
� Database Annotated Reference Manual
(Preliminary Draft)

Version 1.0

Peter A. Buhr and Anil K. Goel c
�

1992

September 1, 1998

Contents

Preface 1

1 Introduction 3
1.1 Motivation . 4
1.2 Memory Mapping . 5

1.2.1 Disadvantages of Memory Mapping . 5
1.2.2 Advantages of Memory Mapping . 6

1.3 Organization . 7

2 � Database Design Methodology 9
2.1 Representative . 10
2.2 Access . 11

3 Storage Management 13
3.1 Memory Organization . 13
3.2 Address Space Tools . 14
3.3 Segment Tools . 14

3.3.1 Representative Interface . 14
3.4 Heap Tools . 17

3.4.1 Heap Storage Management Schemes . 17
3.5 Heap Overflow Control . 18

3.5.1 Expansion Object . 19

4 Persistent Linked List 21
4.1 List Application . 21
4.2 Linked List Implementation . 21
4.3 List Node . 21
4.4 List Administration . 22
4.5 List File Structure . 25
4.6 List Access Class . 25
4.7 List Generator . 25
4.8 List Wrapper . 29
4.9 Summary . 30

5 Persistent Binary Search Tree 31
5.1 BianryTree Node . 31
5.2 BianryTree Administration . 31

iii

iv CONTENTS

5.3 BianryTree File Structure . 31
5.4 BianryTree Access Class . 31
5.5 BianryTree Generator . 31

6 Parallelism 33
6.1 Backend Concurrency . 34
6.2 Frontend Concurrency . 35

7 N-Tree Example 37
7.1 N-Tree Application . 37
7.2 Access . 38
7.3 Generic B-Tree . 39
7.4 Nesting Heaps . 39
7.5 Nested Memory Manager Example . 39
7.6 Backend Concurrency Algorithm . 42

8 Recovery 45
8.1 Experimental Analysis of General Storage Management . 45

9 Experimental Proof 47
9.1 Experimental Structure . 47
9.2 Experimental Analysis of Partitioned B-Tree . 50

10 Related Work 53
10.1 Related Models . 53

10.1.1 Pointer Swizzling . 53
10.1.2 Reachability . 53

10.2 Related Systems . 54
10.2.1 The Objectstore Database System . 54
10.2.2 Cricket: A Mapped, Persistent Object Store . 55
10.2.3 Paul Wilson’s work . 56
10.2.4 The Bubba database system . 56
10.2.5 Others . 57

10.3 Conclusion . 57

11 Miscellaneous 59
11.1 Contributors . 59

Bibliography 61

Index 65

Preface

The goal of this work is to provide an efficient methodology for constructing low-level database tools that
are built around a single-level store implemented using memory mapping. The methodology allows normal
programming pointers to be stored directly onto secondary storage, and subsequently retrieved and manip-
ulated by other programs without having to modify the pointers or the code that manipulates them. File
structures for a database, e.g., a B-Tree, built using this approach are significantly simpler to build, test,
and maintain than traditional file structures. All access methods to the file structure are statically type-safe
and file structure definitions can be made generic in the type of the record and possibly key(s) stored in the
file structure, which affords significant code reuse. An additional design requirement is that multiple file
structures may be simultaneously accessible by an application. Concurrency at both the front end (multiple
accessors) and the back end (file structure partitioned over multiple disks) are possible and different forms
of recovery can be used to build robust file structures.

This manual is strictly a reference manual for � Database. A reader should have an intermediate knowl-
edge of concurrency and database issues to understand the ideas presented in this manual as well as some
experience programming in � C++.

This manual contains annotations set off from the normal discussion in the following way:

�
Annotation discussion like this is quoted with quads.

�

An annotation provides rationale for design decisions or additional implementation information. Also a
chapter or section may end with a commentary section, which contains major discussion about design alter-
natives and/or implementation issues.

Each chapter of the manual does not begin with an insightful quotation. Feel free to add your own.

1

2 CONTENTS

Chapter 1

Introduction

The goal of this work is to provide an efficient methodology for constructing low-level database tools that
are built around a single-level store implemented using memory mapping. A single-level store gives the
illusion that data on disk (secondary storage) is accessible in the same way as data in main memory (primary
storage), which is analogous to the goals of virtual memory. This uniform view of data eliminates the need
for complex and expensive execution-time conversions of structured data between primary and secondary
storage. A uniform view of data also allows the expressive power and the data structuring capabilities of
a general purpose programming language to be used in creating and manipulating data structures stored on
secondary storage. Although a single-level store is an old idea [Org72, IBM78], it has seen only limited use
inside of operating systems, and it is only during the last few years that this idea has begun to receive new
attention and approval from researchers in the database and programming language communities [CFW90,
SZ90a, LLOW91]. For complex structures, a single-level store offers substantial performance advantages
over conventional file access, which is crucial to database applications such as CAD/CAM systems, text
management and GIS [vO90]. We argue that the performance advantage of a single-level store is lost if the
pointers within it have to be relocated or swizzled [CAC

�

84, Mos90, Wil91].
One way of efficiently implementing a single-level store is by means of memory mapped files. Memory

mapping is the use of virtual memory to map files stored on secondary storage into primary storage so that
the data is directly accessible by the processor’s instructions. Therefore, explicit read and write routine
calls are not used to access data on disk. All read and write operations are done implicitly by the operating
system during execution of a program. When the working set of the data structure can be kept in memory,
performance begins to approach that of memory-resident databases. The memory mapping approach was
not used in the past because of a lack of virtual memory hardware on most computers and/or limited access
to memory-mapping capabilities by older operating systems. With today’s large address-spaces (32-64 bits),
memory mapping of secondary storage makes excellent sense, and operating systems are starting to provide
access to this capability (e.g., mmap system call in UNIX and general access to virtual memory in Mach
[TRY

�

87] and Sun OS 4.1 [Sun90]).
It is possible to implement a single-level store using memory mapped files in a variety of ways. A

tool kit approach was adopted as the implementation strategy because it allows programmers to participate
in some of the design activity; the tool kit is called � Database. Persistence in � Database is orthogonal
because creating and manipulating data structures in a persistent area is the same as in a program. � Database
is intented to provide easy-to-use and efficient tools for developing new databases, and for maintaining
existing databases. While � Database shares the underlying principles of a single-level store with other
recent proposals [STP

�

87, CFW90, SZ90a, LLOW91], it offers features that make it unique and an attractive
alternative. It also fulfills a need for a set of educational tools for teaching operating system and database
concepts. � Database is not an object store but it could be used to implement one.

3

4 CHAPTER 1. INTRODUCTION

The basic tenet in this work is that memory mapping provides a means of simplifying the implementa-
tion and improving the performance of file structures and their access methods built using it. Techniques for
solving problems that arise from the use of memory mapping as a means of building a storage system are
examined in detail. Many of the problems, such as consistency and concurrency control, have essentially
the same implications in memory-mapped databases as they do in traditional databases. However, the use
of memory mapping allows more efficient and straightforward solutions. At the same time, memory map-
ping techniques provide an enormous benefit in terms of simpler interfaces between the low-level database
structures and the database designer, and subsequently, between the DBMS and the application developers.
Thus, memory-mapped file structures turn out to be simpler to implement than their traditional counterpart.

In this manual, a file structure is defined to be a data structure that is a container for user records on
secondary storage; a file structure relates the records in a particular way, for example, maintaining the
records in order by one or more keys. An access method is defined to be a particular way that records
are accessed. A file structure may have several access methods, for example, initial loading of records,
sequential access of records, keyed access of records.

1.1 Motivation

A database programmer is faced with the problem of dealing with two different views of structured data, viz.
the data in primary storage and the data on secondary storage. Traditionally, these two views of data tend
to be incompatible with each other. The data in primary storage is usually organized using pointers, which
are used directly by the processor’s instructions. It is cumbersome and expensive to construct complex
relationships among objects without the help of direct pointers. However, it is generally impossible to store
and retrieve data structures containing pointers to/from disk without converting at least the pointers and at
worst the entire data structure into a different format. Considerable efforts, both in terms of programming
and execution time, have to be made in such systems to transform data from one view to the other. In
general, these transformations are data structure specific and must be executed each time the data structure
is stored or read from secondary storage. This situation is further hampered by the limited access to the file
system provided by most operating systems. Finally, the powerful and flexible data structuring capabilities of
modern programming languages are not directly available for building data structures on secondary storage.
We have observed about a 30% reduction in code when not having to transform pointer and/or data, which
correlates with others [ABC

�

83].
In spite of these rather taxing difficulties, database implementors have traditionally rejected the use

of mapped files and have chosen to implement the lower-level support for databases using traditional ap-
proaches (e.g., explicit buffer management). This rejection is not totally based on the lack of memory
mapping facilities. The earliest use of memory mapping techniques can be traced back 20 years to the Mul-
tics system. However Multics provided these facilities in a framework that was very rigid and difficult to
work with. Further objections are: [SZ90a, p. 90]

� Operating systems typically provide no control over when the data pages of a mapped file
are written to disk, which makes it impossible to use recovery protocols like write-ahead
logging [RM89] and sophisticated buffer management [CD85].

� The virtual address space provided by mapped files, usually limited to 32 bits, is too small
to represent a large database.

� Page tables associated with mapped files can become excessively large.

These criticisms, while valid in the past, are no longer as strong now, as pointed out in [CFW90]. The
rebuttal to these criticisms are:

1.2. MEMORY MAPPING 5

� Newer operating systems, such as Mach [TRY
�

87] and Sun OS 4.1 [Sun90], are considerably more
liberal in what they allow users to do with the underlying virtual memory system.

� The address space provided by 32 bits, while not excessively large, is sufficient for the majority
of applications. Additionally, processors with larger address spaces (up to 64 bits) are becoming
available [Mip91].

� Memory management chips are becoming more sophisticated so that less memory is used for page
tables, for example, N-level paging and page tables that are smaller than the size of the area they map
by using subscript checking before indexing the page table [RKA92].

1.2 Memory Mapping

Memory mapping is the technique of using the underlying virtual memory support (both hardware and
software) of the operating system to map some portion of the disk (e.g., a file) into the address space
of a process, so that the data stored on disk apparently becomes directly accessible by the processor’s
instructions. Once mapped, the disk file has a one-to-one correspondence with its image in virtual memory.
Memory mapping capabilities vary substantially among different computers and the access to this capability
varies depending upon the operating system. In general, there are two major capabilities: segmentation
and paging, which can be used independently or together. A segment is an area of memory that appears
contiguous at the instruction fetch/store level and has a fixed starting address, usually 0. Paging is the
ability to locate a segment non-contiguously in primary storage while maintaining the segment’s contiguous
property at the instruction fetch/store level. Depending on the system, memory mapping can map a file into
a new segment or into a portion of an existing segment. As will be seen in further discussions, � Database
only considers the case where a file is mapped into a new segment; otherwise the file mapping does not
necessarily start at the same virtual address for each mapping, and memory addresses stored into the file
cannot be used to access the data without first being modified. Demand segmentation and demand paging,
which is the ability to copy only those segments/pages into primary storage that are referenced, is also
essential because a database is almost always larger than the primary storage capacity of the machine. Notice
that demand paging performs the job of a traditional buffer manager, except the buffering is implicit and tied
into access at the instruction fetch/store level. Ideally, different page replacement algorithms are required
for different kinds of access patterns to achieve maximum efficiency [Smi85], but we conjecture that the
desired efficiency is possible with only a small number of different page replacement schemes. Currently, it
is not possible to work at this level in the operating systems on which � Database is implemented.

1.2.1 Disadvantages of Memory Mapping

Larger Pointers Memory pointers may be larger than disk offsets, which increases the size of the file
structure marginally, thus increasing access cost. However, only when the percentage of pointers to data is
large is this a significant problem. This problem is further mitigated by the low cost and high density of
secondary-storage media. As well, larger pointers have increased resolution for accessing data.

Non-Uniform Access Speed The apparent direct access of data can give a false sense of control to the
file structure designer. While a file’s contents are directly accessible to the processor, the access speed is
non-uniform—when a non-resident page is referenced, a long delay occurs as for a traditional I/O operation;
otherwise the reference is direct and occurs at normal memory speed. When programming a file structure
using memory mapping, certain data structures may be inappropriate because of their access patterns in a
non-uniform memory.

6 CHAPTER 1. INTRODUCTION

1.2.2 Advantages of Memory Mapping

Common Data Structure in Primary and Secondary Memory Use of programming-language data
structures to organize the contents of a file eliminates the need to convert to a secondary storage format,
which results in code that is substantially more reliable and easier to maintain. Also, for complex data
structures, like an object in a CAD/CAM system, where a large percentage of the data is pointers, there is a
significant performance advantage because no modification of pointers is required.

Reduced Need for Explicit Buffer Management Efficient buffer management is a major issue with tra-
ditional databases. A sophisticated buffer manager is crucial for the performance of a traditional database
system. Furthermore, a file structure designer must be skilled in its use, explicitly invoking its facilities and
pinning/unpinning buffers. This results in code that is complex, and difficult to understand and maintain.
On systems without pinning support, double paging, i.e., paging of the buffers, is a serious drawback. A
memory mapped access method is less complex because I/O management is largely transparent and is han-
dled at the lowest possible level (instruction fetch and store). This transparency significantly reduces access
method complexity.

Our results show that the buffer management provided by an operating system page-replacement algo-
rithm produces results that are comparable to a hand-coded buffer-manager over a variety of access patterns
[BGW92]. Allowing writers of memory-mapped access methods to affect their own page-replacement could
produce even better performance for some specialized access methods. But this is still not buffer manage-
ment, only hints to the operating system as to which pages are no longer needed or will be needed.

Simple Localization While locality of references is crucial for all data structures where access is non-
uniform, memory-mapped access methods can easily take advantage of it by controlling memory layout;
controlling disk layout through a traditional buffer manager and the file system can be difficult. Because the
data structures on secondary storage can be manipulated directly by the programming language, tuning for
localization is straightforward. Simple changes to memory allocation strategies can produce significantly
better performance in memory-mapped access methods due to localization of accesses.

Rapid Prototyping of Access Methods Because a file structure designer works with a uniform view of
data, a file structure can be reliably constructed in a short period of time, using all the available programming-
language tools. Interactive debuggers make it possible to find errors quickly by examining data stored on
secondary storage as easily as that stored in primary storage. In addition, the debugger knows the type of all
the data structures, and hence, displays formatted output. Tools such as execution and storage management
profilers, and visualization aids are also directly usable. Finally, polymorphism in a language is available to
reuse existing file structure code.

Memory Mapping on a Loaded System In memory mapping, all I/O is done by the page-replacement
algorithm so that the operating system can be fair to all users and dynamically respond to the system load
either from database access or from non-database access. When the system load is light, it is perfectly
reasonable to allow large portions (many megabytes) of the database to reside in memory. When the system
load is heavy, database users have to share the machines resources with other users. In traditional database
systems, the buffer manager is often in conflict with other applications, holding resources that it may not be
using. It is our contention that, on shared systems, memory-mapped access methods can more easily achieve
better overall performance than traditional database systems because the memory-mapped access methods
can immediately take advantage of available storage to reduce I/O operations. This is because the operating

1.3. ORGANIZATION 7

system has knowledge about the entire state of the machine, and therefore, has the potential to make the best
decisions to achieve good overall performance.

Contiguous Address Space Memory mapping provides the file structure designer with a contiguous ad-
dress space even when the data on secondary storage is not contiguous. A single object within a given file
structure may be split into several extents on one disk or across multiple disks, and a file structure designer
may see no difference or only a sparse address space. In traditional systems, the buffer manager has to be
designed to support this seamless view of individual objects in a file structure consisting of non-contiguous
fixed-size blocks on secondary storage.

1.3 Organization

This manual is organized as a series of tutorials that illustrate the design methodology behind � Database
and the different parts of the � Database tool kit. It is hoped that users of � Database can work directly from
the tutorials in building their own persistent file structures.

8 CHAPTER 1. INTRODUCTION

Chapter 2

� Database Design Methodology

� Database uses the notion of a persistent area, in which data objects can be built or copied if they are
to persist [BZ86, BZ89]. (The major alternative approach is reachability [PS-87, MBC

�

89]; see Section
10.1.2.) A persistent area is currently implemented by an operating system file. If data is to be transferred
from one persistent area to another, the data must be copied through primary storage. However, techniques
are available to modify data directly in a persistent area. In all cases, the user interface to the file structure
can provide encapsulation of the persistent area to ensure its integrity.

An application may need to access several persistent areas simultaneously. To accomplish this require-
ment, each persistent area is mapped into its own segment, while allows each file structure to use conven-
tional pointers without having to adjust them. This approach is in contrast to systems that provide simul-
taneous access by mapping multiple persistent areas into the same segment. In these systems, all pointers
are relocated when portions of an area are mapped. In general, this requires access to the type information
of the file structure at runtime, which is not usually possible in programming languages that do not have
runtime type-checking. Also, significant execution overhead may be incur in relocating pointers.

Currently, � Database does not cover pointers among persistent areas (see [BZ89] for a possible solution).
Nor does it deal with distributed persistent areas; we believe that distributed shared memory [SZ90b, WF90]
will allow our current design to scale up to a distributed environment. Object-oriented programming tech-
niques are employed in the implementation of � Database, but are not essential. � C++ [BDS

�

92] is used
as the implementation language, which is a superset of C++ with concurrency extensions, because it al-
lows immediate technology transfer. However, the fundamental ideas are implementable in any imperative
programming language.

The following two properties evolved during the design and implementation of � Database. First, data
associated with accessing a file structure, such as current location in the file, concurrency data or transient
recovery information are not mapped into the file structure. Second, a deliberate attempt is made to retain the
conventional semantics of opening and closing a file. A persistent area must be made accessible explicitly
because its content is not directly accessible to the processor(s) until it is memory mapped, and therefore,
this should be reflected in the semantics of the constructs and not hidden away by making the file implicitly
accessible at all times. Implicit schemes, like pointer-swizzling on first access, have problems detecting the
first access but more importantly is the problem of knowing when an access can be terminated (garbage
collectors may be too slow). The two properties involve several levels, each performing a particular aspect
of the storage or access management of the file structure. This structure is illustrated in Figure 2.1 and the
components at each level are discussed in detail.

9

10 CHAPTER 2. � DATABASE DESIGN METHODOLOGY

primary

disk file

secondary
storage memory non-transient

transient
storage

mapping

representative

accessor � accessor � accessor � accessor � file structure
implementor

application � application �

database implementor
or user

Figure 2.1: Basic Structure of the Design Methodology

2.1 Representative

A representative is responsible for creation and initialization of the file structure, for the storage management
of access method data in primary storage, for concurrent accesses to the file’s contents, and for consistency
and recovery. Each file structure has a unique representative. The representative is created on demand,
during creation of a file and for subsequent access by a user, and exists only as long as required by either of
these operations. Thus, the representative is created when the first explicit access request is received for the
file structure and terminates when all the access requests are completed.

In � Database, the representative is implemented by a UNIX process, which has its own virtual address
space in which transient information is maintained and the file is mapped, and its own thread of control. A
representative’s memory is divided into two sections: private and shared (see Figure 2.2). Private memory
can only be accessed by the thread of control associated with the UNIX process that created it, i.e., the
representative. The disk file is mapped into the private memory while all data associated with concurrent
access and consistency are contained in the representative’s shared memory; such data is always transient.
Shared memory is accessible by multiple threads associated with UNIX processes that interact with the
representative. There is no implicit concurrency control among threads accessing shared memory; mutual
exclusion must be explicitly programmed by the file structure designer using the facilities in � C++.

To allow addresses to be stored directly into the file and subsequently used, the following convention
is observed by all representatives: the disk file must be mapped into memory starting at a fixed memory
location, called the segment base address. The segment base address is conceptually the virtual zero of a
separate segment; this is how � Database uses a UNIX process as a separate segment. In � Database, the
value 16M has been chosen for the segment base address as the starting location of all mapped files; this
leaves a sufficiently large space for the application and the representative(s). Note that the address space is
sparsely filled and uses only as much virtual memory as that referenced in the representative. In an ideal
situation, where independent creation of new virtual memory segments is allowed, each disk file would be
mapped into its own segment, as in Multics, instead of a separate process. Separate segments are supported
by several processors, like the Intel 386/486, HP-PA, and IBM-RS6000 computers; however, access to the
segmentation capabilities may not exist in the operating systems.

An application in � Database can have multiple file structures accessible simultaneously. This capability
is possible because each representative has its own private mapping area. Figure 2.3 shows the memory
organization of an application using 3 file structures simultaneously. Note each representative uses some of

2.2. ACCESS 11

MAP

application
process

representative
process

shared
memory

private
memory

16M (Segment Base Address)

file structure

disk file

access
object �

access
object �

concurrency & consistency control

Figure 2.2: Storage Model for Representative

the shared memory for concurrency and consistency data. This memory organization is implemented using
four page tables, one of each UNIX process and each page table maps the same shared memory.

The disadvantage of this approach is that there can never be pointers from the shared area to any of the
private mapped areas and vice versa. However, addresses from one file structure can be stored in another
file structure, but such addresses can only be dereferenced in the file structure they come from. Hence,
either data must be copied out of a file structure to be manipulated by an application and copied back again,
or an application light-weight task must migrate to the UNIX process implementing the representatives to
perform a series of operations. As well, in object-oriented languages, objects with virtual members cannot
be instantiated in the file structure as the virtual pointer refers back to data in shared memory (virtual routine
vectors).

�
Dynamic linking would solve this problem. Our solution is to use free routines and generic

definitions instead of virtual routines (see Section 3.5.1).
�

2.2 Access

The mechanisms for requesting and providing access to a file structure are provided in the form of another
abstract data-type, which is implemented as a class called an access class. Declaration of an access class
instance, called an access object, constitutes the explicit action required to gain access to a file’s contents
(i.e., create the mapping). Creating an access object corresponds to opening a file in traditional systems but
it is tied into the programming-language declaration mechanism (like block structure). As well, the access
object contains any transient data associated with a particular access (e.g., the current record pointer), while
the representative contains global transient information (e.g., the type of access for each accessor). Because
the access object is in the application process, communication between it and the representative process is
done by synchronous calls passing data through shared memory. At least one access class must be provided
for each file definition. It is possible to have multiple access classes, each providing a distinct form of access

12 CHAPTER 2. � DATABASE DESIGN METHODOLOGY

MAP MAP

private shared private
memory memory memory

application
process

private
memory

file � file �

representative

process �

representative

process �

representative

process �

MAP

file �

Figure 2.3: Accessing Multiple File Structures

(e.g., initial loading, sequential, keyed). It is also possible to have multiple access objects communicating
with the same representative. This capability allows an application to have multiple simultaneous views of
the data (see Figure 2.1).

Depending on the particular kind of concurrency control, the declaration of the access object may block
until it is safe to access the file contents and/or individual access routine calls may block. Once instantiated,
the access object can be used by an application to perform operations on the file structure.

Chapter 3

Storage Management

One of the most complex parts of any data structure is its efficient storage management. In fact, much of
a file structure designers time is spent organizing data in memory and on secondary storage. For memory
mapped file structures, organizing data in memory indirectly organizes the data on secondary storage.

This chapter discusses the conventions and software tools used to organize and manage a file structure’s
storage. By following these conventions and using the appropriate tools, it is possible to significantly reduce
the amount of time it takes to construct a complex file structure. The first half of the section details the
programming interface to the memory mangement tools and the second half is a tutorial in which a simple
persistent linked-list data structure is build using the tools.

3.1 Memory Organization

In � Database, memory is divided into three major levels for storage management:

address space is a set of addresses from 0 to N used to refer to bytes or words of memory. This memory is
conceptually contiguous from the address-space user’s perspective, although it might be implemented
with non-contiguous pages. The address space is supported by the hardware and managed by the
operating system.

segment is a contiguous portion of an address space. There may be a one-to-one correspondence between
an address space and a segment, or an address space may be subdivided into multiple segments.
In � Database, a segment is also mapped onto a portion of the secondary storage. The segment is
supported by the hardware and managed by the address-space storage manager (usually the represen-
tative).

heap is a contiguous portion of a segment whose internal management is independent of the storage man-
agement of other heaps in a segment, but heaps at a particular storage level will interact. The heap is
not supported by the hardware and is managed by its containing storage manager.

Since � Database is capable of creating multiple mappings simultaneously, multiple segments can exist
at the same time. In a traditional programming environment with only a single heap, dynamic memory
management routines for the heap are usually provided by the programming language system (e.g., new and
delete operators). This facility is, unfortunately, no longer adequate for the multiple segments in � Database.
This lack of capability results from two major differences between a heap area in shared memory and a
private memory-mapped segment:

13

14 CHAPTER 3. STORAGE MANAGEMENT

1. If there is only one heap, any space allocated must come from that heap. When multiple segments
can be present at the same time, a target segment must be specified each time a memory management
request occurs.

2. The shared memory heap is a general purpose storage area. A mapped segment, on the other hand, is
almost always dedicated to a particular data structure, e.g., a linked list or a B-Tree. Therefore, there is
an opportunity for optimizing the storage management scheme based on the contained data structure.
In addition, many data structures require special action to be taken when overflow and underflow
occurs. The storage management facility has to be able to accommodate application specific actions
for these cases.

To achieve the above, � Database memory management facilities are provided in the form of genetic
memory manager classes. Memory manager objects instantiated from these classes are self-contained units
capable of managing a contiguous piece of storage of arbitrary size, starting at an arbitrary address. If a
segment is managed by a given memory manager object, invoking member routines within that object im-
plicitly perform the desired operation on that segment. And since the different managed areas are controlled
by different memory managers, it is possible to create memory management classes with different storage
management schemes to suit the needs of different data structures. Finally, a programming technique is
provided that allows application specific overflow action.

3.2 Address Space Tools

As mentioned, an address space is managed by the operating system so there is usually little or no control
over it by the file structure designer. However, some operating systems support specifications like sequential
or random access of an address space, providing different paging schemes for each; facilities to control
which page is replaced would be extremely useful, but are almost never available. The point here is that
if address-space management tools are available, they can make a significant difference in the performance
of a file structure, but currently such tools are not portable across different UNIX operating systems so this
manual does not discuss such mechanisms.

3.3 Segment Tools

The following tools create, manage and destroy segments in an address space. Furthermore, flexible capa-
bilities are provided for mapping one or more disk files into a segment. This latter capability is discussed
in detail in Chapter 6 where it is used for parallel I/O. In this chapter, only a single file is mapped into a
segment. All segment capabilities are provided through the representative for a file structure.

3.3.1 Representative Interface

The header file:
#include "/u/usystem/software/udb/Rep/src/Rep.h"

defines the representative facilities and it is mandatory for any application requiring � Database facili-
ties. The basic representative functionality is provided by three related classes: Rep, RepAccess and
RepWrapper.

Rep is the representative data structure. It is responsible for mapping and unmapping files to/from
segments, and controlling the size of the segment and hence the size of the file. The basic interface of Rep
is as follows:

3.3. SEGMENT TOOLS 15

class Rep {
public:

virtual void *start(); // starting address of mapping
virtual int size(); // current size of mapping
virtual void resize(int size); // resize mapping
virtual int created(); // UNIX file created by this rep?

};

The member routine start returns the starting address of the mapping, which is currently 16M, i.e., the
segment base address. The member routine size reports the current size of the mapped space and thus the
size of the mapped file. The routine resize sets the size of the mapped space, and indirectly, the file size to
the value given in its argument. Finally, the routine created return 1 if the requested UNIX file was created
by the current representative, and 0 if the file was present before the representative was created.

The class Rep is not intended to be instantiated by file structure code, which is why it has no constructor.
Instead, a representative is created indirectly through the class RepAccess, which may create an instance of
Rep for a file or use an existing one. Thus, the only way to control file mapping and unmapping is through
an instance of RepAccess. The representative access object takes part in maintaining the � Database global
representative table that guarantees a one-to-one relationship between representative and file mapping in an
application. Therefore, application programs do not have direct access to the representative creation process
and must rely on the service of RepAccess.

The interface to RepAccess is:
class RepAccess {

public:
RepAccess(char *filename);
virtual void *start(); // starting address of mapping
virtual int size(); // current size of mapping
virtual void resize(int size); // resize mapping
virtual int created(); // UNIX file created by this rep?

};

The constructor’s parameters is the name of the UNIX file to be mapped. Upon the creation of an instance
of RepAccess, the global representative table is searched in an attempt to locate an active representative for
the requested UNIX file. If a representative for the file is present, the file is already mapped so no new map-
ping is necessary. A pointer to this representative is stored in the RepAccess instance, the representative’s
use count in the global table is incremented, and the creation is complete. If no representative is found, a
representative is created for the file (i.e., an instance of Rep) and entered into the representative table. If the
file does not already exist in the UNIX file system, it is created.

The member routines start, size, resize and created are covers for those in the Rep class. They perform
the same function as their counterparts in Rep. They are present so the full functionality of the represen-
tative is available to the file structure designer via the representative access class. This approach serves to
completely isolate the representative objects from the file structure code. However, this presents a problem
for the objects within the persistent area for the following reasons:

1. A persistent object within the file space cannot reliably refer to an existing RepAccess object created
outside the mapped area because a RepAccess object is created on a per access basis and has a many-
to-one relationship with the file space.

2. A RepAccess object cannot be created from inside the mapped area because that would result in a
pointer out of the mapped area, which is a pointer to a transient object from a persistent area.

3. The constructor for RepAccess takes the name of the UNIX backing file as an argument. To supply

16 CHAPTER 3. STORAGE MANAGEMENT

the argument, the name of the file has to be stored inside the persistent area. That means, the UNIX
backing file must not be renamed once it is created by � Database. This limitation is unacceptable.

Therefore, the only access to mapping control for objects within the persistent area is by a direct pointer to
the Rep structure.

After the representative is created (indirectly by RepAccess), the file is mapped into a new segment,
and by convention, the representative writes a pointer to itself at the beginning of the newly mapped space.
This action is done for the following reason. A storage manager for a segment or heap must exist before the
area it manages so there is at least somewhere to store a pointer to the new segment or heap. Therefore, the
storage manager is allocated out of an existing storage area and the new storage area is conceptually nested
in the storage area that contains its storage manager. In general, the nesting relationship needs both a pointer
from parent to child and vice versa. Without the back pointer from child to parent or a pointer to the root of
the storage hierarchy, it is not possible to find the parent storage manager when a child needs more storage.
The pointer inserted at the beginning of a segment for a newly mapped file provides the back pointer for
storage managers in the segment to communicate with the representative’s storage management operations.

Figure 3.1 shows the organization of representatives and their access classes and segments. The repre-
sentatives are chained together to allow them to be searched when a representative’s access class is created
to see if there is already a representative for a particular file. Notice, also, the pointer from the segment to
the representative. Having a pointer from persistent memory to the transient memory for the representative
violates a previous design restriction because a pointer to the transient representative from the persistent file
is invalid as soon as the application that created the representative terminates. However, this scheme works
because the representative pointer is relocated on each access to a persistent area by an application. Hence,
there is a trivial amount of dynamic relocation in this scheme.

RepAccess

Rep

segment

database implementor

shared memory
private memory

or user

implementor
file structure

Figure 3.1: Organization of Representatives

Upon the destruction of an instance of RepAccess, the use count for the representative in the global
table is decremented. If the use count reaches zero, then all access requests for the file have been closed.
The mapping is then terminated and the representative destroyed.

Since the file is mapped into the representative’s private memory, user application code does not nor-
mally have direct access to the contents of the mapped file in private memory; the application code only
has access to shared memory. The class RepWrapper provides the mechanism to allow application code to
access both shared and private memory for a particular representative’s segment:

3.4. HEAP TOOLS 17

class RepWrapper {
public:

RepWrapper(RepAccess &repacc);
};

The class is a wrapper class and therefore does not have any member routine; all actions of the wrapper
class are carried out by the constructor and destructor of the wrapper. When a wrapper is declared in a block,
both halfs of the wrapper’s operations are guaranteed to be performed, even if the block is terminated by
an exception. RepWrapper’s constructor takes an instance of RepAccess as an argument, which indirectly
refers to a representative’s address space and any segments mapped into it.

As soon as an instance of RepWrapper is created, that representative’s address space is accessible, as
well as shared memory; the duration of accessibility is the duration of the wrapper. Note however that two
wrappers cannot be active at the same time because only one address space can be in effect at a time so only
segments in that address space are accessible. Therefore, a task cannot have direct access to two mapped
file simultaneously. One way to ensure this restriction is to only create one instance of RepWrapper per
block and make the wrapper the first declaration to ensure the segment is accessible before operations are
performed on it, as in:

void list::rtn() {
RepWrapper(repacc); // rep

�

s address space becomes accessible

// may access data in shared segment and rep
�

s segment only

} // rep
�

s address space, and hence, its segments become unaccessible

This convention ensures that the wrapper’s actions occur as the first and last operations of a routine block.

�
Accessibility to a representative’s segment is accomplished by migrating the light-weight

task that is performing the operation from the application address space to the representative’s
address space where the segment(s) is mapped. The cost is a light-weight context switch and
possibly a heavy weight context switch if the UNIX process associated with the representative’s
address space has blocked.

�

3.4 Heap Tools

As mentioned, a segment has no facilities to manage allocation and deallocation of its memory. This sec-
tion discusses the heap tools that can be used to manage a segment’s memory. If none of these tools are
appropriate, it is possible to build specialized heap management tools.

3.4.1 Heap Storage Management Schemes

While there are a large number of storage management schemes possible, the following three basic schemes
are provided in � Database. More will be added as time permits. They are ordered in increasing functionality
and runtime cost.

uniform has fixed allocation size. The size is specified during the creation of the memory manager object
and cannot be changed afterwards. Uniform memory management is often used to divide a segment
into fixed sized heaps (e.g., B-Tree fixed-sized nodes).

variable has variable allocation size. The size is specified on a per allocation basis but once allocated,
cannot be changed. This is a general purpose scheme very similar to C’s malloc and free [KR88]
routines.

18 CHAPTER 3. STORAGE MANAGEMENT

dynamic has variable allocation size. The size is specified on a per allocation basis and can be expanded
and contracted any time as long as the area remains allocated. Because of this property, the loca-
tion of allocated blocks are not guaranteed to be fixed. Therefore, an allocation returns an object
descriptor instead of an absolute address. An allocated block does not have an absolute address and
must be accessed indirectly through its descriptor. Because of this indirection, it is possible to per-
form compaction on the managed space. Therefore, fragmentation can be dealt with in an application
independent manner.

It is believed that these three storage management schemes should be able to cope with most application
demands. Should special needs arise, special purpose memory management schemes can be created and
easily integrated into � Database.

The programming interface for each is defined in the header files:

#include "/u/usystem/software/udb/inc/usm.h"
#include "/u/usystem/software/udb/inc/vsm.h"
#include "/u/usystem/software/udb/inc/dsm.h"

3.5 Heap Overflow Control

When a heap fills, there are 3 actions that can be sensibly taken by a generic storage manager:

1. enlarge the heap by adding additional storage at the end of the heap (a heap is a contiguous area).
However, when there are multiple heaps at a particular nesting level, this may necessitate moving one
or more heaps after the full heap. Moving a heap requires relocating any pointers to its contents.

2. allocate a new heap, which is larger than the existing heap, and copy the contents of the old heap to
the new heap and delete the old heap. However, moving a heap requires relocating any pointers to its
contents.

3. allocate a new heap and copy some portion of the contents to the new heap so that each heap has some
free space. However, moving a heap’s contents requires relocating any pointers within the contents
and there are now two independent heaps that must be managed.

Since generic memory managers are independent of the type of data they manage, it is impossible for them
to take these actions on behalf of the file structure. Therefore, a generic memory manager does not deal with
expansion.

Instead, a generic memory manager is designed with an expansion exit, which is activated when a heap
fills, so that a data-structure specific action can be performed in this situation. The following are some
examples of data-structure specific actions. When a B-Tree node fills, an additional node is allocated and
some of the contents of the old node is migrated to the new node. When a variable-size character string heap
fills, the heap may be copied to a new heap that is larger and the previous heap freed.

To encapsulate this application specific dependency, the concept of an expansion exit is implemented
using an expansion object. An expansion object is written as part of a file structure definition and it contains
enough information to deal with overflow. All expansion objects are derived from a special expansion
abstract class and one must be passed to the generic memory manager when it is created. When the generic
memory manager detects that a heap is full during an allocation operation, it calls member routines in the
expansion object to deal with this situation.

3.5. HEAP OVERFLOW CONTROL 19

3.5.1 Expansion Object

As mentioned, a basic memory manager does not deal with heap overflow. In order to handle overflow,
an application specific heap expansion definition must be created to perform application specific overflow
action. The class uExpand below is the interface between the memory manager and the overflow handler:

class uExpand {
public:

virtual bool expand(int) = 0;
}; // uExpand

The member routine expand is called from within the memory manager whenever more storage is
needed. The routine takes an integer argument that specifies the number of additional bytes requested.
Every application specific expansion class must redefine the expand routine to perform its required overflow
action, adding more private variables to the class definition if necessary. The expand routine’s return code
controls the future action of the memory manager. If the expand routine returns false, the memory manager
gives up and returns NULL to the caller (or raises an exception). If the expand routine returns true, the
memory manager once again attempts to allocate memory out of the expanded heap. It fails if there is still
insufficient storage after the expansion and the first action is taken.

Because the expand routine is defined as a C++ virtual routine, so that it can be replaced by specialized
derived expansion classes, and stored in the persistent area together with the data they manage, the virtual
routine pointer must be relocated each time the segment is made accessible. And as mentioned in Section 2.1,
virtual members are normally not allowed in a persistent area. Therefore, the expansion object must be
handled as a special case and relocated as part of connecting to a persistent store.

The following is the interface portion for the uniform memory manager:
class uUniform {

protected:
void *mstart; // starting addess of heap
void *hend; // current high water mark in heap
void *mend; // ending address beyond the end of the heap
int usize; // size of heap allocation
freeblk *freel; // start of free list
uExpand &expn; // reference to expansion object

public:
uUniform(void *mstart, int msize, uExpand &expn, int usize);
void *alloc(int);
void *alloc();
void free(void *p);
void sethsize(int newsize);

};

The constructor takes four arguments.

mstart is the starting address of the managed space (i.e., the heap)

msize is the initial heap size

expn is a reference to the expansion object

usize is the size of the uniform sized blocks being managed.

Once initialized, the member routines alloc and free can be used to allocate and free uniform sized blocks
of storage. The member routine sethsize is used to inform the memory manager of the new heap size when
the heap size has changed. This routine is intended to be called by the expansion object.

20 CHAPTER 3. STORAGE MANAGEMENT

A specific uniform memory manager is created in the following way. First an expansion class is defined
and a specific uniform memory manager is created using it, as in:

class myExpand : public uExpand {
// variables necessary to perform expansion

public:
myExpand(. . .); // pass data needed for expansion
bool expand(int) {

// code to perform expansion
}

};

myExpand myExpObj; // create expansion object

uUniform myUniSM(repacc.start(), 1000, myExpObj, 100);

This creates a uniform memory manager whose storage starts at the beginning of the mapped area, is initially
1000 bytes in size, is allocated in 100 byte blocks and overflow is handled by myExpObj.

For more flexible storage management, the variable or dynamic memory manager may be required. The
following is the interface portion for the variable memory manager:

class uVariable {
protected:

void *mstart; // starting addess of heap
void *hend; // current high water mark in heap
void *mend; // ending address beyond the end of the heap
int usize; // default size of heap allocation
vfb *freel; // start of free list
uExpand &expn; // reference to expansion object

void *_ alloc(int size);
public:

uVariable(void *mstart, int msize, uExpand &expn, int usize = 0);
void *alloc(int size);
void *alloc();
void free(void *fb);
void sethsize(int newsize);

}; // uVariable

The following is the interface portion for the dynamic memory manager:
class uDynamic {

public:
uDynamic(void *mstart, int msize, T &expn);
Descriptor alloc(int size);
void free(Descriptor p);
void sethsize(int newsize);

};

The constructors takes three arguments mstart, msize and expn, which specify the starting address, the
initial size of the heap and the expansion object, just like they do in the uniform manager constructor. The
member routines alloc, free and sethsize perform the same functions are those in the uniform manager. The
dynamic manager deals with movable memory blocks, and therefore the alloc and free routines make use of
the indirect pointer type Descriptor instead of the direct pointer type void *. Specific variable and dynamic
managers are created in the same manner as uniform managers.

Chapter 4

Persistent Linked List

The following example illustrates all the basic techniques and tools for constructing a persistent data struc-
ture by building a generic singlely linked list with nodes containing a variable length string value.

4.1 List Application

At the application level, three data structures are provided: one to form the nodes of the list, one to declare a
persistent linked list and one to access it. Figure 4.1 shows a simple application program using the persistent
linked list. First, there is a definition of the list node, myNode, which must inherit from listNode to get the
appropriate link fields added. Since the data in each node is a variable length string, the node structure only
defines a place holder field, value of zero size, and storage for the string is allocated as each node is created.
Second, is the declaration of the persistent list, l, with UNIX file name abc. The persistent list is generic in
the type of the node so that all accesses to the list can be statically type checked. Third, is the declaration of
the access class, la, for persistent list l. The access class is generic in the type of the node so that all accesses
to the access class can be statically type checked.

The next three loops add, change and remove nodes using the access class routines add, get and put,
and remove, respectively. The generic generator, listGen, returns a consecutive sequence of pointers to the
nodes in the persistent list. However, these pointers cannot be dereferenced in the application program; they
can only be used as place holders to nodes and passed to other access routines, like get and put.

�
It is possible to create a special list pointer type that restricts dereferencing to authorized

list objects.
�

4.2 Linked List Implementation

Figure 4.2 shows all the list data structures created and their inter-relationships; it should be useful to refer
to this figure during the following discussion.

4.3 List Node

The abstract class, PQueueNode, contains the fields needed by each node in a linked list to relate the data:

21

22 CHAPTER 4. PERSISTENT LINKED LIST

#include <uC++.h>
#include "/u/usystem/software/udb/LinkedList/src/LinkedList.h"

class myNode : public listNode { // inherit from list node
public:

char value[0]; // variable sized string
}; // myNode

void uMain::main() {
list<myNode> l("abc"); // create persistent list
listAccess<myNode> la(l); // open list
char *name = "xxx";
int i;

for (i = 1; i <= 100; i += 1) { // create nodes in list
la.add(name);

} // for

listGen<myNode> gen; // used to scan through list
myNode *p;
char name[25];

for (gen.over(la), i = 0; gen >> p; i += 1) { // modify the list indirectly
la.get(p, name); // copy out information
if (i % 2 == 0) { // change every 2nd node

name[0] =
�

a
�

;
la.put(p, name); // copy information back

} // if // (size cannot change)
} // for

for (gen.over(la); gen >> p;) { // destroy the list
la.remove(p);

} // for
} // uMain::main

Figure 4.1: Linked List Example

class PQueueNode { // abstract class containing link field
PQueueNode *nxt;

public:
PQueueNode *&next() { // access to link field

return nxt;
} // PQueueNode::next

}; // PQueueNode

The member routine next allows indirect access to the link field.

�
Unfortunately, member next cannot be private and accessed through friend classes because

friendship is not inherited.
�

4.4 List Administration

Information pertinent to a particular linked list, e.g., the pointer to the head of the list and the mapped space’s
memory management information, must outlive the application program that creates the list. Therefore,

4.4. LIST ADMINISTRATION 23

MAP

alignment boundary

16M

listAccess

list

head
expobj
vsm (several pointers into the heap area)

list disk image

repacc

lst

filename

admin

Representative

controls
mapping

UNIX file name

RepAccess

list segment

myNode myNode

listAdmin
rep (initialized when mapping is created)

Figure 4.2: Linked List Storage

this information cannot reside in shared memory. Instead, it is stored in the same persistent area as the
linked list nodes. By convention, all such persistent administrative information is grouped together into an
administrative object at the beginning of the segment. Furthermore, the administrative type must inherit
from the abstract type RepAdmin.

The list administrative class is defined in Figure ??. The class contains a pointer to the head of the linked
list, head, the expansion object for the current mapped space (discussed shortly), and the variable memory
manager that manages the mapped space. As mentioned in Section 3.3.1, the representative initializes a
pointer to itself at the beginning of every mapped space. This pointer can be accessed from subclasses of
RepAdmin through the protected variable rep. The constructor for the administrative class takes an integer
indicating the initial heap size as an argument. It initializes the expansion object, expobj, the variable
memory manager, vsm, and then sets the list head pointer to NULL, indicating an empty list. The two private
member routines alloc and free are utility routines that make use of the underlying variable memory manager.
The routine alloc is important because it casts the untyped bytes returned from the variable memory manager
into the type of the generic list node.

The expand class for the linked list is defined as follows:

24 CHAPTER 4. PERSISTENT LINKED LIST

template<class T, class SM> class PQueueAdmin : private RepAdmin {
define MagicCookie "PQueue<T,SM>"

friend class PQueueExpType<T,SM>;
friend class PQueue<T,SM>;

char typeName[sizeof(MagicCookie)]; // sizeof includes the
�

\0
�

T *head, *tail; // first and last node of the queue
PQueueExpType<T,SM> expobj; // expansion object to extend memory for the queue
SM sm; // storage manager for the queue

T *alloc(int size) {
return (T *)sm.alloc(size);

} // PQueueAdmin<T,SM>::alloc

T *alloc() {
return (T *)sm.alloc();

} // PQueueAdmin<T,SM>::alloc

void free(T *p) {
sm.free(p);

} // PQueueAdmin<T,SM>::free

void checkType(char *filename) {
if (strcmp(typeName, MagicCookie) != 0) { // dynamic type check

uAbort("PQueueAdmin<T,SM>(0x%x)::checkType: File \"%s\" is not type \"%s\".",
this, filename, MagicCookie);

} // if
} // PQueueAdmin<T,SM>::checkType

public:
PQueueAdmin(int fileSize) : expobj(*this), sm((void *)this+sizeof(PQueueAdmin<T,Storage Management>),

fileSize-sizeof(PQueueAdmin<T,SM>), expobj, sizeof(T)) {
strcpy(typeName, MagicCookie); // copy the file

�

s type into the file as a magic cookie
head = NULL;

} // PQueueAdmin<T,SM>::PQueueAdmin
}; // PQueueAdmin<T,SM>

template<class T, class SM> class PQueueExpType : public uExpand {
PQueueAdmin<T,SM> &admin;

public:
PQueueExpType(PQueueAdmin<T,SM> &admin) : admin(admin) {
} // PQueueExpType<T,SM>::PQueueExpType

bool expand(int extension) {
if (extension < 8 * 1024) {

extension = 8 * 1024; // extend at least 8K each time
} // if
admin.rep->resize(admin.rep->size() + extension); // extend the segment
admin.sm.sethsize(admin.rep->size() - sizeof(PQueueAdmin<T,SM>)); // extend the storage manager
return true;

} // PQueueExpType<T,SM>::expand
}; // PQueueExpType<T,SM>

The constructor initializes a pointer to the administrative object so that it can access the containing storage

4.5. LIST FILE STRUCTURE 25

manager, listAdmin::rep. The member routine expand first resizes the current space by calling the represen-
tative’s resize routine. It then informs the variable memory manager of the change by calling its sethsize
routine and it returns 1 indicating that the allocation operation should be reattempted.

4.5 List File Structure

The purpose of the list file structure is to establish a contention between the program and the UNIX file that
contains the list data structure. It does not make the file accessible unless it is creating the file, and then the
file is made accessible only long enough to initialize the file structure. Figure 4.3 contains the definition of
list.

list’s constructor takes two arguments. The first one indicates the name of the UNIX file that contains
the linked list. The second one indicates the initial size of the persistent storage that contains the linked
list nodes if the file is being created; otherwise this parameter is ignored. list’s constructor first makes a
copy of name of the UNIX backing file in shared memory, which is a valid action because the duration of
this pointer is at most the duration of the program. The constructor then opens up a mapping by creating a
RepAccess object, makes the segment accessible by creating a RepWrapper, initializes a pointer to where
the administrative object should be at the beginning of the segment (currently 16M), and checks to see if the
file was created on access. If it is newly created, the segment size is first set to that indicated by the initSize
parameter, then an administrative object is created at the beginning of the segment, which initializes itself
through its constructor, creating an empty list.

list’s destructor releases the storage taken up by the UNIX filename string in shared memory.
The private member routines first, add and remove are the routines that manipulate the list nodes. These

routines are in the list object so that the list can be modified by other objects within the segment. The first
routine returns a pointer to the beginning of the list. The add routine calls the uniform storage manager in
the administrative object to obtain storage for a myNode that can contain the string parameter, copies the
parameter into the new list node, and chains it onto the head of the list. The remove routine removes the
give node from the list and frees the storage for the node. These routines make use of standard singlely
linked-list algorithms.

4.6 List Access Class

An access class defines an access object. An access object defines the duration that a file structure segment
is accessible. The class listAccess is the access class for list. It provides routines to operate on the list. It
is the sole means for application code to access the list data. It also contains per access information, in a
manner similar to a UNIX file descriptor. The list access class is defined in Figure 4.4.

The constructor takes a reference to a list object as an argument. A reference to the list object is retained
for subsequent access to list routines and a file structure mapping is creating by creating a RepAccess
object. The member routines add and remove are covers for the same routines in the list object. The
member routines get and put copy data out of or into the value field of a list node, respectively. All these
member routines begin by making the list segment accessible by creating a RepWrapper object and then
performing an operation on the list.

4.7 List Generator

A generator iterates over an ordered data structure, returning some or all of the elements of the data structure.
Generators provide access to the elements of a data structure without having to use or access the particular
data structure’s implementation; hence, generators enforce the notion of abstract data types. Depending on
the data structure, there may be multiple generators that iterate over the data structure in different ways

26 CHAPTER 4. PERSISTENT LINKED LIST

template<class T, class SM> class PQueue {
friend class PQueueAccess<T,SM>;
friend class PQueueGen<T,SM>;

char *fileName; // UNIX file containing the queue
PQueueAdmin<T,SM> *admin; // administrator for the queue segment

PQueue(const PQueue &); // prevent copying
PQueue &operator=(const PQueue);

T *first() { // return pointer to first node in queue
return admin->head;

} // PQueue<T,SM>::first

T *last() { // return pointer to last node in queue
return admin->tail;

} // PQueue<T,SM>::last

void addCommon(T *newNode, const T *value) {
new(newNode) T();
*newNode = *value;
if (admin->head == NULL) { // first node in queue ?

admin->head = admin->tail = newNode;
} else { // general case

admin->tail->next() = newNode;
admin->tail = newNode;

} // if
newNode->next() = NULL;

} // PQueue<T,SM>::addCommon

void add(const T *value, int size) { // add node to end of the queue
T *newNode = admin->alloc(sizeof(T) + size);
addCommon(newNode, value);

} // PQueue<T,SM>::add

void add(const T *value) { // add node to end of the queue
T *newNode = admin->alloc();
addCommon(newNode, value);

} // PQueue<T,SM>::add

void remove(T *p) { // remove node from queue
if (p == admin->head) { // remove first node

admin->head = (T *)p->next();
if (admin->head == NULL) { // empty queue ?
admin->tail == NULL;

} // if
} else { // remove node in queue

T *pred, *curr;
for (pred = admin->head, curr = (T *)pred->next(); curr != p; pred = curr, curr = (T *)curr->next()) {
} // for
pred->next() = curr->next();
if (admin->tail == curr) { // last node ?
admin->tail = pred;

} // if
} // if
admin->free(p);

} // PQueue<T,SM>::remove
public:

PQueue(char *name, int initSize = 4 * 1024) {
fileName = new char[strlen(name) + 1]; // allocate storage for file name
strcpy(fileName, name); // copy file name

RepAccess<Rep> repacc(fileName); // map file
{

RepWrapper wrapper(repacc); // migrate to file segment

admin = (PQueueAdmin<T,SM> *)repacc.start(); // pointer to admin object at start of segment
if (repacc.created()) { // file created when mapped ?
repacc.resize(initSize); // initialize memory space
new(admin) PQueueAdmin<T,SM>(repacc.size()); // initialize

} else {
new(&(admin->expobj)) PQueueExpType<T,SM>(*admin); // relocate virtual pointer to expansion object
admin->checkType(fileName); // dynamic type check (well sort of)

} // if
}

} // PQueue<T,SM>::PQueue

~PQueue() {
delete [] fileName;

} // PQueue<T,SM>::~PQueue
}; // PQueue<T,SM>

Figure 4.3: Linked List

4.7. LIST GENERATOR 27

template<class T, class SM> class PQueueAccess {
friend class PQueueWrapper<T,SM>;
friend class PQueueGen<T,SM>;

RepAccess<Rep> repacc; // access class for representative
PQueue<T,SM> &queueRoot; // queue being accessed

PQueueAccess(const PQueueAccess &); // prevent copying
PQueueAccess &operator=(const PQueueAccess);

public:
PQueueAccess(PQueue<T,SM> &queueRoot) : queueRoot(queueRoot), repacc(queueRoot.fileName) {
} // PQueueAccess<T,SM>::PQueueAccess

void add(const T *value, int size) {
RepWrapper wrapper(repacc); // migrate to file segment

queueRoot.add(value, size);
} // PQueueAccess<T,SM>::add

void add(const T &value) {
RepWrapper wrapper(repacc); // migrate to file segment

queueRoot.add(&value);
} // PQueueAccess<T,SM>::add

void get(const T *p, T &value) {
RepWrapper wrapper(repacc); // migrate to file segment

value = *p;
} // PQueueAccess<T,SM>::get

void put(T *p, const T &value) {
RepWrapper wrapper(repacc); // migrate to file segment

*p = value;
} // PQueueAccess<T,SM>::put

void remove(T *p) {
RepWrapper wrapper(repacc); // migrate to file segment

queueRoot.remove(p);
} // PQueueAccess<T,SM>::remove

}; // PQueueAccess<T,SM>

Figure 4.4: List Access Class

28 CHAPTER 4. PERSISTENT LINKED LIST

template<class T, class SM> class PQueueGen {
const PQueueAccess<T,SM> *qa;
T *curr;

PQueueGen(const PQueueGen &); // prevent copying
PQueueGen &operator=(const PQueueGen);

public:
PQueueGen() {
} // PQueueGen<T,SM>::PQueueGen

PQueueGen(const PQueueAccess<T,SM> &qa) {
RepWrapper wrapper(qa.repacc); // migrate to file segment

PQueueGen::qa = &qa;
curr = qa.queueRoot.first();

} // PQueueGen<T,SM>::PQueueGen

void over(const PQueueAccess<T,SM> &qa) {
RepWrapper wrapper(qa.repacc); // migrate to file segment

PQueueGen::qa = &qa;
curr = qa.queueRoot.first();

} // PQueueGen<T,SM>::over

bool operator>>(T *&p) {
RepWrapper wrapper(qa->repacc); // migrate to file segment

p = curr; // return current node
if (curr != NULL) { // if possible, advance to next node

curr = (T *)curr->next();
} // if
return p != NULL;

} // PQueueGen<T,SM>::operator>>
}; // PQueueGen<T,SM>

Figure 4.5: List Generator

and/or a generator may have several parameters that control the precise way the generator iterates over the
data structure. It is highly recommended that every persistent data structure provide a generator. The list
generator is defined in Figure 4.5.

The list generator has two constructors. The first constructor allows the specification of a list access
object, and it initializes the generator to the beginning of the list. This constructor is used when the generator
object is not going to be reused multiple times, possibly with different lists, as in:

for (listGen<myNode>(la) gen; gen >> p;) { . . . }

Here the generator is only used once in the loop.

�
Beware of using this form because the scope of the variable gen is not the loop body but the

entire block containing the loop.
�

The second constructor is used to create a generator that is subsequently specified to work with a particular
list access object, as in:

4.8. LIST WRAPPER 29

listGen<myNode> gen;
for (gen.over(la); gen >> p;) { . . . }
for (gen.over(ma); gen >> p;) { . . . }

In this case, when the list generator is declared, it is not associated with a particular list access object. The
association occurs through the over member routine, which initializes the generator to the beginning of the
list. Notice that the generator, gen, is used to iterate over two different list access objects, la and ma, which
may be accessing the same or different lists; the only requirement is that both list access-objects access lists
that contain nodes of type myNode. Finally, the operator >> is used to extract the next place holder to an
element in the data structure. While the place holder may be declared to be a normal pointer, in general,
it cannot be dereferenced in the application program because it points into the list segment, which is not
accessible from the application (Section 4.8 discusses exceptions to this rule). Instead the place holder is
used by other member routines in an access object to transfer element data out of or into appropriate list
nodes in the list segment.

4.8 List Wrapper

Figure 4.1 showed how an application modifies the linked list data by copying data out of a list node,
changing it, and copying it back; hence, the data is modified indirectly from the original list nodes. The
reason for copying is that a pointer returned by a list generator cannot be used in the application program
because it points into the list segment, which is not directly accessible from the application. As mentioned in
Section 3.3.1, a wrapper is used to make the representative’s address space accessible. This technique can be
extended to the application program by providing a wrapper that makes the list segment directly accessible;
pointers from the list generator can then be used to directly modify data in list nodes, as in:

{
listWrapper<myNode> dummy(la); // make la

�

s segment accessible

for (gen.over(fa), i = 0; gen >> p; i += 1) { // modify the list directly
if (i % 2 == 0) { // change every 2nd node

p->value[0] =
�

a
�

;
} // if

} // for
}

A new block is started, { . . . }, to define the duration of the list segment access and the list wrapper is
declared. Within the block, pointers returned from the generator can be directly dereferenced to read and
modify the list node data. A substantial performance gain can be achieved by this technique, because the
list segment is only made accessible once for all accesses to the list data and the copying of the list data is
eliminated.

The list wrapper is defined as follows:

template<class T, class SM> class PQueueWrapper {
RepWrapper wrapper; // migrate to file segment

PQueueWrapper(const PQueueWrapper &); // prevent copying
PQueueWrapper &operator=(const PQueueWrapper);

public:
PQueueWrapper(const PQueueAccess<T,SM> &qa) : wrapper(qa.repacc) {
} // PQueueWrapper<T,SM>::PQueueWrapper

}; // PQueueWrapper<T,SM>

and it is simply a cover definition for declaring a RepWrapper to the particular list segment.

30 CHAPTER 4. PERSISTENT LINKED LIST

4.9 Summary

The simple generic linked-list illustrates all the basic conventions and tools for building a persistent file
structure. The conventions are:

� The representative writes a pointer to itself at the beginning of the newly mapped segment.

� All persistent administrative information is grouped together at the beginning of the segment and must
inherit from RepAdmin to ensure there is space for the back pointer to the representative.

� A block is started before declaring a wrapper so that the wrapper’s actions occur as the first and last
operations of the block.

� Only one access wrapper can be declared in a block, because only shared memory and one segment’s
memory canbe accessible at a time.

Each basic file structure should have the following classes at the application level: a node abstract class,
a file structure class, one or more access classes, and (usually) one or more generator classes. At the file
structure level, there is the administrative class.

In the next chapter, more advanced techniques are demonstrated, such as nested storage management
and mapping multiple files into a single segment.

Chapter 5

Persistent Binary Search Tree

5.1 BianryTree Node

The abstract tree node class, Treeable, contains two child pointers from which all tree nodes must inherit.

class Treeable { // abstract class containing child pointers
friend class TFriend;

Treeable *leftChild, *rightChild;
public:

Treeable() {
leftChild = NULL;
rightChild = NULL;

}
}; // Treeable

To abstract and encapsulate the direct access to a tree node, a friend class of Treeable, TFriend, is defined
so that a binary tree object can access Treeable::leftChild and Treeable::rightChild indirectly by inheriting
from TFriend. The binary tree class cannot be a friend class of Treeable, because it is a template class.

class TFriend { // TFriend and its descendants have access to tree node
protected:

Treeable *&left(Treeable *tp) const {
return tp->leftChild;

} // TFriend::left

Treeable *&right(Treeable *tp) const {
return tp->rightChild;

} // TFriend::right
}; // TFriend

5.2 BianryTree Administration

5.3 BianryTree File Structure

5.4 BianryTree Access Class

5.5 BianryTree Generator

31

32 CHAPTER 5. PERSISTENT BINARY SEARCH TREE

Chapter 6

Parallelism

Supporting simultaneous access to a database can improve utilization of a database in the following ways:

Retrieval The slowest link in accessing a file structure is retrieving and storing data on secondary storage.
Secondary storage ranges from 1,000 to 100,000 times slower than primary storage. Furthermore,
there does not seem to be any immediate technological advancements that will significantly reduce this
ratio in speed between primary and secondary storage; in fact, the difference has only been increasing
over the last decade. Therefore, the only approach that is currently available is to partition the data
onto multiple secondary storage devices and performing accesses to these devices in parallel. Disk
arrays are the most common implementation of this idea [PGK88].

Accessors Supporting simultaneous access to a database can improve utilization of a database, in the
same way that multiprogramming operating systems improve utilization of a computer—by having
a number of requests to execute, it is possible to perform some of the requests in parallel if the
requests access data in different areas of the database. There is no difference in the turnaround time
of an individual request (in fact, there may be a slight increase in turnaround) in comparison to serial
execution of the requests, but the throughput of requests is improved. However, there is a high cost
in complexity that must be paid to ensure proper access to shared data. Problems such as livelock,
deadlock, and starvation must all be dealt with, while attempting to achieve as much parallelism
between the CPU(s) and the I/O device(s). Unfortunately, systems with multiple accessors can quickly
saturate because of the I/O bottleneck in retrieval of data from the database.

Currently, � Database allows a file structure designer to build whatever form of concurrency is appro-
priate. Concurrency control can be specified at a low-level, where semaphores are used to protect data, or
at a high-level, where light-weight server tasks control access to data. While concurrency often tied into a
particular data structure, we believe it is possible to provide some general concurrency abstractions to the
file structure designer to aid in this process. While a large number of concurrency techniques exist, they can
be classified into two distinct forms of parallelism:

Backend concurrency deals with the I/O bottleneck, a file structure is partitioned across multiple disks
and access is performed in parallel.

Frontend concurrency allow a number of requests to execute in parallel if the requests access data in
different areas of the database.

Figure 6.1 shows these two forms of concurrency. Note that backend and frontend concurrency are mostly
orthogonal aspects of concurrency; systems exist that provide one or the other or both. The question to be
addressed is how to use memory mapping with both backend and frontend concurrency.

33

34 CHAPTER 6. PARALLELISM

accessor �disk �

disk �

disk �

disk �

DBMS
Concurrent

Accessors
Concurrent

front endback end

accessor �

accessor �

accessor �

Retrievers

representative

Figure 6.1: Two Forms of Concurrency in a File Structure

6.1 Backend Concurrency

Backend concurrency attempts to deal with the CPU-I/O bottleneck by partitioning data across multiple
disks and then accessing the data in parallel [PGK88]. This bottleneck has been examined thoroughly using
disk arrays [PGK88, WZS91]. A typical disk-array system partitions a file structure into several strips each
stored on a different disk. Both static and dynamic allocation of file structures across several disks have
been addressed in the literature. One of the major points is that the striping algorithm, called partitioning,
should partition the data so that the access time for a particular file is minimized and the I/O load is balanced
across the disks. The partitioning can be application specific or general. In partitioning, balancing the I/O
load does not imply a physically even distribution of data across several disks. The goal is to distribute the
data in such a manner that under a typical access request, the data units that need to be touched are as evenly
distributed as possible across disks.

Once data has been partitioned, the issue of accessing it while employing as much parallelism as pos-
sible must be addressed. Exact match queries usually cannot take advantage of parallelism possible from
partitioning because there is usually only one disk access to service the request. Range queries can take
advantage of the parallelism possible from partitioning if the data is distributed so that portions of the range
can be accessed in parallel. A range query may be broken down into a number of smaller range queries so
that each can be executed in parallel. If the division of the query is done judiciously so that the respective
domains of the individual smaller queries are on different disks, the overall query can be processed much
faster than would have been possible otherwise. Similarly, if the file structure is aware of the access pattern
of different blocks, it can employ pre-reading techniques to increase the parallelism in reading blocks of data
from the disk. In general, the records returned from a range query are unordered. If records must be returned
in a specific order, that can significantly reduce the amount of parallelism. In � Database, the generator types
for each file structure can be written to manage all concurrent retrieval of records implicitly.

6.2. FRONTEND CONCURRENCY 35

In the following discussion, the main concern is not about access to the index portion of the file structure.
Normally the index is relatively small so that most of it remains resident in main memory, and consequently,
does not play a significant role as far as disk accesses are concerned.

6.2 Frontend Concurrency

Here the concern is with allowing multiple client accessors to simultaneously traverse and manipulate the
file structure. Currently, � C++ provides a number of language mechanisms for a file designer to build
concurrency control. Many options will be built, tested and provided as part of � Database tool kit, however
these will be used to build file-structure specific concurrency control. It is also our intention to study and
develop a general purpose low-level concurrency control facility that will be automatically available to
applications written in � Database. For example, allowing multiple versions of data to co-exist allows a high
degree of concurrent and can be implemented in a general way.

36 CHAPTER 6. PARALLELISM

Chapter 7

N-Tree Example

The following example illustrates advanced techniques and tools for constructing a persistent data structure
by building a generic N-Tree file structure. An N-Tree is simply a generailzed B-Tree, where the nodes of
the N-Tree index can have N pointers instead of just two.

7.1 N-Tree Application

A generic N-Tree file structure is presented to demonstrate the basic concept. The template facilities of C++
allow the creation of generic file structures (as in E [RCS93]). The generic B-Tree definition has 2 type
parameters and 1 conventional parameter. The type parameters provide the type of the key and the type

class Record { // data record
public:

float field1, field2;
Record &operator=(const Record &rhs) { // define assignment

field1 = rhs.field1;
field2 = rhs.field2;
return(*this); }

};
int greater(const int &op1, const int &op2) { // key ordering routine

return op1 > op2;
}
void uMain::main() { // uMain uC++ artifact

BTree<int, Record, 4 Kb> db("testdb", greater, 30 Kb);
BTreeAccess<int, Record, 4 Kb> dbacc(db); // open B-Tree
int key;
Record rec, *recp;
// insert records
for (key = 1; key <= 1000; key += 1) {

rec.field1 = key / 10.0;
rec.field2 = key / 100.0;
dbacc.insert(key, &rec); } // static type-checking

// retrieve records
for (BTreeGen<int, Record, 4 Kb> gen(dbacc); gen >> recp;) {
uCout << recp->field1 << " " << recp->field2 << endl; }

}

Figure 7.1: Example Program using a Generic B-Tree

37

38 CHAPTER 7. N-TREE EXAMPLE

of the record for the B-Tree. The optional conventional parameter provides the size of the B-Tree nodes
in bytes. Each B-Tree instance generated from a generic B-Tree type has 3 conventional parameters: the
backing-store UNIX file name, the routine used to compare the keys and the initial space allocated for the
B-Tree in bytes. The following creates two specialized B-Trees:

BTree<int, Record, 4 Kb> db1("db1BTree", less), // default initial size
db2("db2BTree", greater, 30 Kb); // 30 K initial size

Both B-Trees have int keys, Record records and a 4K node size. One instance is sorted in ascending order
(less) and the other one in descending order (greater). Unfortunately, this B-Tree instantiation requires the
UNIX file name and the name of the comparison routine be re-specified at each subsequent usage of the file
structure, which is type unsafe. However, once these two aspects of a file structure are specified correctly,
all subsequent access to the database file structure can be statically type-checked.

There are several requirements on the key type, the record type and the comparison routine. As well,
some additional routines must be supplied. For example, the type of the key and the record must provide an
assignment operator, among other things, and the comparison routine must have a specific type. A complete
example showing the creation of a B-Tree and insertion and retrieval of records is presented in Figure 7.1.

In � Database, each file structure can provide range queries using a generator or iterator [RCS93, LAB
�

81],
e.g., BTreeGen. The generator is an object whose arguments define the kind of range query and it returns
one record at a time from the set of records that satisfy the requirements denoted by the information provided
to the generator. The operator >> returns a pointer to some record within the specified range, but succes-
sive records are not normally ordered. If all records in the range have been returned, the NULL pointer is
returned. By iteratively invoking the operator >>, the individual records of the range query are obtained.

To define a file structure, e.g., BTreeFile, an abstract data-type is defined with two operations that are
implicitly performed: initialization and termination; no other operations are available. A B-Tree is defined
as follows:

class BTreeFile {
public:

BTreeFile(char *DiskFileName, . . .) { initialization code };
~BTreeFile(void) { termination code };

};

The initialization routine BTreeFile and the termination routine ~BTreeFile are invoked automatically when-
ever an instance of BTreeFile is created and deleted, respectively. An instance of a B-Tree file structure is
created using type BTreeFile, as in: BTreeFile f("StudentData", other arguments), where StudentData
is the name of the UNIX file in which the data are stored and retrieved from. There are no user visible rou-
tines, which ensures that after the declaration of an instance of BTreeFile, the corresponding file structure is
not accessible to the user/application program.

7.2 Access

For BTreeFile, the access object is called BTreeFileAcc.
class BTreeFileAcc {

public:
BTreeFileAcc(BTreeFile *f, char *access) { initialization code };
~BTreeFileAcc() { termination code };
read(. . .) { . . . };
. . . { other appropriate access routines };

};

To gain read access to a file structure object f, an application program declares an instance of BTreeFileAcc,
as follows: BTreeFileAcc pf(&f, "r"). The pointer to f specifies the file structure that is to be accessed

7.3. GENERIC B-TREE 39

through pf, and "r" specifies the kind of access for concurrency control purposes. Once instantiated, the
access object can be used by an application to perform operations on the file structure by invoking the public
member routines of BTreeFileAcc. For example, in order to read from f, a call is made to the member routine
read of BTreeFileAcc, as in pf.read(. . .). The routine read communicates with the representative to perform
the desired operation.

7.3 Generic B-Tree

The polymorphic facilities of a programming language can be applied to generalize the definitions of file
structures and to allow reuse of the file structure’s implementation by other file structures.

7.4 Nesting Heaps

With many applications, a segment has to be subdivided into multiple heaps that are managed independently
from each other. The nodes of a B-Tree are examples of such heaps. Since the heaps are themselves pieces
of storage that are usually allocated and released dynamically, it is logical to have a higher level memory
manager that deal with these heaps. The segment then becomes an upper level heap with dynamically
allocated subheaps nested inside.

In theory, there is no limit on the nestings of heaps, but the form of address for each level may depend
on the storage management scheme at that level. In practice, there is a limit imposed by the number of bits
in the address used to reference data in the lowest level heap. We believe three levels of sub-heaps should
be sufficient for most practical problems. (See [BZ88] for a further discussion of expressing nesting.)

A heap may be accessed in two ways: by the file structure implementor and by a nested heap. For exam-
ple, the storage management for a B-Tree has 3 levels: the segment, which is managed by the representative,
within which uniform-size B-Tree nodes are allocated, within which uniform or variable sized records are
allocated. Depending on the particular implementation of the storage manager at each level, different ca-
pabilities are provided. A file structure implementor makes calls to the lowest level (uniform or variable
storage manager) to allocate records. A uniform or variable memory manager can then be created within the
node. After that, the lower level memory manager for the node can be called to allocate data records in that
node. Figure 7.2 illustrates this storage structure.

7.5 Nested Memory Manager Example

As discussed in Section 7.4, heaps managed by memory managers can be nested within each other. A B-Tree
data structure is a good example where such nesting is useful. The file space is divided into uniform sized
B-Tree nodes. A uniform memory manager is created to manage these nodes. And then a variable memory
manager is created within each node to manage the variable sized B-Tree records contained within. (See
Figure 7.2 on page 40.)

The administrative class for the B-Tree is defined in the same manner as the linked list structure in
Section 4:

40 CHAPTER 7. N-TREE EXAMPLE

BTree Accessor

pointer to BTree

rep accessor

BTree

pointer to compare routine

representative

pointer to B-Tree

segment storage manager

16M B-Tree segment

B-Tree Administration

uniform storage manager

alignment boundary

uniform B-Tree node

variable storage manager

alignment boundary

variable record

uniform B-Tree node

variable storage manager

alignment boundary

comparison routine

MAP

B-Tree
Disk Image

Figure 7.2: B-Tree Storage Structure

7.5. NESTED MEMORY MANAGER EXAMPLE 41

class NTreeAdmin {
public:

Rep *rep; // initialized automatically
. . . . // at beginning of mapping
void *Root; // root node of the N-Tree
NTreeExpType expobj;
uniform<NTreeExpType> usm;

NTreeAdmin(int FileSize, char *TypeName, int BlkSize);
. . . .

}; // NTreeAdmin

NTreeAdmin::NTreeAdmin(int FileSize, char *TypeName, int BlkSize) :
expobj(*this),
usm((void *)this + sizeof(NTreeAdmin),

FileSize - sizeof(NTreeAdmin), expobj, BlkSize) {
Root = NULL;

} // NTreeAdmin::NTreeAdmin

The administrative class contains a uniform memory manager and an expansion object for the manager. The
expansion class is defined as follows:

class NTreeExpType : public expand_ obj {
NTreeAdmin &admin;

public:
NTreeExpType(NTreeAdmin &adm) : admin(adm) {};
int expand(int extension);

}; // NTreeExpType

int NTreeExpType::expand(int extension) {
admin.rep->resize(admin.rep->size() + extension);
admin.usm.sethsize(admin.rep->size() - sizeof(NTreeAdmin));
return 1; // retry allocation

} // NTreeExpType::expand

The expand object attempts to expand the size of the mapped file by calling the representative’s resize
routine, which is the typical action taken by the top level expansion object.

A B-Tree node can be used to hold B-Tree indices or data records. The former is called an index node
the latter is called a leaf node. Both types keep their information within variable sized records managed by
a variable memory manager. The leaf node class NTreeLeaf is shown below:

42 CHAPTER 7. N-TREE EXAMPLE

class NTreeLeaf {
friend NTreeLeafExpType;
NTreeLeafExpType expobj;
variable<NTreeLeafExpType> vsm;
. . .
void MoveRecords(. . .);
retcode SplitLeaf(. . .);

public:
NTreeLeaf();

}; // NTreeLeaf

NTreeLeaf::NTreeLeaf() : expobj(*this), vsm((void *)this +
sizeof(NTreeLeaf), NodeSize - sizeof(NTreeLeaf), expobj) {

. . . .
} // NTreeLeaf::NTreeLeaf

And the expansion class for the memory manager vsm is shown below:
class NTreeLeafExpType : public expand_ obj {

NTreeLeaf &leaf;
. . . .
retcode rc;
NTreeLeafExpType(NTreeLeaf &lf) : leaf(lf){}

public:
int expand(int);

}; // NTreeLeafExpType

int NTreeLeafExpType::expand(int) {
rc = leaf.SplitLeaf(. . . .);
return 0; // done, give up allocation

} // NTreeLeafExpType

Because all B-Tree nodes are fixed size, a node cannot be enlarged when full. Instead, the member routine
SplitLeaf within the NTreeLeaf class is called to split the node into two:

retcode NTreeLeaf::SplitLeaf(. . .) {
// create a new node
NTreeLeaf *NewLeafPtr = new{SegZero->usm.alloc(NodeSize)} NTreeLeaf();
// move some records out the current node and into the new node
MoveRecords(. . .);
. . .
return 1;

} // NTreeLeaf::SplitLeaf

First, the SplitLeaf routine allocates a new node by calling the top level memory manager. Then, the tree
is reorganized by moving some of the data records into the newly created empty node, thus making more
space available in the current node.

7.6 Backend Concurrency Algorithm

Once a file structure is partitioned, a retrieval algorithm can take advantage of the potential parallelism, but
only if sufficient hardware is available. First, the disks must be able to be accessed in parallel, which implies
that there must be multiple disk controllers. Second, if multiple processors are available, they must be able
to be used to perform any file-structure administration in parallel with the application processing the records
from the range query.

7.6. BACKEND CONCURRENCY ALGORITHM 43

The algorithm used for backend concurrency is as follows. For a file structure partitioned across
�

disks, the
�

disk files are memory mapped into one contiguous segment. Then � (a control variable) kernel
threads (UNIX processes) are created that all share the data segment containing the mapped file.

�����
light-

weight tasks are created to perform the retrieval requests and they execute on the � kernel threads.
�

of
the tasks are retrievers and the � �����
	���

task is the leaf retrieval administrator (LRA). For each generator
created, a buffer is allocated by the generator, which is shared between the application and the file structure.
As well, another task, the file structure traverser, is generated, which partitions the range query. The size
of the buffer can be specified as an optional parameter when creating the generator. The default buffer size
is 32K bytes. The traverser task assumes the responsibility of organizing the buffer space in the form of a
sharable buffer pool in some suitable manner. Then the traverser task searches the index structure finding the
leaf nodes that contain records in the range. For each leaf node, the traverser communicates with the LRA
specifying the leaf, number of records in the leaf, and the buffer pool. The LRA farms out the generator
requests to its retrieval tasks. A retrieval task accesses the specified leaf page, allocates a buffer from the
buffer pool, and copies as many records as will fit from the leaf page to the buffer. The last step is repeated
until all the records have been copied into buffers and then the retriever task gets more work from the LRA.
The structure of this algorithm is illustrated in Figure 7.3. This structure ensures that the only bottleneck
in the retrieval is the speed that the buffer can be filled or emptied. In general, an application program can
keep ahead of a small number of disks (1-7 disks). This generic backend concurrency algorithm can be
used for different file structures by specializing the file structure traverser and the component responsible
for processing of individual leaves to extract information.

Query
Results

Partitioned
File Structure SegmentFile Structure

disk �
retrieve �

Records

disk � retrieve �
Shared Buffer Queue

disk � retrieve �
GENERATOR

Leaf Retrieval Leaf File

Administrator Requests Structure Iterator
Traverser

disk � retrieve �

Index Search Index

Accessor

Figure 7.3: Backend Concurrency Structure

44 CHAPTER 7. N-TREE EXAMPLE

Chapter 8

Recovery

Implementing recovery is difficult in memory mapping and a satisfactory solution is still a research issue.
If there is operating-system support to pin pages, traditional schemes can be used (however, with all the
associated disadvantages). With no operating-system support, new techniques must be developed. We will
be examining the use of dual memory maps to allow shadow write pages. One mapping represents the
consistent database, which can be read at any time. The shadow mapping is for pages that are currently
being modified. By precisely controlling when the shadow pages are copied back to the consistent mapping,
it is possible to mimic traditional recovery schemes without operating-system support. The main problem
to overcome is premature writing of modified pages by the operating system.

8.1 Experimental Analysis of General Storage Management

The criterion used to judge the general storage management approach is whether it can provide performance
that is close to traditional schemes that amalgamate storage management directly with the data structure.
Both an independent and integrated storage management B-Tree were constructed and creation tests were
run. The results were virtually identical, with timings varying by

�
2%.

45

46 CHAPTER 8. RECOVERY

Chapter 9

Experimental Proof

A number of compelling arguments have been made in [CFW90] and other publications for the use of single-
level stores for implementing databases. In spite of these arguments, it is clear there is still resistance and
skepticism in the database community. Furthermore, our contention is that mapped files can be used ad-
vantageously for building databases not only in the new single-store environment but also in the traditional
environment. Traditional databases can be accessed using memory-mapped access methods without requir-
ing any changes to the file structure. In all cases, the mapped access methods should provide performance
comparable to traditional approaches while making it much easier to augment the access methods of the file
structure in the future by greatly reducing program complexity.

At the start of our work, there was little published experimental evidence available to support the view
that memory-mapped file structures could perform as well as or better than traditional file structures. There-
fore, it was necessary to implement a number of different memory-mapped file structures and to compare
their performance against equivalent traditional ones.

9.1 Experimental Structure

To demonstrate the benefits of memory mapping, different experiments were constructed. The general form
of an experiment was to implement a file structure in the traditional and memory-mapped styles, perform
retrievals from a file, which is the most common form of access in a database, and compare the results. While
every effort was made to keep the two file structures as similar as possible, some system problems precluded
absolutely identical execution environments. In particular, the traditional file structures were stored on disk
as character-special UNIX files and an LRU buffer manager was used. The memory-mapped files could not
be mapped from a character-special file and had to be accessed from the UNIX file system, which performs
all I/O in 8K blocks even though the system page size is 4K. Therefore, to make the comparisons equal, all
of the file structures had 8K node sizes and all I/O was done in 8K blocks.

All experiments were run on a Sequent Symmetry with 10 i386 processors, which uses a simple page-
replacement algorithm. The page-replacement algorithm is FIFO per page table plus a global LRU cache of
replaced pages so there is a second chance to recover a page before it is reallocated. The maximum total
size of the resident pages for a program is determined by the user and upon exceeding that size, pages are
removed from the resident set on a FIFO basis. Upon removal, a page is put into the global cache where
it can be reinstated to the resident set if a fault occurs for the page before the page is reused. This page
replacement algorithm was matched against an LRU buffer-manager used by the traditional databases.

The execution environment was strictly controlled so that results between traditional and memory-
mapped access methods were comparable. First, all experiments were run stand-alone to preclude external
interference, except for those experiments that needed a loaded system. Second, the amount of memory

47

48 CHAPTER 9. EXPERIMENTAL PROOF

for the experiment’s address space and the global cache were tightly controlled so that both kinds of file
structures had exactly the same amount of buffer space or virtual memory, respectively. The test files varied
in size from 6-32 megabytes. The amount of primary storage available for buffer management or paging
was restricted so that the ratio of primary to secondary storage was approximately 1:10 and 1:20. These
ratios are believed to be common in the current generation of computers, supporting medium (0.1G-.5G) to
large databases (1G-4G) but not very large databases.

The following experiments were implemented:

Prefix B
�

Tree In this experiment, 100,000 uniformly distributed records were generated whose keys were
taken from the unit interval. A record had a variable length with an average of 27 bytes. These records were
inserted into a prefix B

�

Tree [BU77]. For this B-Tree, 4 query files were generated, where the queries
followed a uniform distribution. Each file is described by the tuple (n,m) where n is the number of queries
and m is the number of records sequentially read from the B-Tree (range query). For example, (10,1000)
means executing 10 queries with each query reading a set of 1000 records sequentially. A 5th query file
contained 10,000 exact match queries that follow a normal distribution with mean 0.5 and variance 0.1.

R-Tree The R-Tree [Gut84] is an access method for multidimensional rectangles. It supports point queries
and different types of window queries. A point query asks for all rectangles that cover a given query point
whereas a window query asks for all rectangles which enclose, intersect or are contained in a given query
rectangle. The window queries are similar to a range query in an ordinary B-Tree. However, there is one
basic difference: index pages (internal nodes) are accessed more frequently in the case of the R-Tree than in
the B-Tree case.

For this experiment, 2-dimensional data (100,000 rectangles) and queries from a standardized test bed
[BKSS90] were taken. The maximum number of data rectangles was limited to 450 in the data pages, and to
455 in the directory pages. The query file consisted of 1000 point queries and 400 each of the three different
types of window queries.

Graph To simulate the access patterns found in other data intensive applications (e.g., hypertext or object-
oriented databases), a large directed graph was constructed consisting of 64,000 nodes, each of which was
512 bytes. The nodes were grouped into clusters of 64 where nodes in a cluster were physically localized.
An edge out from a node had a high probability (85%, 90%, 95%) of referencing a node within the same
cluster. Edges leaving a cluster went to a uniformly random selected node. Each experiment consisted of 40
concurrent random walks within the graph, consisting of 500 edge traversals each.

The results of the experiments are presented in Table 9.1. For each query file, three performance mea-
sures were gathered: the CPU time, the elapsed time, and number of pages or buffers read. The CPU time
is the total time spend by all processors in a given test run, and hence, the CPU time may be greater than
the elapsed time. Multiple processors were used in both traditional and memory mapped experiments. The
retrieval application ran on one processor while the access method for the particular file structure ran on
another processor. The elapsed time is the real clock time from the beginning to the end of the test run. Both
times include any system overhead.

The results of the experiments confirm the conjecture that performance of memory-mapped file struc-
tures is equivalent or better than traditional file structures. For the read operations, the memory-mapped
access methods are comparable (

�
10%) to their traditional counterparts. An exception occurs when the

LRU buffer space is only 5% of the file size for sequential reads because the LRU algorithm is suboptimal
in this case while the FIFO page-replacement algorithm is near optimal. For the CPU times, the memory-
mapped access methods are generally better than the traditional ones because there is less time spent doing
buffer management. For the elapsed times, the memory-mapped access methods are comparable (

�
10%)

9.1. EXPERIMENTAL STRUCTURE 49

Primary Memory Size 10% of Database Size
Memory Mapped Traditional

CPU* Elapse Page CPU Elapse Disk
Access Query Time Time Reads Time Time Reads
Method Distr. (secs) (secs) (secs) (secs)

Prefix 1x10,000 35.7 19.7 61 32.2 32.9 53
B-Tree 10x1,000 35.7 19.5 56 32.5 32.6 58

100x100 37.5 22.4 147 35.4 35.7 150
10,000x1 98.1 217.6 8789 240.5 223.6 8746
normal 91.8 181.0 6777 202.3 183.6 6638

R-Tree non-point 154.0 174.5 1414 330.4 334.1 1462
point 109.4 124.1 934 230.5 234.4 896

Network 85% local 318.1 476.1 15294 526.7 458.8 15004
Graph 90% local 271.6 375.5 11278 449.0 370.7 11368

95% local 207.0 243.8 6584 337.7 254.7 6539

Primary Memory Size 5% of Database Size
Memory Mapped Traditional

CPU* Elapse Page CPU Elapse Disk
Access Query Time Time Reads Time Time Reads
Method Distr. (secs) (secs) (secs) (secs)

Prefix 1x10,000 35.5 19.5 61 35.3 35.5 117
B-Tree 10x1,000 35.2 19.6 66 34.2 33.5 131

100x100 37.0 22.1 155 37.4 36.6 216
10,000x1 127.8 255.6 9415 260.7 224.1 9723
normal 126.6 235.8 8250 253.8 217.6 9313

R-Tree non-point 181.3 227.8 2913 367.1 374.5 3396
point 136.8 184.5 2647 279.5 289.6 3491

Network 85% local 383.3 565.8 17772 563.4 495.8 16550
Graph 90% local 330.3 462.1 13602 484.0 403.9 12781

95% local 264.9 316.6 8338 361.9 276.1 7400
CPU times may be greater than elapse time because multiple CPUs are used.

Table 9.1: Access Method Comparison : Node Size 8K

to their traditional counterparts. An exception occurs when memory-mapped access methods perform small
sequential reads because the FIFO page-replacement algorithm is near optimal in this case. All of the results
show that the Sequent page replacement scheme performed comparably to the LRU buffer-manager.

To verify the conjecture on the expected behavior of mapped access methods on a loaded machine,
the previous B-Tree experiments were run during a peak-load period of 20-30 time-sharing users on the
Sequent. The memory mapped and traditional B-Tree retrievals were started at the same time (3:00pm) and
so were competing with each other as well as all other users on the system. The two file structures were on
different disks accessed through different controllers so the OS could not share pages and retrievals were not
interacting at the hardware I/O level. However, the amount of global cache could not be restricted during
the day, so if there was free memory available, the memory-mapped access method would use it indirectly.
Table 9.2 shows the averages of 5 trials. As can be seen, there was a difference only when there were a
significant number of reads. In those cases, the memory-mapped access methods make use of any extra free

50 CHAPTER 9. EXPERIMENTAL PROOF

memory to buffer data. This is particularly noticeable for the normal distribution because any extra memory
significantly reduced the pages read, and hence, the elapse time. Clearly, the LRU buffer manager could
be extended to dynamically increase and decrease buffer space depending on system load, but that further
complicates the buffer manager and duplicates code in the operating system.

Primary Memory Size 10% of Database Size
Memory Mapped Traditional

CPU* Elapse Page CPU Elapse Disk
Access Query Time Time Reads Time Time Reads
Method Distr. (secs) (secs) (secs) (secs)

Prefix 1x10,000 35.8 21.6 60 34.0 35.7 53
B-Tree 10x1,000 36.1 21.8 56 34.8 36.8 58

100x100 37.4 25.24 143 37.0 38.68 150
10,000x1 111.2 277.0 6677 263.4 263.3 8746
normal 97.82 134.5 2063 221.5 217.0 6638

Table 9.2: Peak Load Retrievals : Node Size 8K

9.2 Experimental Analysis of Partitioned B-Tree

The machine used for these experiments was the same Sequent Symmetry with 8 disk drives, of which 4
were used. There were 2 disk controllers, each with 2 channels. The drives were equally divided between the
controllers. The experiment was 1000 range queries with each query consisted of reading a random number
of sequential records starting at a randomly selected initial key. The average query size was 2000 records.
Two partitioned B-Trees were tested, one created using a round-robin partitioning (each block is created on
the next disk) and one created using the Larson-Seeger algorithm [SL91]. The partitioned experiments were
performed with 1–4 partitions and the application program received each record but did no processing on
the record. The results of the experiments appear in the graphs of Figure 9.1. The largest decrease in elapsed
time is from 1 to 2 partitions because there are 2 controllers. After that, the elapse time increases because of
contention on the two controllers.

9.2. EXPERIMENTAL ANALYSIS OF PARTITIONED B-TREE 51

240

260

280

300

320

340

360

380

400

1 2 3 4

Elapse
Time
(sec)

Number of Disks (2 CPUs)

Round Robin
�

�

�

�

�

Seeger-Larson
�

�

�

�

�

240

260

280

300

320

340

360

380

400

1 2 3 4

CPU
Time
(sec)

Number of Disks (2 CPUs)

Round Robin
�

� �
�

�

Seeger-Larson
�

� � � �

Figure 9.1: Backend Concurrency with B-Trees

52 CHAPTER 9. EXPERIMENTAL PROOF

Chapter 10

Related Work

10.1 Related Models

10.1.1 Pointer Swizzling

10.1.2 Reachability

Many current systems (e.g. Cedar, Lisp, Smalltalk, PS-Algol, Napier) use reachability as the fundamental
mechanism that determines the persistence of data: a data item persists as long as some active data item
refers to it, directly or indirectly. Conceptually, this mechanism can be applied as easily locally, to determine
persistence of data items within a single program or process, as globally, to determine persistence of data
that is independent of programs, such as conventional files and databases. This permits special programming
language constructs, such as files, databases, directories, names spaces, etc., to be replaced by simpler arrays
or linked-list structures.

Basing persistence on reachability, however, begs several crucial questions.

� Does reachability have a sensible definition in all circumstances?

� Can the fundamental property of reachability, namely, the prevention of dangling pointers, be guaran-
teed when systems are not necessarily perfect?

� Is it desirable to have all data persist until no references to it exist?

It is unclear to us what the effect of temporarily inaccessible nodes on a distributed system has on
reachability and the programs that manipulate distributed data structures. If a node is inaccessible, then how
can data structures stored in it be used in order to pursue reachable data structures, particularly when data
structures on other nodes are reachable only through the inaccessible node. How long does a node have
to be inaccessible before it is considered to have been removed from the network, thereby permitting data
reachable through it to be reclaimed? What about nodes, such as portable workstations, that can be detached
from the network and reattached at an arbitrary location and time.

We do not believe that any system can guarantee no dangling references over its lifetime. System
failure, data corruption, and other problems will make ensuring this virtually impossible. Therefore, rather
than spend an enormous effort in an attempt to achieve what we believe is not achievable, we suggest a
conservative approach of assuming that dangling references can occur but guaranteeing that a dangling
reference is detectable, at least at the time it is dereferenced. While ensuring that dangling references are
detectable is still non-trivial and has a runtime cost, it is implementable. This is the philosophy taken in many
network communication protocols concerning message delivery. It is more realistic for message senders and

53

54 CHAPTER 10. RELATED WORK

receivers to be ready to deal with a missing or corrupted message packet, then to design a protocol that
guarantees all packets are delivered correctly under all possible circumstances.

Since the system assumes the existence of dangling pointers and checks for them, it is possible to take
advantage of this and provide an explicit deletion operation. This would allow a user to explicitly delete
data in the presences of outstanding references to it. This capability could be used to remove private data
that has “leaked out”, or as a “crisis management” mechanism, for instance, as a way to recover space on an
over-used node of a distributed system.

Underlying the notion of reachability is the concept of a single persistent storage space, the ether, that
encompasses all the real storage devices (disks, etc.) on the system. A data item in the ether is conceptually
always accessible; in other words, when a pointer to it is dereferenced it must be made accessible if it is not
already. This can impose a very substantial burden on the system because the individual data items may be
made accessible independently of one another. Data in the ether is usually made accessible on reference by
copying it to a volatile memory where it is more easily accessed by the processor (i.e. reading data in from
disk to real memory). If data is shared by several processors on a network, it may be quite difficult either
to ensure that only a single copy of each data item is kept in volatile memory or to ensure that multiple
copies are kept consistent with one another. Solving these and related problems may significantly reduce
the performance of the system compared with one that uses more conventional means to deal with persistent
data.

Another problem is in compacting the ether. It makes little sense to compact the ether onto one or more
consecutive machine memories regardless of whether the nodes are distributed or not. This means that the
ether must be subdivided according to the actual hardware memories in order to perform the compaction. If
the ether is subdivided in this way, it is not really an ether but multiple memories with a common addressing
scheme. It should be possible to generalize this dividing into user-definable logical memories, as described
in [BZ89].

Having pointers maintained by the system essentially precludes having programmers write specialized
storage management schemes, one of our objectives mentioned above. The assumption is that the system
will be able to do a good (or, at least, adequate) job of storage management for all data structures.

10.2 Related Systems

As mentioned earlier, the earliest use of memory mapping techniques (or a single-level store) can be found
in the Multics system [BCD72]; however, earlier operating systems were not flexible enough to allow ex-
ploitation of the memory techniques in a serious manner. In recent times, with the development of more
open systems, a number of efforts have been made to use memory mapping. The following discussion
covers the recent work on memory mapping. � Database is most closely related to the first four systems
described below. All of these systems have some common features with � Database; nevertheless, there are
significant differences that make � Database novel. In some cases, the differences are largely to do with the
way the overall system is constructed. The important thing to note is that most of these systems are being
developed independently and in parallel and have been commissioned only in the last few years. There are
few measures yet to judge memory mapped systems by, and hence, all the different approaches have to be
considered as viable.

10.2.1 The Objectstore Database System

The Objectstore Database System [Atw90, LLOW91], developed by Object Design Inc, includes work on
memory mapping that is most closely related to � Database. � Database shares a number of goals and ob-
jectives with Objectstore. Some of these include ease of learning, no translation between the disk-resident

10.2. RELATED SYSTEMS 55

representation of data and the the main memory-resident representation used during execution, full expres-
sive power of a general purpose programming language when accessing persistent data, reusability of code
and virtually all access to data is statically type-checked. � Database has progressed independently of Ob-
jectstore and over a largely overlapping period of time.

Objectstore differs significantly from � Database in how the goals and objectives are achieved. In both
systems, normal programming language pointers (in virtual space) are used to refer to persistent objects as
well as to transient ones. Objectstore does not restrict the maximum size of a single file structure by mapping
portions of it; only the currently accessed pages used by a given transaction are mapped into the address
space of the application. This approach introduces a limit on the number of different data pages that can
be used simultaneously by any single transaction. An operation large enough to reach this maximum limit
has to be broken down into a series of smaller transactions. In � Database, an entire file structure is mapped
into an individual segment. Currently, this approach limits the size of any single file structure to be less
than the virtual space supported by the available hardware; large file structures have to be split into smaller
ones. There is, however, no restriction on how much data a single transaction can access simultaneously.
Admittedly, the restriction imposed in Objectstore may be less severe than the one imposed in � Database,
especially with 32-bit addresses.

The approach used in Objectstore results in an inferior solution to the problem of accessing multiple file
structures from an application. Objectstore maps pages of all the databases used in an application into the
same address space. Each page to be used is dynamically allocated a virtual address where it is mapped. This
means that when a page is mapped into virtual memory, the correspondence of objects and virtual addresses
may have changed. For the pointers stored in the page to be valid, they must be relocated to reflect the
new virtual address of the object. This requires some portion of the type system to be available at runtime,
which is used to locate all pointers stored in a page. Also, the need to relocate pointers has the potential of
degrading performance of the database. This problem is non-existent in � Database because each database
is mapped into a different virtual space and so no relocation of pointers is necessary.

However, in � Database additional copying of data may have to occur from the file structure segment to
the application segment. Some of this copying is unavoidable in any mapped system, including Objectstore.
Overall, we believe that this cost will be less than the total cost of providing relocation and, in general, is
required to protect the integrity of the file structure.

10.2.2 Cricket: A Mapped, Persistent Object Store

Cricket is a database storage system that uses the memory management primitives of the Mach operating
system to provide the abstraction of a “shared, transactional single-level store that can be directly accessed
by user applications” [SZ90a, p. 89]. Cricket follows a client/server paradigm and, upon an explicit request,
maps the database directly into the virtual space of the client application. Cricket is similar to � Database
in that direct memory pointers are used and the database is mapped to the same range of virtual addresses
so that relocation of addresses is not necessary. The fundamental difference from � Database is that the
mapping takes place in the address space of the application, and hence, only one database at a time can be
used by an application. Indeed, the concept of a disk file to group related objects in one collection is not a
basic entity in Cricket and it takes the view that everything that an application needs to use is placed in a
single large persistent store. The designers of Cricket do acknowledge the need to support files (i.e., multiple
collection areas for objects) and plan on providing an implementation for them. It is our contention, though,
that it will be almost impossible to support a truly general implementation of files within the framework of
Cricket’s architecture. We feel that this will lead to a certain amount of awkwardness in organizing various
components of data and in sharing pieces of data across different projects. More importantly, this approach
will not be able to handle partitioning adequately. � Database, on the other hand, builds on top of the concept

56 CHAPTER 10. RELATED WORK

of files to provide multiple, individually sharable collections areas.

10.2.3 Paul Wilson’s work

In [Wil91], Paul Wilson describes a scheme that uses pointer swizzling at page fault time to support huge
address spaces with existing virtual memory hardware. The basic scheme is very similar to the one employed
by the Objectstore system except that in Wilson’s scheme pointers on secondary store can have a format
different from the pointers in primary storage. This allows for the maintenance of a persistent store that is
much larger than the virtual space supported the hardware. Wilson’s scheme requires a special page fault
handler that is responsible for translating (swizzling) of persistent pointers into transient pointers. When a
page fault occurs, all the persistent pointers in the page have to be located and translated, which requires
runtime type information. Since some of the pointers in a page can refer to pages that have not yet been
made available, the translation of these pointers requires that all the referent pages be faulted as well. To
prevent a cascade of I/O operations, Wilson’s scheme only reserves the addresses for these extra pages in
the page table instead of actually mapping them to primary storage. However, this solution underutilizes
the address space and an application can potentially run out of addresses. Wilson suggests periodically
invalidating all the mappings and rebuilding them to deal with this problem. Furthermore, objects that cross
page boundaries require additional language support. Wilson’s scheme is a clear winner for applications
that require extremely large persistent address spaces using existing virtual memory hardware. However,
the scheme is complex and may result in significant overhead, especially for applications with poor locality
of references. Finally, Wilson’s approach has the same problems as Objectstore with regard to dynamic
relocation and multiple accessible databases.

10.2.4 The Bubba database system

The designers of Bubba [BAC
�

90, CFW90], a highly parallel database system developed at Microelectron-
ics and Computer Technology Corporation (MCC), exploited the concept of a single-level store to represent
objects uniformly in a large virtual address space. Cricket borrowed a number of ideas from Bubba. The
focus of Bubba was on developing a scalable shared-nothing architecture which could scale up to thousands
of hardware nodes and the implementation of a single-level store was only a small, though important, por-
tion of the overall project. The current design of � Database is based on a multiprocessor shared-memory
architecture and is not intended to be used in a distributed environment. In Bubba, the Flex/32 version of
AT&T UNIX System V Release 2.2 was extensively modified to build a single-level store, which makes
their store highly unportable. � Database runs on any UNIX system that supports the mmap system call.
Finally, the programming interface to Bubba is FAD, a parallel database programming language.

The Bubba database system The designers of Bubba [BAC
�

90, CFW90], a highly parallel database
system developed at Microelectronics and Computer Technology Corporation (MCC), exploited the concept
of a single-level store to represent objects uniformly in a large virtual address space. Cricket borrowed a
number of ideas from Bubba. The focus of Bubba was on developing a scalable shared-nothing architecture
which could scale up to thousands of hardware nodes and the implementation of a single-level store was
only a small, though important, portion of the overall project. The current design of � Database is based on
a multiprocessor shared-memory architecture and is not intended to be used in a distributed environment.
In Bubba, the Flex/32 version of AT&T UNIX System V Release 2.2 was extensively modified to build a
single-level store, which makes their store highly unportable. Finally, the programming interface to Bubba
is FAD, a parallel database programming language.

10.3. CONCLUSION 57

10.2.5 Others

The following are other known efforts at exploiting mapped files that are quite different from this work and
are not discussed here for lack of space. The Camelot Distributed Transaction System [STP

�

87], IBM’s
801 prototype hardware architecture [CM88], The Clouds Distributed Operating System [DLA87, PP88],
[Peter van Oosterom [vO90], The Hurricane Operating System [SUK92].

10.3 Conclusion

We have shown that memory mapping is an attractive alternative for implementing file structures for databases.
Memory-mapped file structures are simpler to code, debug and maintain, while giving comparable perfor-
mance when used stand-alone or on a loaded system than for traditional databases. Further, buffer man-
agement supplied through the page-replacement scheme of the operating system seems to provide excellent
performance for many different access patterns. Our design for structuring the low-level portions of a DBMS
for memory mapping provides the necessary environment to implement concurrency control and recovery.
Finally, these benefits can be made available in tool kit form on any UNIX system that supports the mmap
system call. Currently, � Database is only missing recovery facilities and these will be added in the near
future.

58 CHAPTER 10. RELATED WORK

Chapter 11

Miscellaneous

11.1 Contributors

While many people have made numerous suggestions, the following people were instrumental in turning
this project from an idea into reality. Bob Zarnke and Peter Buhr kicked around many of the initial ideas in
[Buh85]. Peter Buhr and Anil Goel firmed up the ideas and started building proof-of-concept experiments
to see what could be implemented [BGW92]. The results of the experiments began to be integrated into
a coherent package, which became � Database. Andy Wai wrote the first version of the heap memory-
management tools [Wai92]. David Clarke helped with some of the early experiments and always kept us
honest. Paul Larson and Berhard Seeger helped by vetting experimental results and in initially doubting that
it would work at all.

59

60 CHAPTER 11. MISCELLANEOUS

Bibliography

[ABC
�

83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R. Morrison. An Approach
to Persistent Programming. The Computer Journal, 26(4):360–365, November 1983.

[Atw90] Thomas Atwood. Two Approaches to Adding Persistence to C++. In A. Dearle et al, editor,
Implementing Persistent Object Bases: Principles and Practise, Proceedings of the Fourth In-
ternational Workshop on Persistent Object Systems, pages 369–383. Morgan Kaufmann, 1990.

[BAC
�

90] H. Boral, W. Alexender, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith,
and P. Valduriez. Prototying Bubba, A Highly Parallel Database System. IEEE Transactions
on Knowledge and Data Engineering, 2(1):4–24, March 1990.

[BCD72] A. Bensoussan, C. T. Clingen, and R. C. Daley. The Multics Virtual Memory: Concepts and
Design. Communications of the ACM, 15(5):308–318, May 1972.

[BDS
�

92] P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke. � C++:
Concurrency in the Object-Oriented Language C++. Software—Practice and Experience,
22(2):137–172, February 1992.

[BGW92] Peter A. Buhr, Anil K. Goel, and Anderson Wai. � Database : A Toolkit for Constructing
Memory Mapped Databases. In Antonio Albano and Ron Morrison, editors, Persistent Object
Systems, pages 166–185, San Miniato, Italy, September 1992. Springer-Verlag. Workshops in
Computing, Ed. by Professor C. J. van Rijsbergen, QA76.9.D3I59.

[BKSS90] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R
�

-Tree: An Efficient and
Robust Access Method for Points and Rectangles. In ACM SIGMOD, pages 322–331, 1990.

[BU77] Rudolf Bayer and Karl Unterauer. Prefix B-Trees. ACM Transactions on Database Systems,
2(1):11–26, March 1977.

[Buh85] P. A. Buhr. A Programming System. PhD thesis, University of Manitoba, 1985.

[BZ86] P. A. Buhr and C. R. Zarnke. A Design for Integration of Files into a Strongly Typed Pro-
gramming Language. In Proceedings IEEE Computer Society 1986 International Conference
on Computer Languages, pages 190–200, Miami, Florida, U.S.A, October 1986.

[BZ88] P. A. Buhr and C. R. Zarnke. Nesting in an Object Oriented Language is NOT for the Birds.
In S. Gjessing and K. Nygaard, editors, Proceedings of the European Conference on Object
Oriented Programming, volume 322, pages 128–145, Oslo, Norway, August 1988. Springer-
Verlag. Lecture Notes in Computer Science, Ed. by G. Goos and J. Hartmanis.

61

62 BIBLIOGRAPHY

[BZ89] P. A. Buhr and C. R. Zarnke. Addressing in a Persistent Environment. In John Rosenburg and
David Koch, editors, Persistent Object Systems, pages 200–217, Newcastle, New South Wales,
Australia, January 1989. Springer-Verlag. Workshops in Computing, Ed. by Professor C. J. van
Rijsbergen, QA76.64.I57.

[CAC
�

84] W. P. Cockshott, M. P. Atkinson, K. J. Chisholm, P. J. Bailey, and R. Morrison. Persistent
Object Management System. Software – Practice and Experience, 14(1):49–71, 1984.

[CD85] Hong-Tai Chou and David J. DeWitt. An Evaluation of Buffer Management Strategies for
Relational Database Systems. In A. Pirotte and Y. Vassiliou, editors, Proceedings of the 11th
International Conference on Very Large Data Bases, pages 127–141, Stockholm, August 1985.

[CFW90] George Copeland, Michael Franklin, and Gerhard Weikum. Uniform Object Management.
In Advances in Database Technology – Proc. European Conference on Database Technology,
pages 253–268, Venice, Italy, March 1990.

[CM88] A. Chang and M. Mergen. 801 Storage: Architecture and Programming. ACM Transactions on
Computer Systems, 6(1):28–50, January 1988.

[DLA87] P. Dasgupta, R. J. LeBlanc, Jr., and W. F. Appelbe. The Clouds Distributed Operating System:
Functional Descriptions, Implementation Details and Related Work. Technical Report GIT-
ICS-87/42, School of Information and Computer Science, Georgia Institute of Technology,
1987.

[Gut84] A. Guttman. R-trees: a dynamic index structure for spatial searching. In ACM SIGMOD, pages
47–57, 1984.

[IBM78] System/38 Services Overview. IBM, 1978.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice Hall
Software Series. Prentice Hall, second edition, 1988.

[LAB
�

81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert Schei-
fler, and Alan Snyder. CLU Reference Manual, volume 114 of Lecture Notes in Computer
Science. Springer-Verlag, 1981.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Objectstore Database System. Commu-
nications of the ACM, 34(10):50–63, October 1991.

[MBC
�

89] R. Morrison, A. Brown, R. Carrick, R. Connor, A. Dearle, and M. P. Atkinson. The Napier
Type System. In John Rosenberg and David Koch, editors, Persistent Object Systems, pages
3–18, University of Newcastle, New South Wales, Australia, January 1989. Springer-Verlag.
Workshops in Computing, Ed. by Professor C. J. van Rijsbergen, QA76.64.I57.

[Mip91] MIPS R4000 Microprocessor User’s Manual. MIPS Computer Systems Inc, 1991.

[Mos90] J. Moss. Working with Persistent Objects: To Swizzle or Not to Swizzle. Technical Report CS
90-38, CS Department, University of Massachusetts, May 1990.

[Org72] E. I. Organick. The Multics System. The MIT Press, Cambridge, Massachusetts, 1972.

[PGK88] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant Arrays of Inexpensive
Disks(RAID). In ACM SIGMOD, pages 109–116, June 1988.

BIBLIOGRAPHY 63

[PP88] D. V. Pitts and Dasgupta P. Object Memory and Storage Management in the Clouds Kernel.
Proceedings of the 8th International Conference on Distributed Computing Systems, pages 10–
17, June 1988.

[PS-87] The PS-Algol Reference Manual, 4th Ed. Technical Report PPRR 12, University of Glasgow
and St. Andrews, Scotland, June 1987.

[RCS93] Joel E. Richardson, Michael J. Carey, and Daniel T. Schuh. The Design of the E Programming
Language. ACM Transactions on Programming Languages and Systems, 15(3):494–534, July
1993.

[RKA92] J. Rosenberg, J. L. Keedy, and D. A. Abramson. Addressing Mechanisms for Large Virtual
Memories. The Computer Journal, 35(4):369–375, August 1992.

[RM89] K. Rothermel and C. Mohan. ARIES/NT: A Recovery Method Based on Write-Ahead Logging
for Nested Transactions. In Proceedings of the 15th International Conference on Very Large
Data Bases, pages 337–346, Palo Alto, Ca, August 1989. Morgan Kaufmann Publishers Inc.

[SL91] Bernhard Seeger and Per-Ake Larson. Multi-Disk B-trees. In ACM SIGMOD, pages 436–445,
Denver, Colorado, USA, June 1991.

[Smi85] A. J. Smith. Disk Cache – Miss Ratio Analysis and Design Consideration. ACM Transactions
on Computer Systems, 3(3):161–203, August 1985.

[STP
�

87] Alfred Z. Spector, D. Thompson, R. F. Pausch, J. L. Eppinger, D. Duchamp, R. Draves, D. S.
Daniels, and J. L. Bloch. Camelot: A Distributed Transaction Facility for Mach and the Internet
- An Interim Report. Technical Report CMU-CS-87-129, Carnegie Mellon University, 1987.

[SUK92] M. Stumm, R. Unrau, and O. Krieger. Designing a Scalable Operating System for Shared
Memory Multiprocessors. USENIX Workshop on Micro-Kernels and Other Kernel Architec-
tures, pages 285–303, April 1992.

[Sun90] System Services Overview. Sun Microsystems, 1990.

[SZ90a] Eugene Shekita and Michael Zwilling. Cricket: A Mapped, Persistent Object Store. In
A. Dearle et al., editors, Implementing Persistent Object Bases: Principles and Practise, Pro-
ceedings of the Fourth International Workshop on Persistent Object Systems”, pages 89–102.
Morgan Kaufmann, 1990.

[SZ90b] M. Stumm and S. Zhou. Algorithms Implementing Distributed Shared Memory. IEEE Com-
puter, 23(5):54–64, May 1990.

[TRY
�

87] A. Tevanian, Jr., R. F. Rashid, M. W. Young, D. B. Golub, M. R. Thompson, W. Bolosky, and
R. Sanzi. A Unix Interface for Shared Memory and Memory Mapped Files Under Mach. In
Proceedings of the Summer 1987 USENIX Conference, pages 53–67, Phoenix, Arizona, June
1987. USENIX Association.

[vO90] Peter van Oosterom. Reactive Data Structures for Geographic Information Systems. Ph.D.
Thesis, Dept. of CS, Leiden University, December 1990.

[Wai92] Anderson Wai. Storage Management Support for Memory Mapping. Master’s thesis, De-
partment of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1,
1992.

64 BIBLIOGRAPHY

[WF90] K.L. Wu and W.K. Fuchs. Recoverable Distributed Shared Virtual Memory. IEEE Transactions
on Computers, 39(4):460–469, April 1990.

[Wil91] Paul R. Wilson. Pointer Swizzling at Page Fault Time: Efficiently Supporting Huge Address
Spaces on Standard Hardware. Computer Architecture News, 19(4):6–13, June 1991.

[WZS91] Gerhard Weikum, Peter Zabbak, and Peter Scheuermann. Dynamic File Allocation in Disk
Arrays. In ACM SIGMOD, pages 406–415, Denver, Colorado, USA, June 1991.

Index

access class, 25
access method, 4
address space, 13

backend concurrency, 34

contributors, 59

demand paging, 5
demand segmentation, 5
design methodology, 9
double paging, 6

expansion abstract class, 18
expansion exit, 18
expansion object, 18

file structure, 4
frontend concurrency, 35

generator, 25

heap, 13

load balancing, 34

memory manager classes, 14
memory mapping, 3, 5
memory-resident databases, 3
Multics, 3

object descriptor, 18
object store, 3
orthogonal persistence, 3

page replacement, 5
paging, 5
parallelism, 33
partitioning, 34
persistent area, 3, 9
primary storage, 3
private memory, 10

reachability, 9
Rep, 15

created, 15
resize, 15
size, 15
start, 15

RepAccess, 15
created, 15
resize, 15
size, 15
start, 15

representative, 10, 14
RepWrapper, 17

secondary storage, 3
segment, 5, 13
segment base address, 10, 15
shared memory, 10
single-level store, 3
striping, 34

uDynamic, 20
alloc, 20
free, 20
sethsize, 20

uExpand, 19
expand, 19

uUniform, 19
alloc, 19
free, 19
sethsize, 19

uVariable, 20
alloc, 20
free, 20
sethsize, 20

virtual memory, 3
virtual zero, 10

working set, 3
wrapper class, 17

65

