synchronization Event

A synchronization event is generated when a thread transfers to and from a mutex object. For example,
clicking on a synchronization event () along the trace line for the producer task in Figure 3.7 produces:

�

thread enter "insert" [prod(0xab0f0), #3]

The additional information in quotes is the name of the mutex member routine in the buffer called by the
consumer task. Clicking on any synchronization event that begins a thread transfer (thread enter or leave)
indicates the name of the mutex member routine called or being returned to.

22 CHAPTER 3. EXACT MONITORING

Chapter 4

Working with X Window/Motif

X Window/Motif were chosen for the basic visualization platform because of their current popularity and
availability. Most of the ideas presented here would work equally well with other visualization toolkits, e.g.,
the xview toolkit or the athena widget set.

4.1 Structure of X

Version 11, release 6 of the X Window System is the first release intended to support client applications
that work in a multi-threaded environment. See “Xlib - C Language X Interface” and “X Toolkit Intrinsics
- C Language Interface”, which are both distributed with the X Window System, for a detailed description
on how to create concurrent client applications. X provides an abstract locking interface that can be imple-
mented by any system- or user-level thread library. In general, locks in X are owner locks, i.e., they can
be re-acquired by the thread of control that currently holds the lock, but they have to be released exactly as
often as they were acquired.

At the Xlib level, multiple connections to the X server can be created and used concurrently, and multiple
threads of control can access the same connection. Automatic fine-grain locking is done internally by the
Xlib library. At the X Toolkit Intrinsics level (Xt), multiple application contexts can be created, each of
which has internal display connections. In general, locking at this level is done on the basis of application
contexts. Additionally, a global lock for the whole application can be used by widget developers, if global
data has to be protected.

The Xt is designed to use an event loop and callbacks. That is, an application program passes control
to X (by calling XtAppMainLoop), after it has built its windows and installed its callback routines. X then
waits for events either from the user’s terminal or other sources, such as timers, and it either invokes internal
code, e.g., puts down a menu, and/or it interacts with the application code by invoking the specified callback
routines.

The new X locking mechanisms can be used in various ways but the most common approach is the
following. A dedicated thread of control is used to receive events from the X server and dispatches them to
other objects. Concurrently, other threads can call X/Xt library routines to change application values.

4.2 X Window System and � C++

While the X client libraries are configured to work with the thread libraries of multiple vendors, some
additional changes were required to make them compatible with � C++. As a first step, wrapper routines are
planted, so that the X libraries, which are programmed in C, can internally use the uLock and the uCondition

23

24 CHAPTER 4. WORKING WITH X WINDOW/MOTIF

classes of � C++. This enables cooperation with the basic scheduling and lightweight-blocking mechanisms
of � C++.

When using a vendor’s kernel thread package, blocking I/O only blocks the thread of control that calls
the appropriate operating system routine, for example select. Since � C++ provides user-level threads, its
special lightweight-blocking I/O library must be used to achieve the same effect. Therefore, calls to the
uSelect member routine of the uIOCluster are implemented in the X source code (by using wrappers from
� C++ to C) at places where usually select is called. A dedicated uIOCluster object (see [BS95] for a descrip-
tion) is created in an X application, because the X libraries use data that is private to each UNIX process,
like file descriptors, etc. A class uXwrapper is provided which migrates a task to this cluster when an object
is created, and migrates it back when the object is destroyed. This class can be used for automatic migration
in every routine that calls X library routines, like in:

#include <uXlib.h>

Display *dpy;

void createInterface() {
uXwrapper dummy; // automatic migration
dpy = XOpenDisplay(NULL);
// . . .

} // automatic migration back on destruction of dummy

In a � C++ application, timer interrupts are used to realize preemptive scheduling. Certain UNIX system
calls return a failure value and set the error number, if a timer interrupt occurs while the system call is
executed. This is partly handled in the Xlib, except for initialization of the socket connection with the X
server. To prevent obscure error messages, preemption of � C++ is turned off, whenever a connection is
established. Again, this mechanism is planted into the Xlib using wrappers from � C++ to C.

Unfortunately, to this end, the Motif widget library is not reentrant. Therefore, every call that accesses a
Motif widget has to be explicitly made mutual exclusive for the whole application and the internal locking
mechanisms of the Intrinsics library are largely obsolete. This can be seen in the the following example:

#include <uC++.h>
#include <uXlib.h>
#include <X11/Intrinsic.h>

Widget my_widget;
XtApplicationContext app;

void changeValue(int x) {
XtAppLock(app);
XtProcessLock();
XtVaSetValues(my_widget, XmNvalue, x, NULL);
XtProcessUnlock();
XtAppUnlock(app);

}

4.3 X Window Callbacks and C++

The following coding convention was developed for working with X callbacks in C++. Callbacks are C
routines (C linkage) that are dynamically registered with X and subsequently invoked by X when particular
X-window events occur, such as a button press on the mouse or screen. This is the mechanism that X uses
to interact with an application. The following coding conventions allow C++ applications that interact with

4.4. THE � X PACKAGE 25

X to still be written in an object-oriented style.
The conventions are as follows:

� All widget definitions should be defined as a class and that widget’s callback routines should be
private static members, as in:

class widget {
int foo;
void bar() { . . . }
static xxxCB(Widget widget, widget *This, XmAnyCallbackStruct *call_data) {

This->foo = 3;
This->bar();

}
public:

. . .
};

Making the callback routines static members reduces global name-space pollution and a static member
routine is treated as a non-member routine so its address can be passed to X routines that are written
in C (i.e., static member routines do not have an implicit this parameter).

� When installing a callback routine, as in:

widget w;
XtAddCallback(w, XmNactivateCallback, xxxCB, this);

the last argument is a pointer to client data that is passed to the callback routine’s second parameter.
The convention requires that the last argument must always be the value of this, and hence, the second
parameter to a callback routine is always a pointer to the type of class that contains the callback
routine. Furthermore, the name of the second parameter should be This. Following this convention
allows the callback routine to access all the data and routines in the containing widget class as if it
was actually a member routine of the widget class (albeit explicitly through the This pointer). For
example, in callback routine xxxCB, members foo and bar are both accessed through the This pointer.

Figure 4.1 shows a program that uses the coding conventions to handle its callback routines.

4.4 The � X Package

A collection of classes is available to simplify the task of interacting with X and Motif under � C++. By
including file:

#include <uXlib.h>

after <uC++.h>, the basic cooperation is enabled and the class uXwrapper can be used for automatic migra-
tion (see Section 4.2). Additionally, the file

#include <uXmlib.h>

can be included to access classes to support using Motif: uXmwrapper and uXmCBwrapper. As stated
previously, Motif is not thread-safe and mutual exclusion must be acquired before any operation can safely
by invoked on Motif widgets. Additionally, if a task calls any X routine to send a request to the X server,
this request is buffered in the library. If changes shall become visible immediately, the buffer has to be
flushed. All this complexity is hidden within uXmwrapper, as well as migration. That is, if an object of
uXmwrapper is created at the beginning of a routine, the task is migrated, the necessary locks are acquired
and on destruction of the object the library’s event buffer is flushed. The above example then looks like:

26 CHAPTER 4. WORKING WITH X WINDOW/MOTIF

#include <uC++.h>
#include <uXlib.h>
#include <uXmlib.h>

Widget my_widget;

void changeValue(int x) {
Xmwrapper dummy(my_widget);
XtVaSetValues(my_widget, XmNvalue, x, NULL);

}

When a callback routine is called, the lock for the application context and the global lock are acquired.
If a callback contains a call to a mutex member of a task, this can lead to deadlock situations, if the task
also tries to acquire the X locks to perform any changes in the interface. To handle this situation, the
uXmCBwrapper class can be used to release the owner locks temporarily and re-acquire them on destruction
of the object as in the following example:

#include <uC++.h>
#include <uXlib.h>
#include <uXmlib.h>

uTask fred {
void main();

public:
void request(int from);

}

fred f;

class MyWidget {
int id;
static void anyCallback(Widget w, MyWidget *This, XmAnyCallbackStruct *call_data) {

XmCBwrapper dummy(w);
f.request(This->id);

}

One should be aware that between creation and destruction of a callback wrapper no lock is held and
therefore, no call can safely be made that accesses Motif data. Additionally, a routine uXmAppMainLoop is
provided that performs the necessary locking when Motif is used and replaces the usual XtAppMainLoop. In
traditional X programming, the single thread of control passes control to X after it has initialized X and built
a series of widgets. There are many kinds of problems that are not amenable to the event-loop programming
style. In fact, virtually all concurrent applications are not amenable to this style because the application does
not want to block waiting for X events. Instead, the concurrent application has other work to do and the X
interface is only one component of this work. Therefore, the routine Uxmappmainloop can be called from a
dedicated task object.

For convenience, the � X toolkit provides an additional server, called uServerXtShell, which is an in-
stance of:

4.4. THE � X PACKAGE 27

class uXtShellServer {
public:

uXtShellServer();
~uXtShellServer();

Widget XtCreateApplicationShell(const char *title, String fallBacks[] = NULL);

void XtMainLoopBlock();
void XtMainLoopNonBlock();
void XtMainLoopWait();

}; // uXtShellServer

extern uXtShellServer *uServerXtShell;

This server is globally available to � C++ programs that interact with X. The server shell operations are:

XtCreateApplicationShell – creates a new shell widget under which a new widget hierarchy can be cre-
ated. This routine handles the special case of initializing X/Intrinsic on the first call.

XtMainLoopBlock – acts similarly like the usual XtAppMainLoop. Control is passed to X and the routine
eventually returns, when the user interface is destroyed.

XtMainLoopNonBlock – create a dedicated task that executes the main loop. The caller task continues
execution.

XtMainLoopWait – waits for the task created with XtMainLoopNonBlock to finish execution. This can be
used to synchronize with the destruction of the user interface.

28 CHAPTER 4. WORKING WITH X WINDOW/MOTIF

#include <uC++.h>
#include <uIOStream.h>
#include <uXmlib.h>
#include <uXtShellServer.h>

#include <Xm/Xm.h>
#include <Xm/MainW.h>
#include <Xm/PushB.h>

class uPushMeWidget {
static void uQuitCB(Widget widget, uPushMeWidget *This, XmAnyCallbackStruct *call_data) {

XtDestroyWidget(This->shell); // destroy parent and all its subwidgets
} // uPushMeWidget::uQuitCB

static void uPushMeCB(Widget widget, uPushMeWidget *This, XmPushButtonCallbackStruct *call_data) {
uCout << "Please don

�

t tread on me" << endl;
} // uPushMeWidget::uPushMeCB

Widget shell;
public:

uPushMeWidget(Widget shell) : shell(shell) {
Widget mainWindow = XtVaCreateManagedWidget("main", xmMainWindowWidgetClass, shell,

XmNwidth, 150, XmNheight, 75,
NULL);

XmString quitTitle = XmStringCreateSimple("Quit");
Widget menuBar = XmVaCreateSimpleMenuBar(mainWindow, "menuBar",

XmVaCASCADEBUTTON, quitTitle,
�

Q
�

,
NULL);

XmStringFree(quitTitle);
XtManageChild(menuBar);
XtAddCallback(XtNameToWidget(menuBar, "button_0"), XmNactivateCallback,

(XtCallbackProc)uQuitCB, this);
define uPushMeTitle "Tread on me"

Widget uPushMe = XtVaCreateManagedWidget("uPushMe", xmPushButtonWidgetClass, mainWindow,
XtVaTypedArg, XmNlabelString, XmRString, uPushMeTitle, sizeof(uPushMeTitle),
NULL);

XtAddCallback(uPushMe, XmNactivateCallback, (XtCallbackProc)uPushMeCB, this);
} // uPushMeWidget::uPushMeWidget

}; // uPushMeWidget

void uMain::main() {
Widget shell = uServerXtShell->XtCreateApplicationShell("uPushMeTest");
{

uXmwrapper dummy(shell);
uPushMeWidget pmw(shell);
XtRealizeWidget(shell);

}
uServerXtShell->XtMainLoopBlock();
uCout << "Quitter!" << endl;

} // uMain::main

// Local Variables: //
// tab-width: 4 //
// compile-command: “u++-work -g uPushMe.cc -I/u/usystem/software/visualization/inc -I/u/usystem/software/visualization/X11R6/include -I/opt/SUNWmotif/include -L/u/usystem/software/visualization/lib -L/u/usystem/software/visualization/X11R6/lib -R/u/usystem/software/visualization/X11R6/lib:/opt/SUNWmotif/lib /u/usystem/software/visualization/lib/uVisual-d.a -lXm -lXt -lX11 -luX -lSM -lICE -lgen” //
// End: //

Figure 4.1: C++ Callback Coding Style

Chapter 5

Explicit Statistical Monitoring

Explicit statistical monitoring requires a detailed understanding of the low-level structure provided by the
� C++ MVD toolkit. Explicit monitoring is performed by two kinds of objects: watcher and sampler objects.
Figure 5.1 shows how watchers and samplers cooperate to produce a display. Both the watcher and sampler
objects need to be fairly small and fast because they may be probing an application at a high frequency.

data �

application

data �

data �

watcher �

sampler �

sampler �

sampler �

terminal

display �

display �

display �

Figure 5.1: Watcher/Sampler Structure

5.1 Watcher Object

A watcher is a task that manages an event list of user-specified sampler objects. At specified intervals, the
watcher invokes a sampler object on its event list, and that sampler then inspects part of the application and
possibly displays the inspected data. Multiple watchers can be created if the number of samplers is large
and/or the sampling frequencies are high; normally a single watcher is sufficient. A watcher is least invasive
on machines with multiple processors where the watcher can execute on a separate processor independent of
the application. On a single processor machine, a watcher can only be expected to produce a coarse-grained
view of the application. Nevertheless, this still can be useful in many cases. The watcher is provided by the
� C++ monitoring toolkit and its interface is:

uTask uWatcher {
public:

void add(uBaseSampler &sampler); // add sampler to event list
void remove(uBaseSampler &sampler); // remove sampler from event list

};

29

30 CHAPTER 5. EXPLICIT STATISTICAL MONITORING

The member routines add and remove a sampler to/from the watcher’s event list, respectively. Normally,
these routines are called by the constructor and destructor of a sampler, respectively.

5.2 Sampler Object

A sampler inspects data values in an application and possibly displays the inspected data. A sampler has two
basic operations: poll memory in a particular way to determine some relevant information, and display that
information in some useful format. These two operations are invoked by the watcher object that a sampler
is associated with. In detail, a sampler indicates to the watcher the frequency in microseconds at which
its polling and display operations are invoked. These two frequencies may be different. A sampler must
be derived from class uBaseSampler to ensure it has the necessary member routines that are called by the
watcher:

class uBaseSampler {
protected:

int pollFreq, displayFreq; // poll and display frequency
public:

uBaseSampler(uWatcher &w, const int pollFreq, const int displayFreq);
virtual void poll() = 0; // called by watcher
virtual void display() = 0; // called by watcher
void pause(); // stop sampling temporarily
void resume(); // restart sampling

};

The sampler is associated with watcher w, which calls the sampler’s poll member at frequency pollFreq and
display member at frequency displayFreq.

The following generic sampler preforms simple sampling of a numeric memory value:

template<class T> class uNumSampler : public uBaseSampler { // T requires: 0, =, >, <, +, /, <<
public:

uNumSampler(uWatcher &w, // watcher where sampler resides
int pollFreq, // polling frequency
int displayFreq, // display frequency
T &locn, // location to be sampled
char *name, // widget title
T dialMin, // absolute minimum
T dialMax, // absolute maximum
T zero, // zero value for type T
uNumGaugeTL::GaugeType gauge // initial gauge type

);
void poll();
void display();

}; // uNumSampler<T>

This sampler examines a numeric object at memory location locn. To make the numeric sampler generic it
is necessary to pass a value corresponding to zero for the type T.1 This simple sampler maintains a running
average of the sampled values at location locn as well as the minimum and maximum values. Appendix A
shows the complete generic numeric sampler.

The generic sampler uNumSampler is used in the following way to sample numeric values in a program:

1This is an artifact of the C++ type system.

5.2. SAMPLER OBJECT 31

void uMain::main() {
uWatcher w; // create watcher
int i; // target variable
uNumSampler<int> sd(w, 50000, 500000, i, "i", 0, 50000, 0, uNumGaugeTL::digital),
sb(w, 50000, 500000, i, "i", 0, 50000, 0, uNumGaugeTL::bargraph),
ss(w, 50000, 500000, i, "i", 0, 50000, 0, uNumGaugeTL::speedometer);

for (i = 0; i <= 50000; i += 1) uDelay(); // delay necessary on a uniprocessor
} // uMain::main

In this example, a watcher is created with three samplers for variable i each displaying the value of i in a
different format. (On a multiprocessor, the watcher is automatically created on a separate processor to reduce
the probe effect.) When the program is run, the variable i is displayed in three different formats: digitally, as
a bar graph, and as a speedometer, as illustrated in Figure 5.2. In the bargraph, the minimum, average and

Figure 5.2: Different Numeric Displays: digital, bar graph, speedometer

maximum values appear in the left column, while the current value appears in the right column. The spacing
of the values between the top and bottom of the window shows the relative location of the values between
the absolute minimum and maximum (0-50000). In the speedometer, there are pointers to the minimum,
current, and maximum values and the current value is also displayed digitally at the bottom-centre of the
speedometer (the average value is not displayed). Since, the current and maximum values are the same for i,
the current and maximum pointer are displayed on top of one another, and hence, appear as a single pointer
line. Normally, it is unnecessary to create three samplers to obtain three views of a variable because the
pull-down menu, Display Format, allows any of the three display forms to be changed dynamically to
digital, bar graph or speedometer.

A sampler can be written to sample any data structure and generic samplers can be constructed for com-
mon types of data structures so many users will never have to write a sampler. For example, uNumSampler
samples any type that has the operations, = > < + / <<, and a 0 (zero) constant. One important aspect of
this design is that the sampling frequency and the display frequency are independent. This feature allows
filtering of large numbers of values while still being able to capture peak values. For example, the minimum
and maximum values can be sampled at a high rate, but writing to the display may only be done every
1/30 of second because that is the refresh rate of the display device. ([] report that a refresh rate as slow
as 1/10 of a second is sufficient for people to perceive smooth motion.) A sampler can also greatly reduce
the display updates by not sending an event if the value(s) have not changed. Furthermore, a sampler can
dynamically control its poll and display frequency by adjusting the values of the protected variables pollFreq
and displayFreq of the base class uBaseSampler. For example, the longer it has been since a change oc-

32 CHAPTER 5. EXPLICIT STATISTICAL MONITORING

curred in a value being probed, the less urgent it is to probe again. Finally, it is a sampler’s responsibility to
deal with non-atomic data structures. For example, when updating a binary tree, there may be a short time
interval when the tree is disconnected and a sampler that is probing the tree must be prepared to deal with
this. Such samplers must be very pessimistic about the object they are examining and very robust in their
probing algorithms. For example, a simple precautionary measure when sampling is to check that a pointer
is within the address space before dereferencing it.

Thus, users can write their own samplers or use one of the the predefined samplers. We hope to enlarge
the current suite of samplers and displayers as time permits.

5.3 Coding Conventions

Additional coding conventions are used in the construction of samplers and their display widgets. These
conventions follow directly from the X/C++ conventions discussed in Chapter 4. A sampler passes its address
to its display widget, just as and the widget does to its callbacks, and the callbacks to X. This approach allows
the object receiving the address to communicate back to its creator. In Figure 5.3, these pointers allow the
top communication lines from right to left. (even though the pointers go the other direction). As well, each
creator maintains a pointer to the object it created to allow the bottom communication lines from left to
right. Hence, there is bidirectional communication among the objects used as follows: output flows from
the sampler to the widget to X; input flows from X to the callback to the widget to the sampler and possibly
to the watcher.

watcher widgetsampler X

callbacks

Figure 5.3: Coding Conventions

5.4 Animated Bounded Buffer Example

The following example visualizes the effect of inserting a bounded buffer between a producer and consumer
task using synchronous communication (see Figure 5.4). The buffer is size 100 and the number of elements
in the buffer is displayed by a horizontal slider (0 on the left). Feedback controls are provided to adjust
the speed of the producer and consumer tasks. These controls adjust random delay cycles, with the random
number generated around an average with a particular standard deviation. By playing with the delay controls,
it is possible to see that the buffer fills or empties if the speed of the producer and consumer varies only
slightly or their speed fluctuates significantly. There are 4 basic components to the animated bounded buffer:
display widget, buffer sampler, visual bounded buffer, driver; each is discussed separately.

5.4.1 Display Widget

While the display widget is the most complex of the components, this results from all of the calls to X to
build the display. Since this manual is not an X manual, the details of the display only appear in Appendix
B and are not discussed. Only the interface to the display widget is Figure 5.5 is relevant to this discussion.

There are 5 callback routines corresponding to the quit button and 4 sliders. While the quit button halts
the program, the slider values have to be available to the driver so it can adjust its execution. Each callback

5.4. ANIMATED BOUNDED BUFFER EXAMPLE 33

Figure 5.4: Animated Bounded Buffer

routine has a This parameter, whose value is an instance of the class that contains them. The constructor
receives the title for the display and the size of the buffer, which is used to set the maximum size of the
buffer slider (horizontal slider). There are 4 get routines to retrieve the values returned from the sliders to
adjust the producer and consumer tasks and one set routine to move the buffer slider to the current number
of items in the buffer.

5.4.2 Buffer Sampler

Figure 5.6 shows the sampler that periodically samples the size variables in the monitor and updates the
display widget accordingly. The sampler’s constructor has the same first 5 parameters as the numeric sam-
pler, uNumSampler, followed by the size of the monitor’s buffer to set the horizontal slider. The constructor
uses these parameters to initialize the base sampler, location to be sampled, and display widget, respectively.
The constructor and destructor add and remove the sampler to/from the watcher in the appropriate manner.
The poll routine makes a copy of the buffer’s current size and the display routine displays this value in the
widget’s horizontal slider. Finally, the 4 get routines return the values of the sliders directly from the display
widget.

5.4.3 Visual Bounded Buffer

Figure 5.7 shows the enhancements to an existing generic bounded buffer implemented as a monitor. The
visual bounded buffer inherits the insert and remove routine from the base monitor, and all the variables
needed to manage the buffer. The base monitor is extended with watcher and sampler variables, along with
4 get routines to obtain the values from the display sliders. The visual buffer’s constructor initializes the
base buffer, widget and sampler, respectively. (Notice that the watcher is initialized in the constructor’s
initialization list even though it does not require any initialization arguments. This is because the sampler
depends on the watcher, and hence, the watcher must be initialized first. By appropriately ordering the
variables in the constructor’s initialization list, it is possible to control the ordering of initialization.) The
monitor variable count is passed to the sampler, pcsampler, as the variable to be sampled. This variable
contains the number of items in the bounded buffer.

34 CHAPTER 5. EXPLICIT STATISTICAL MONITORING

#include "uXserver.h"

class uProdConsWidget {
static void QuitCB(Widget widget, uProdConsWidget *This, XmAnyCallbackStruct *call_data);
static void prodStdWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void prodAvgWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void consStdWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void consAvgWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);

Widget parent, bufScaleWD;
const int NumDecPts = 2;
float prodStd, prodAvg, consStd, consAvg;

public:
uProdConsWidget(const char *title, int bufSize);
virtual ~uProdConsWidget();

float getProdStd() {
return prodStd;

} // uProdConsWidget::getProdStd

float getProdAvg() {
return prodAvg;

} // uProdConsWidget::getProdAvg

float getConsStd() {
return consStd;

} // uProdConsWidget::getConsStd

float getConsAvg() {
return consAvg;

} // uProdConsWidget::getConsAvg

void setValue(int val);
}; // uProdConsWidget

Figure 5.5: Display Widget

5.4.4 Driver

Figure 5.8 shows the driver program using the visual bounded buffer between a producer and consumer task.
The only additions over a non-visual bounded buffer are the two calls to uDelay before and after the calls
to insert and remove, respectively. These two delay calls read the current values of the appropriate sliders
associated with the buffer display and then delay the producer or consumer task for some appropriate period
of time.

5.4. ANIMATED BOUNDED BUFFER EXAMPLE 35

#include "uBaseSplr.h"
#include "uProdConsWD.h"

class uProdConsSampler : public uBaseSampler {
const int &locn;
int curr;
uProdConsWidget pcWD;

public:
uProdConsSampler(uWatcher &w, // watcher where sampler resides

const int pollFreq, // polling frequency
const int displayFreq, // display frequency
const int &locn, // location to be sampled
const char *title, // widget title
int bufSize) : // buffer size
uBaseSampler(w, pollFreq, displayFreq), locn(locn), pcWD(title, bufSize) {

w.add(*this); // add sampler to watcher
�

s event list
} // uProdConsSampler::uProdConsSampler

~uProdConsSampler() {
if (!paused) { // check if already removed from watcher

�

s event list
w.remove(*this); // remove sampler from watcher

�

s event list
} // if

} // uProdConsSampler::~uProdConsSampler

void poll() {
curr = locn; // get current value

} // uProdConsSampler::poll

void display() {
pcWD.setValue(curr); // display current value

} // uProdConsSampler::display

float getProdStd() {
return pcWD.getProdStd();

} // uProdConsSampler::getProdStd

float uProdConsSampler::getProdAvg() {
return pcWD.getProdAvg();

} // uProdConsSampler::getProdAvg

float uProdConsSampler::getConsStd() {
return pcWD.getConsStd();

} // uProdConsSampler::getConsStd

float uProdConsSampler::getConsAvg() {
return pcWD.getConsAvg();

} // uProdConsSampler::getConsAvg
}; // uProdConsSampler

Figure 5.6: Buffer Sampler

36 CHAPTER 5. EXPLICIT STATISTICAL MONITORING

#include "/u/usystem/software/collection/src/uBoundedBuffer.h"

template<class ELEMTYPE> uMonitor VisualBoundedBuffer : public uBoundedBuffer<ELEMTYPE> {
uWatcher w;
uProdConsSampler pcsampler;

public:
VisualBoundedBuffer(const int size = 10) :

uBoundedBuffer<ELEMTYPE>(size),
w(), pcsampler(w, 50000, 100000, count, "Bounded Buffer", size) {

} // VisualBoundedBuffer::VisualBoundedBuffer

uNoMutex float getProdAvg() {
return pcsampler.getProdAvg();

} // VisualBoundedBuffer::getProdAvg

uNoMutex float getProdStd() {
return pcsampler.getProdStd();

} // VisualBoundedBuffer::getProdStd

uNoMutex float getConsAvg() {
return pcsampler.getConsAvg();

} // VisualBoundedBuffer::getConsAvg

uNoMutex float getConsStd() {
return pcsampler.getConsStd();

} // VisualBoundedBuffer::getConsStd
}; // VisualBoundedBuffer

Figure 5.7: Visual Bounded Buffer

5.4. ANIMATED BOUNDED BUFFER EXAMPLE 37

#include <math.h>

inline double UniformRand(void) {
return (double)(rand() % 10000 + 1) / (double)10000;

} // UniformRand

inline double ExpRand(double Average) {
return - (double)Average * log(UniformRand());

} // ExpRand

inline double HypExpRand(double Average, double Std) {
if (UniformRand() < (double)Std) {

return ExpRand(1.0) * ((double)Average / (2 * (double)Std));
} else {

return ExpRand(1.0) * ((double)Average / (2 * (1 - (double)Std)));
} // if

} // HypExpRand

uTask producer {
VisualBoundedBuffer<int> &buf;
void main() {

uFloatingPointContext fpcxt;
for (;;) {

uDelay((int)HypExpRand(buf.getProdAvg(), buf.getProdStd())); // spend time producing
buf.insert(rand() % 100 + 1); // insert item into queue

} // for
} // producer::main

public:
producer(VisualBoundedBuffer<int> &buf) : buf(buf) {
} // producer::producer

}; // producer

uTask consumer {
VisualBoundedBuffer<int> &buf;
void main() {

uFloatingPointContext fpcxt;
for (;;) {

int item = buf.remove(); // remove from front of queue
uDelay((int)HypExpRand(buf.getConsAvg(), buf.getConsStd())); // spend time consuming

} // for
} // consumer::main

public:
consumer(VisualBoundedBuffer<int> &buf) : buf(buf) {
} // consumer::consumer

}; // consumer

void uMain::main() {
srand(getpid()); // set random number seed
VisualBoundedBuffer<int> buf(100); // create a buffer monitor
{

consumer cons(buf); // create a consumer tasks
{

producer prods(buf); // create producer tasks
}

}
} // uMain::main

Figure 5.8: Animated Bounded Buffer: Driver

38 CHAPTER 5. EXPLICIT STATISTICAL MONITORING

Chapter 6

Debugger

This chapter describes kdb (kalli’s debugger) [Kar95], a multithreaded debugger for debugging multi-
threaded � C++ [BS95] applications. Both uniprocessor and multiprocessor � C++ applications may be de-
bugged. kdb is based on parts of the gdb debugger [SP95], and therefore, some of the commands and their
syntax are the same. While knowledge of gdb is an advantage, it is not essential.

6.1 Before Starting kdb

In order to debugged with kdb, a � C++ application must be compiled with the compilation flags -debug and
-g; -debug is the � C++ default, so normally only -g has to be specified.

6.2 Accessing kdb

To access kdb, the path:
/u/usystem/software/MVD/bin

must be added to the PATH environment variable. This variable is usually initialized in the .cshrc file in a
user’s home directory. Usually, there is a line in .cshrc that looks like:

setenv PATH ‘/bin/showpath $HOME /bin standard‘

This line can be augmented to:
setenv PATH ‘/bin/showpath /u/usystem/software/MVD/bin $HOME /bin standard‘

6.3 Interface

The interface for kdb is based on the X Window System, the X Toolkit Intrinsics and the Motif widget set.
All windows in the interface can be resized from the window manager’s border and the size of components
in a window adapt automatically. Additionally, some windows are subdivided into stacked panes, separated
with a horizontal line with a small box on the right-hand side. By dragging on a pane separator, it is possible
to adjust the vertical size of a pane within a window.

6.4 Starting kdb

The debugger operates as a server at which the application registers as a client (multiple clients are allowed).
Both server and client can be started together using the command:

kdb application-name [application-argument-list]

39

40 CHAPTER 6. DEBUGGER

Connecting the client (application) to an already running server (kdb) is discussed in Section 6.6. Connecting
the server (kdb) to an already running client (application) is discussed in Section 6.7.1.

The debugger’s main window appears when the debugger starts (see Figure 6.1 (a)) and is discussed
in Section 6.7. Notice that button NewTarget is “grayed out” (the affect is more noticeable on a computer
screen), which means that the button is inactive so pressing it does nothing. When the debugger is in
different modes, certain buttons are inactive (insensitive) because they are meaningless in that mode, and
become active (sensitive) again when the debugger’s mode changes.

6.5 Terminating kdb

To terminate kdb, the main window may be closed at any time by using the appropriate mechanism of the
window manager. Each window manager has a pulldown or popup menu with a close option that removes
a window, and when the main window is removed, kdb is terminated. If an application is executing when
kdb terminates, it is released to continue execution normally. Other kdb windows may be closed at any time
through the window manager to remove them from the display without terminating kdb.

6.6 Reusing kdb

After an application finishes execution, kdb is still running and can proceed with a new debugging session
for the same or new application. In fact, because the cost of starting the debugger is fairly large, it is efficient
to use the same debugger instance for multiple debugging sessions.

When the application is finished, the debugger’s main window enters the state shown in Figure 6.1 (b).
The button New Target is now active, and correspondingly, most of the other buttons that deal with the
application are inactive. To start debugging a new application, a user must do both of the following in either
order:

1. click on the New Target button to prepare the debugger for a new application.

2. connect another application to kdb using the command:

kdb_target application-name [application-argument-list]

�
WARNING: It is very common to forget to press the New Target button when trying to start

a new debugging session.
�

6.7 Main Window

When the debugger starts, the main window appears and has 2 panes (see Figure 6.2).

1. The top pane contains dynamic tables of all tasks, clusters and processors1 currently active in the
application.

2. The bottom pane contains controls for debugger interactions. Most of the operations at this level
manage task groups or query global variables.

1Clusters and processors are artifacts of � C++ and not discussed here (see “ � C++ Annotated Reference Manual”).

6.7. MAIN WINDOW 41

(a) Startup Mode

(b) End Mode

Figure 6.1: kdb Modes

42 CHAPTER 6. DEBUGGER

Figure 6.2: Main Window Showing Symbol Lookup

6.7.1 uTask list

The left column in the top pane is a list of all tasks currently active in the � C++ application. Tasks are
identified by their name and memory address in the target application. The default name for a task is its
type name; � C++ allows a user-specified name for a task to be set at any time, but the debugger only uses
the name given when a task is created (either the default type name or a user-specified name passed to the
constructor uBaseTask).

When connected to the debugger, the default action is for each task in the application to stop at the
beginning of its main member routine, unless the Stop Tasks button is toggled. When Stop Task is off,
newly created tasks continue execution immediately.

It is possible to select one or more tasks in the task list by clicking on a task and dragging to select a
group (the Philosopher tasks highlighted are selected in Figure 6.2).

�
Currently, it is not possible to select a non-contiguous set of objects to form a group. This

capability will be provided shortly.
�

6.7.2 uCluster list

The centre column in the top pane is a list of all clusters currently active in the � C++ application. Clusters
are identified by their name and memory address in the application.

There is one operation available for clusters. By double-clicking on an entry in the cluster list, a window
pops up (see Figure 6.3) to control whether the debugger is notified of task migration to and from this
cluster. Selecting Yes means the debugger ignores further task migration and No means the debugger is
notified about further task migration.

Because every migration of a task involves additional overhead during debugging, there can be situ-
ations where ignoring migration improves performance. However, this mechanism should be used only

6.8. TASK WINDOW 43

Figure 6.3: Task Migration Notification Dialog

by experienced � C++ programmers to prevent problems, since the debugger and application are no longer
coordinated.

6.7.3 uProcessor list

The right column in the top pane is a list of all processors (UNIX processes) currently active in the � C++
application. Processors are identified by their UNIX process id and memory address in the application.
(Both processors have the same UNIX process id in Figure 6.2, which means the � C++ application is running
uniprocessor.)

The only operation available for processors is a similar mechanism to ignore migration of processors
among clusters. Again, this is an insecure optimization mechanism that should only be used by experienced
� C++ programmers.

6.7.4 Control Buttons

Individual task information and control is provided through a task window (see Section 6.8), which is created
by selecting a task(s) in the main window and clicking on Inspect, or implicitly pops up when a breakpoint
is encountered for a task. Double-clicking on a single entry of the task list does the same as selecting a task
and clicking on Inspect. The group operation, Continue, continues execution of all tasks of a selected group.
If some of the tasks are already running, the continue request is ignored for these tasks. All other group
operations are accessed through the popup group windows available from buttons Operational Group and
Behavioural Group. Both kinds are discussed in detail in Section 6.9. The New Target button was discussed
in Section 6.6. The Info button pops up a short copyright note. The Command area is for typing in the
following commands:

� [print|p] expression: print global variable names or expressions.

� [attach|a] executable-file process-id : attach kdb to the executable that is already running.

Positioning the cursor in the command box makes it active so a command can be entered; press the Return
key to execute the command. The result of the command appears in the bottom of the pane. If the Pretty Print
button is toggled, complex data is shown in an easier to read structured way but results in longer output. Each
output in the bottom pane is numbered on the left and separated with a row of dashes, so a history of all
output can be scrolled through using the scroll bar on the right of the bottom pane.

6.8 Task Window

A task window appears when a task is inspected from the main window, or a breakpoint is encountered for
a task; it has 2 panes (see examples in Figure 6.4). (Note, this window is similar to the main debugging

44 CHAPTER 6. DEBUGGER

window of xxgdb [CW94].)

1. The top pane displays information about source code. The highlighted line (reverse video) marks the
current statement being executed when stepping through a program, or by clicking on a line, that line
becomes the operand for a command like setting or clearing a breakpoint.

2. The bottom pane contains controls for sequential debugging of a thread and an output area for the
results of certain operations.

A task window begins by showing the last known position of the corresponding task by giving the source
file name and line number (top right of the top pane), and displaying the source code (bottom of the pane)
with the particular line highlighted. Button Stopped Position returns to the last known execution position
from the current selection.

Button Source Files pops up a list of all source files for the program, which can be selected for display
in the top pane (see Figure 6.5). To select a source file, either double-click on its name or click on its name
and OK.

6.8.1 Control Buttons

The control buttons in the bottom pane (see examples in Figure 6.4) are used to control execution of a task.
While some tasks may be blocked by the debugger during the debugging process, all other tasks continue to
execute in real time; these tasks may become application blocked on resources that are held by the debugger
blocked tasks.

To set a breakpoint, position the highlighting bar by clicking on the desired line of code and then click
on Break. A breakpoint is removed by clicking on Clear when the the breakpoint’s location is highlighted.
If there is no breakpoint set at the line, a warning beep is sounded. Clicking the Continue button resumes
execution of the task.

Clicking Next executes a line of source code. If this line contains routine calls, the routines are com-
pletely executed. This is different from Step, which also executes a line of source code, but steps into each
routine call and stops execution at the beginning of the routine. For both Next and Step buttons, a number
can be specified in the corresponding text field beside each button to perform multiple operations.

Clicking on Return Step causes the task to continue execution until the end of the current routine is
reached. Execution stops after the routine call to the just completed routine.

� � C++ inserts code in a � C++ application at the start and end of each mutex member, and
the constructors and destructors of coroutines, mutex objects, and tasks. Therefore, use Next
at the start of these routines to avoid entering the inserted code, which is normally irrelevant
during debugging. If you enter one of the � C++ routines by mistake, use Return Step to finish
the inserted code and continue in the desired routine.

�

6.8.2 Backtrace

The Backtrace button produces a backtrace of the calling stack for the task, which is shown at the bottom
of the pane (see Figure 6.4 (a)). The arrow buttons to the left and right of the label Frame step up and
down the calling stack, respectively, which also causes the appropriate source code for the stack frame to
be displayed in the top pane. While moving up and down the calling stack, routines may be encounters that
were compiled without -g, e.g., system libraries, UNIX signals, � C++ kernel. In this case, a message appears
in the top pane stating this fact; keep pressing the Frame arrows until routines are found that were compiled
with the -g flag.

6.8. TASK WINDOW 45

(a) Backtrace

(b) Symbol Lookup

Figure 6.4: Task Windows

46 CHAPTER 6. DEBUGGER

Figure 6.5: Source File List

6.8.3 Commands

The Command area is for typing in the following commands:

� [print|p] expression: print global variable names or expressions.

� [break|b] [[executable-file]:line-no | function-name] [if simple-expression]: set breakpoint at speci-
fied line (in source file) or function.

The conditional clause, i.e., the if clause, means the breakpoint is only triggered if an applicable task
encounters the breakpoint and the conditional expression is true. The simple-expression is of the form:

integer-[variable
�
constant] [== | != | >= | <= | > | <] integer-[variable

�
constant]

� [clear|c] [[executable-file]:line-no | function-name]: clear breakpoint at specified line (in source file)
or function.

To look up symbol information, the same mechanism is used as in the main window. The difference is
that variable names (or expressions) are evaluated in the scope of the current stack location. For example,
in Figure 6.4 (b), the name this refers to the object on which the class method pickup is invoked. If the
Pretty Print button is toggled, complex data is shown in an easier to read structured way but results in longer
output. Each output in the bottom pane is numbered on the left and separated with a row of dashes, so a
history of all output can be scrolled through using the scroll bar on the right of the bottom pane.

6.8.4 Breakpoint Selection

The Breakpoints button pops up a list of all breakpoints currently set for this task (see Figure 6.6). A
breakpoint is selected by double-clicking on its list entry and the source file containing it appears in the
top pane, positioned at the breakpoint’s location. Additionally, breakpoints can be deleted by clicking on a
breakpoint’s entry in the list and the Clear button of the breakpoint window.

6.8. TASK WINDOW 47

Figure 6.6: Breakpoint List

6.8.5 Examining a Running Task

When a task is running, the task window mode changes to the state shown in Figure 6.7: only the Stop and
Backtrace buttons are active. Clicking Stop stops the task at the next possible location. However, if a task is
currently blocked in the application, e.g., if a task is waiting on the entry queue of a mutex object, the stop
request does not take effect until the task is eventually made active again.

It is possible to monitor the execution of a running task by clicking on the Backtrace button, which gives
a snapshot of the current execution stack for a task (see bottom of Figure 6.7). This capability is especially
helpful if an application runs into a deadlock. If a deadlock occurs, tasks are still running from the debugger’s
perspective, but blocked from the thread system’s perspective. Double clicking on the Backtrace button for a
task enables the frame arrow buttons, making it possible to move up and down a running task’s stack frame.
This operation is safe only when a task is application blocked. Variables of a running task can be looked
up relative to the last known position in the same way as for a stopped task. In this way, it is possible to find
call cycles that lead to the deadlock.

This same facility can be used when an application terminates with an error, such as a task producing
a segment fault. When the error occurs, � C++ prints an error message in the shell where the application is
connected to the debugger, such as:

plg[3]% kdb a.out
philosopher 0 will eat 30 noodles
philosopher 0 is eating 4 noodles leaving 26 noodles
uC++ Run Time Error (UNIX pid:26958) uSigHandlerModule::uSigSegvBusHandler,

addressing error (sigsegv) at location 0x1004730
Error occurred while executing task "Philosopher" (0xd66d0)

As well, the debugger stops all tasks in the application and a window pops up (see Figure 6.8) to con-
trol when the application terminates and produces a core file. Before pressing OK, kdb can be used to
examine all the tasks in the application. In particular, the error message states that the error occurred in
"Philosopher" (0xd66d0), so that task should be inspected. The task is running at the time of the error,
so double clicking on the Backtrace button is necessary to allow moving up the task’s stack. Since the
debugger has stopped all tasks, this is a safe operation. When examination of the application is complete,
clicking OK in the abort window terminates the application.

48 CHAPTER 6. DEBUGGER

Figure 6.7: Task Window Showing Running Task

�
While it is possible to view different source files when a task is running, as soon as the task

encounters a breakpoint, the top pane shows the current stopped location.
�

6.9 Thread Groups

Different kinds of possibly overlapping groups can be formed from selected tasks. However, grouping tasks
together does not affect the ability to control tasks separately; furthermore, task reactions to the commands
issued to a group, such as setting a breakpoint or continuing execution, become visible in each task’s window.

Figure 6.8: Application Abort Dialog

6.9. THREAD GROUPS 49

Figure 6.9: Operational Group Window

6.9.1 Operational Group Window

Tasks can be grouped together and operations can be issued on a group of tasks as a user convenience, rather
than entering multiple commands for each task. Multiple operational group windows can be created, each
defining a different group. A task may appear in any number of operational groups. When an operational
group window is closed, that group is terminated.

Clicking on Operational Group forms a group of all tasks currently selected in the main window (see
selected Philosopher tasks in Figure 6.2), and pops up a window (see Figure 6.9) where commands can be
issued on all tasks that belong to the group. The following commands can be entered in this window and the
corresponding operation is performed on each task in the group:

� [break|b] [[executable-file]:line-no | function-name] [if simple-expression]: set breakpoint at speci-
fied line (in source file) or function.

� [clear|c] [[executable-file]:line-no | function-name]: clear breakpoint at specified line (in source file)
or function.

� stop: stop task execution

� cont: continue task execution

� next [number]: execute number source lines of code (default value for number is 1) not entering
routine calls

� step [number]: execute number source lines of code (default value for number is 1) entering routine
calls

In general, if a command is not applicable to one of the tasks, e.g., stop for an already stopped task, the
command is silently ignored. The upper right area of the group window shows a history of group commands
entered for this operational group. Clicking on a previous command copies it into the enter command area.
Figure 6.9 shows an operational group window where a breakpoint was previously set for each philosopher
task (upper right), and each task is about to be continued.

6.9.2 Behavioural Group Window

A behavioural group is a set of tasks whose behaviour is linked to some event. In other words, if an event
occurs for any task in a behavioural group, an action is applied to all the tasks in the group, e.g., when one

50 CHAPTER 6. DEBUGGER

Figure 6.10: Behavioural Group Window

task triggers a breakpoint, all tasks in the group are stopped. Hence, a behavioural group must have an event
and operation associated with it. Furthermore, a task can appear in only one behavioural group at a time
because actions in one group might cause inconsistent behaviour in another group.

Clicking on Behavioural Group forms a group of all tasks currently selected in the main window (see
selected Philosopher tasks in Figure 6.2), and pops up a window where an event and action can be issued
for all tasks that belong to the group (see Figure 6.10). The following commands can be entered in the event
window:

� [break|b] [[executable-file]:line-no | function-name] [if simple-expression]: set breakpoint at speci-
fied line (in source file) or function.

The following commands can be entered in the operation window:

� stop: stop task execution

Figure 6.10 shows a behavioural group window where a breakpoint is about to be set for each philosopher
task, and each task in the group will be stopped when one of the tasks reaches the breakpoint.

Chapter 7

Miscellaneous

7.1 Contributors

While many people have made numerous suggestions, the following people were instrumental in turning
this project from an idea into reality. Peter Buhr got � C++ and X to speak on intimate terms and forced
the coding conventions on others; he also wrote the statistical sampling code, the documentation, and did
other sundry coding as needed. David Taylor wrote the event tracer and made many changes as we whined
and complained. Scott Zinn and Rob Good kept the event tracer going on plg. Johan Larson wrote the first
version of the event generation code for � C++ and Peter Buhr wrote the second version. Rory Jacobs wrote
the prototype concurrent debugger for the � System, and “Totally Cool” Martin Karsten wrote the concurrent
debugger, kdb, for � C++. Jun Shih extended kdb with lots of additional features.

51

52 CHAPTER 7. MISCELLANEOUS

Appendix A

Numeric Sampler

// -*- Mode: C++ -*-
//
// Visualization 1.0, Copyright (C) Peter A. Buhr 1992
//
// uNumSplr.h – generic sampler for numeric types
//
// Author : Peter A. Buhr
// Created On : Sun Feb 9 20:34:28 1992
// Last Modified By : Peter Buhr
// Last Modified On : Sat Jul 30 08:55:10 1994
// Update Count : 148
//

#ifndef __U_NUMSPLR_H__
#define __U_NUMSPLR_H__

#include "uBaseSplr.h"
#include "uNumGauge.h"

// T must have operations: 0, =, >, <, +, /

template<class T> class uNumSampler : public uBaseSampler {
const T &locn;
int count, firstMin, firstMax;
T curr, min, avg, max, sum;
uNumGauge<T> numgauge; // displayer object

public:
uNumSampler(uWatcher &w, const int pollFreq, const int displayFreq, const T &locn, const char *name,

const T dialMin, const T dialMax, const T zero, uNumGaugeTL::GaugeType gauge = uNumGaugeTL::digital) :
uBaseSampler(w, pollFreq, displayFreq), locn(locn), numgauge(name, gauge, dialMin, dialMax) {

firstMax = firstMin = 1;
sum = zero;
count = 0;

// The sampler must be added to the watcher
�

s event list at the end of the derived
// sampler because the moment it is added to the event list, the poll and display
// routine can be invoked by the watcher; therefore, the derived class must be
// completely initialized. Furthermore, the sampler cannot be added to the watcher

�

s

53

54 APPENDIX A. NUMERIC SAMPLER

// event list in the base sampler
�

s constructor because the base sampler
�

s poll and display
// routine would be invoked instead of the derived sampler

�

s routines, which is incorrect.

watcher.add(*this); // add sampler to watcher
�

s event list
} // uNumSampler<T>::uNumSampler

~uNumSampler() {
watcher.remove(*this); // remove sampler from watcher

�

s event list
} // uNumSampler<T>::~uNumSampler

void poll() {
curr = locn; // get current value

if (firstMin) { // maintain minimum value
min = curr;
firstMin = 0;

} else {
if (curr < min) {

min = curr;
} // if

} // if

count += 1; // calculate running average
sum += curr;
avg = sum / count;

if (firstMax) { // maintain maximum value
max = curr;
firstMax = 0;

} else {
if (curr > max) {

max = curr;
} // if

} // if
} // uNumSampler<T>::poll

void display() {
numgauge.display(curr, min, avg, max);

} // uNumSampler<T>::display
}; // uNumSampler<T>

#endif __U_NUMSPLR_H__

// Local Variables: //
// compile-command: “dmake” //
// End: //

Appendix B

Visual Bounded Buffer Widget

// -*- Mode: C++ -*-
//
// Visualization 1.0, Copyright (C) Peter A. Buhr 1992
//
// uProdConsWD.h –
//
// Author : Peter A. Buhr
// Created On : Tue Sep 29 13:30:45 1992
// Last Modified By : Peter A. Buhr
// Last Modified On : Sat Jul 22 16:48:08 1995
// Update Count : 39
//

#ifndef __U_PRODCONSWD_H__
#define __U_PRODCONSWD_H__

#include <uXmlib.h>
#include "uXtShellServer.h"

class uProdConsSampler; // forward declaration

// The widget structure for a ProdConsWidget:
//
// * Top-level Shell
// * Main Window Widget
// * Menubar Widget
// * Cascade Widget (quit)
// * Form Widget
// * Label Widget (Producer)
// * Separator Widget
// * Scale Widget (Producer Average)
// * Separator Widget
// * Scale Widget (Producer Std Dev)
// * Separator Widget
// * Label Widget (Delay)
// * Separator Widget
// * Scale Widget (Consumer Std Dev)

55

56 APPENDIX B. VISUAL BOUNDED BUFFER WIDGET

// * Separator Widget
// * Scale Widget (Consumer Average)
// * Separator Widget
// * Label Widget (Consumer)

class uProdConsWidget {
static void QuitCB(Widget widget, uProdConsWidget *This, XmAnyCallbackStruct *call_data);
static void pollingFreqCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void displayFreqCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void prodStdWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void prodAvgWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void consStdWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);
static void consAvgWDCB(Widget widget, uProdConsWidget *This, XmScaleCallbackStruct *call_data);

uProdConsSampler &prodconsSampler;
Widget shell, pollingFreqWD, displayFreqWD, bufScaleWD;
const int NumDecPts = 2;
float prodStd, prodAvg, consStd, consAvg;

public:
uProdConsWidget(uProdConsSampler &prodconsSampler, const char *title, int bufSize);
virtual ~uProdConsWidget();

float getProdStd() {
return prodStd;

} // uProdConsWidget::getProdStd

float getProdAvg() {
return prodAvg;

} // uProdConsWidget::getProdAvg

float getConsStd() {
return consStd;

} // uProdConsWidget::getConsStd

float getConsAvg() {
return consAvg;

} // uProdConsWidget::getConsAvg

void setValue(int val);
}; // uProdConsWidget

#endif __U_PRODCONSWD_H__

// Local Variables: //
// compile-command: “dmake” //
// End: //

Bibliography

[BS95] Peter A. Buhr and Richard A. Stroobosscher. � C++ Annotated Reference Manual, Ver-
sion 4.4. Technical Report Unnumbered: Available via ftp from plg.uwaterloo.ca in
pub/uSystem/uC++.ps.gz, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, N2L 3G1, September 1995.

[CW94] P. Cheung and P. Willard. XXGDB – X Window System Interface to the GDB Debugger, Novem-
ber 1994. Distributed with XXGDB.

[GKM82] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a Call Graph Execution Profiler.
SIGPLAN Notices, 17(6):120–126, June 1982. Proceedings of the SIGPLAN’82 Symposium on
Compiler Construction, June 23–25, 1982, Boston, Massachusetts, U.S.A.

[HN80] A. N. Habermann and I. R. Nassi. Efficient Implementation of Ada Tasks. Technical Report
CMU-CS-80-103, Carnegie-Mellon University, 1980.

[Kar95] Martin Karsten. A Multi-Threaded Debugger for Multi-Threaded Applications. Diplomarbeit,
Universität Mannheim, Mannheim, Deutschland, August 1995.

[SP95] Richard M. Stallman and Roland H. Pesch. Debugging with GDB. Free Software Foundation,
675 Massachusetts Avenue, Cambridge, MA 02139 USA, 1995.

[Tal92] David Talyor. A Prototype Debugger for Hermes. In CASCON’92. IBM, November 1992.

[Tuf83] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, 1983.

57

Index

-trace, 11
kdb, 39

interface, 39
starting, 39

� C++ MVD Toolkit, 5

application blocked, 44
application context, 23
athena, 23

callback coding convention, 24
callbacks, 23, 24
cluster, 7
collector task, 11
contributors, 51

debugger blocked, 44
debugging, 5
display widget, 32

event loop, 23
event trace, 11
exact monitoring, 5, 11
example

Numeric Sampler, 53
Visual Bounded Buffer Widget, 55

explicit statistical monitoring, 29

framework, 3

implicit statistical monitoring, 7
inactive, 40
interface, 39

pane, 39
probe effect, 3

sampler, 30, 32
sampler object, 30
statistical monitoring, 4
symbolic debugger, 5

trace, 11
tracing model, 11

uSetName, 14

watcher, 29
watcher object, 29
widget, 32

Xlib, 23
Xt, 23
xview, 23
X Toolkit Intrinsics, 23

58

