
� C++: Concurrency in the Object-Oriented Language C++
P. A. Buhr*, Glen Ditchfield*, R. A. Stroobosscher*, B. M. Younger*, C. R. Zarnke**

* Dept. of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
(519) 888-4453, Fax: (519) 885-1208, E-mail: pabuhr@watmsg.uwaterloo.ca

** Hayes Canada Inc., 175 Columbia St. W., Waterloo, Ontario, Canada, N2L 5Z5

SUMMARY

We present a design, including its motivation, for introducing concurrency into C++. The design work is
based on a set of requirements and elementary execution properties that generate a corresponding set of
programming language constructs needed to express concurrency. The new constructs continue to sup-
port object-oriented facilities like inheritance and code reuse. Features that allow flexibility in accepting
and subsequently postponing servicing of requests are provided. Currently, a major portion of the design
is implemented, supporting concurrent programs on shared-memory uniprocessor and multiprocessor
computers.

KEY WORDS: Concurrency, C++, Class-based Objects, Postponing Requests

INTRODUCTION

The goal of this work is to introduce concurrency into the object-oriented language C++ [1]. To achieve this goal a set
of important programming language abstractions were adapted to C++, producing a new dialect, which we have called

� C++. These abstractions were derived from a set of design requirements and combinations of elementary execution
properties, different combinations of which categorized existing programming language abstractions and suggested
new ones. The set of important abstractions contains those needed to express concurrency, as well as some that are
not directly related to concurrency. Therefore, while the focus of the paper is on concurrency, all the abstractions
produced from the elementary properties are discussed. While we are implementing our ideas as an extension to C++,
the requirements and elementary properties are generally applicable to other object-oriented languages such as Eiffel
[2], Simula [3] and Trellis/Owl [4].

Combinations of the elementary execution properties produced four abstractions: coroutine, monitor, coroutine-
monitor, and task. Each of these abstractions was introduced into C++ through new type specifier that produced
new kinds of objects. As well, other new constructs were introduced to control interactions among the new objects.
A detailed examination is made of how inheritance affects these constructs. Several comparisons are made with
concurrency-library schemes for C++ and other concurrent programming languages.

In general, casting the new constructs into a concrete syntax for a new programming language should have been
straightforward. However, because we added the constructs to an existing language, C++, we did not have complete
freedom of design, but had to conform to C++’s existing design. Blending each construct with the syntax, the semantics,
and the philosophy of C++was an interesting engineering exercise. The selection of C++ was driven by pragmatic
reasons—C++ already supports a general object creation facility, the class, on which we could base other kinds of
object creation facilities, and C++ is becoming popular and readily available.

� C++ executes on uniprocessor and multiprocessor shared-memory computers. On a uniprocessor, concurrency
is achieved by interleaving execution to give the appearance of parallel execution. On a multiprocessor computer,
concurrency is accomplished by a combination of interleaved execution and true parallel execution. Further, � C++ uses
a single-memory model. This single memory may be the address space of a single UNIX process or a memory shared
among a set of UNIX processes. A memory is populated by routine activations, class-objects, coroutines, monitors,
coroutine-monitors and concurrently executing tasks, all of which have the same addressing scheme for accessing
the memory. Because these entities use the same memory they can be light-weight, so there is a low execution
cost for creating, maintaining and communicating among them. This has its advantages as well as its disadvantages.

c
�

John Wiley & Sons, Ltd, Software–Practice and Experience, 20(2), Feb, 1992

1

Communicating objects do not have to send large data structures back and forth, but can simply pass pointers to data
structures. However, this technique does not lend itself to a distributed environment with separate address-spaces.
Currently, we are looking at the approaches taken by distributed shared-memory systems to see if they provide the
necessary implementation mechanisms to make the non-shared memory case similar to the shared-memory case.

DESIGN REQUIREMENTS

The following requirements directed this work:

� All communication among the new kinds of objects must be statically type checkable. We believe that static
type checking is essential for early detection of errors and efficient code generation. (As well, this requirement
is consistent with the fact that C++ is a statically typed programming language.)

� Interaction between the different kinds of objects should be possible, and in particular, interaction between
concurrent objects, called tasks, should be possible. This allows a programmer to choose the kind of object best
suited to the particular problem without having to cope with communication restrictions.

This is in contrast to schemes where some objects, such as tasks, can only interact indirectly through another
non-task object. For example, many programming languages that support monitors [5, 6, 7] require that all
communication among tasks be done indirectly through a monitor; similarly, the Linda system [8] requires
that all communication take place through one or possibly a small number of tuple spaces. This increases the
number of objects in the system; more objects consume more system resources, which slows the system. As
well, communication among tasks is slowed because of additional synchronization and data transfers with the
intermediate object.

� All communication between objects is performed using routine calls; data is transmitted by passing arguments to
parameters and results are returned as the value of the routine call. We believe it is confusing to have additional
forms of communication in a language, such as message passing, message queues, or communication ports.

� Any of the new kinds of objects should have the same declaration scopes and lifetimes as existing objects. That
is, any object can be declared at program startup, during routine and block activation, and on demand during
execution, using a new operator.

� All mutual exclusion must be implicit in the programming language constructs and all synchronization should
be limited in scope. It is our experience that requiring users to build mutual exclusion out of synchronization
mechanisms, e.g. locks, often leads to incorrect programs. Further, we have noted that reducing the scope in
which synchronization can be used, by encapsulating it as part of programming language constructs, further
reduces errors in concurrent programs.

� Both synchronous and asynchronous communication are needed. However, we believe that the best way to sup-
port this is to provide synchronous communication as the fundamental mechanism; asynchronous mechanisms,
such as buffering or futures [9], can then be built when that is appropriate. Building synchronous communi-
cation out of asynchronous mechanisms requires a protocol for the caller to subsequently detect completion.
This is error prone because the caller may not obey the protocol (e.g. never retrieve a result). Further, asyn-
chronous requests require the creation of implicit queues of outstanding requests, each of which must contain
a copy of the arguments of the request. This creates a storage management problem because different requests
require different amounts of storage in the queue. We believe asynchronous communication is too complicated
a mechanism to be hidden in the system.

� An object that is accessed concurrently must have some control over which requester it services next. There are
two distinct approaches: control can be based on the kind of request, for example, selecting a requester from
the set formed by calls to a particular entry point; or control can be based on the identity of the requester. In
the former case, it must be possible to give priorities to the sets of requesters. This is essential for high priority
requests, such as a time out or a termination request. (This is to be differentiated from giving priority to elements
within a set or execution priority.) In the latter case, selection control is very precise as the next request must
only come from the specified requester. Currently, we see a need for only the former case because we believe
that the need for the latter case is small.

2

� There must be flexibility in the order that requests are completed. This means that a task can accept a request and
subsequently postpone it for an unspecified time, while continuing to accept new requests. Without this ability,
certain kinds of concurrency problems are quite difficult to implement, e.g. disk scheduling, and the amount of
concurrency is inhibited as tasks are needlessly blocked [10].

We have satisfied all of these requirements in � C++.

ELEMENTARY EXECUTION PROPERTIES

We have developed extensions to the object concept based on the following execution properties:

thread – is execution of code that occurs independently of other execution; a thread defines sequential execution.
Conceptually, a thread is a virtual processor whose function is to advance execution by changing execution
state. Multiple threads provide concurrent execution. A programming language must provide constructs that
permit the creation of new threads and specify how threads are used to accomplish computation. Further, there
must be programming language constructs whose execution causes threads to block and subsequently be made
ready for execution. A thread is either blocked or running or ready. A thread is blocked when it is waiting for
some event to occur. A thread is running when it is executing on an actual processor. A thread is ready when
it is eligible for execution but not being executed.

execution-state – An execution-state is the state information needed to permit concurrent execution, even if it is not
used for concurrent execution. An execution-state is either active or inactive, depending on whether or not it is
currently being used by a thread. In practice, an execution-state consists of the data items created by an object,
including its local data, local block and routine activations, and a current execution location, which is initialized
to a starting point. The local block and routine activations are often maintained in a contiguous stack, which
constitutes the bulk of an execution-state and is dynamic in size, and is the area where the local variables and
execution location are preserved when an execution-state is inactive. A programming language knows what
constitutes an execution-state, and therefore, execution-state is an elementary property of the semantics of a
language. An execution-state is related to the notion of a process continuation [11]. When a thread transfers
from one execution-state to another, it is called a context switch.

mutual exclusion – is the mechanism that permits an action to be performed on a resource without interruption by
other actions on the resource. In a concurrent system, mutual exclusion is required to guarantee consistent gen-
eration of results, and cannot be trivially or efficiently implemented without appropriate programming language
constructs.

The first two properties seem to be fundamental and not expressible in terms of simpler properties; they represent the
minimum needed to perform execution. The last, while expressible in terms of simpler concepts, can only be done
by algorithms that are error-prone and inefficient, e.g. Dekker-like algorithms, and therefore we believe that mutual
exclusion must be provided as an elementary execution property.

A programming language designer could attempt to provide these 3 execution properties as basic abstractions in
a programming language [12], allowing users to construct higher-level constructs from them. However, some com-
binations might be inappropriate or potentially dangerous. Therefore, we will examine all combinations, analyzing
which combinations make sense and are appropriate as higher-level programming language constructs. What is inter-
esting is that enumerating all combination of these elementary execution properties produces many existing high-level
abstractions and suggests new ones that we believe merit further examination.

The three execution properties are properties of objects. Therefore, an object may or may not have a thread, may
or may not have an execution-state, and may or may not have mutual exclusion. Different combinations of these three
properties produce different kinds of objects. If an object has mutual exclusion, this means that execution of certain
member routines are mutually exclusive of one another. Such a member routine is called a mutex member. In the
situation where an object does not have the minimum properties required for execution, i.e. thread and execution-state,
those of its user (caller) are used.

Table 1 shows the different abstractions possible when an object possesses different execution properties. Case 1
is objects, such as routines or class-objects that have none of the execution properties. In this case, the caller’s thread
and execution-state are used to perform the execution. Since this kind of object provides no mutual exclusion, it is

3

normally accessed only by a single task. If such an object is accessed by several tasks, extreme care must be exercised
to assure correct execution. Case 2 is like Case 1 but deals with the concurrent access problem by implicitly ensuring
mutual exclusion for the duration of each computation by a member routine. This abstraction is a monitor [13]. Case
3 is an object that has its own execution-state but no thread. Such an object uses its caller’s thread to advance its own
execution-state and usually, but not always, returns the thread back to the caller. This abstraction is a coroutine [14].
Case 4 is like Case 3 but deals with the concurrent access problem by implicitly ensuring mutual exclusion; we have
adopted the name coroutine-monitor for it. Cases 5 and 6 are objects with a thread but no execution-state. Both cases
are rejected because the thread cannot be used to provide additional concurrency. First, the object’s thread cannot
execute on its own since it does not have an execution-state, so it cannot perform any independent actions. Second,
if the caller’s execution-state is used, assuming the caller’s thread can be blocked to ensure mutual exclusion of the
execution-state, the effect is to have two threads successively executing portions of a single computation, which does
not seem useful. Case 7 is an object that has its own thread and execution-state. Because it has both a thread and
execution-state it is capable of executing on its own; however, it lacks mutual exclusion. Without mutual exclusion,
access to the object’s data is unsafe; therefore, servicing of requests would, in general, require explicit locking, which
violates a design requirement. Further, there is no performance advantage over case 8. For these reasons, we have
rejected this case. Case 8 is like Case 7 but deals with the concurrent access problem by implicitly ensuring mutual
exclusion.

object properties object’s member routine properties
no implicit implicit

thread execution-state mutual exclusion mutual exclusion

no no 1 class-object 2 monitor
no yes 3 coroutine 4 coroutine-monitor
yes no 5 (rejected) 6 (rejected)
yes yes 7 (rejected) 8 task

Table 1: Fundamental Abstractions

The abstractions suggested by this categorization come from fundamental properties of execution and not ad hoc
decisions of a programming language designer. While it is possible to simplify the programming language design by
only supporting the task abstraction [15], which provides all the elementary execution properties, this would unnec-
essarily complicate and make inefficient solutions to certain problems. As will be shown, each of the non-rejected
abstractions produced by this categorization has a particular set of problems that it can solve, and therefore, each has
a place in the programming language. If one of these abstractions is not present, a programmer may be forced to
contrive a solution for some problems that violates abstraction or is inefficient.

EXTENDING C++

Operations in � C++ are expressed explicitly, i.e. the abstractions derived from the elementary properties are used to
structure a program into a set of objects that interact, possibly concurrently, to complete a computation. This is to
be distinguished from implicit schemes such as those that attempt to discover concurrency in an otherwise sequential
program, for example, by parallelizing loops and access to data structures. While both schemes are complementary,
and hence, can appear together in a single programming language, we believe that implicit schemes are limited in their
capacity to discover concurrency, and therefore, the explicit scheme is essential. Currently, � C++ only supports the
explicit approach, but nothing in its design precludes implicit approaches.

The abstractions in Table 1 are expressed in � C++ using two new type specifiers, uCoroutine and uTask, which are
extensions of the class construct, and hence, define new types. In this paper, the types defined by the class construct
and the new constructs are called class types, monitor types, coroutine types, coroutine-monitor types and task
types, respectively. The terms class-object, monitor, coroutine, coroutine-monitor and task refer to the objects
created from such types. The term object is the generic term for any instance created from any type. All objects can
be declared externally, in a block, or using the new operator. Two new type qualifiers, uMutex and uNoMutex, are also
introduced to specify the presence or absence of mutual exclusion on the member routines of a type (see Table 2). The
default qualification values have been chosen based on the expected frequency of use of the new types. Several new

4

statements are added to the language: uSuspend, uResume, uCoDie, uAccept, uWait, uSignal and uDie. Each is used
to affect control in objects created by the new types. (The prefix “u” followed by a capital letter for the new keywords
avoids current and future conflicts with UNIX routine names, e.g. accept, wait, signal, and C++ library names, e.g.
task.) Appendix A shows how the extensions are added to the C++ grammar.

object properties object’s member routine properties
no implicit implicit

thread execution-state mutual exclusion mutual exclusion

no no [uNoMutex]
�

class uMutex class
no yes [uNoMutex] uCoroutine uMutex uCoroutine
yes yes N/A [uMutex] uTask�

[] implies default qualification if not specified

Table 2: New Type Specifiers

COROUTINE

A coroutine is an object with its own execution-state so its execution can be suspended and resumed. Execution of
a coroutine is suspended as control leaves it, only to carry on from that point when control returns at some later
time. This means that a coroutine is not restarted at the beginning on each activation and that its local variables
are preserved. Hence, a coroutine solves the class of problems associated with finite-state machines and push-down
automata, which are logically characterized by the ability to retain state between invocations. In contrast, a subroutine
or member routine always executes to completion before returning so that its local variables only persist for a particular
invocation. A coroutine executes serially, and hence there is no concurrency implied by the coroutine construct.
However, the ability of a coroutine to suspend its execution-state and later have it resumed is the precursor to true
tasks but without concurrency problems; hence, a coroutine is also useful to have in a programming language for
teaching purposes because it allows incremental development of these properties.

A coroutine type has all the properties of a class. The general form of the coroutine type is the following:

[uNoMutex] uCoroutine coroutine-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
void main(); // starting member

public:
. . . // these members are visible externally

};

The coroutine type has one distinguished member, named main. Instead of allowing direct interaction with main, we
have chosen to make its visibility private or protected; therefore, a coroutine can only be activated indirectly by one of
the coroutine’s member routines. A user interacts with a coroutine indirectly through its member routines. This allows
a coroutine type to have multiple public member routines to service different kinds of requests that are statically type
checked. main cannot have parameters, but the same effect can be accomplished indirectly by passing arguments to
the constructor for the coroutine and storing these values in local variables, which can be referenced by main.

A coroutine can suspend its execution at any point by activating another coroutine. This can be done in two ways.
First, a coroutine can implicitly reactivate the coroutine that previously activated it. Second, a coroutine can explicitly
invoke a member of another coroutine, which causes activation of the coroutine that it is a member of. Hence, two
different styles of coroutine are possible, based on whether implicit activation is used. A semi-coroutine always
activates the member routine that activated it; a full coroutine calls member routines in other coroutines that cause
execution of that coroutine to be activated.

Coroutines can be simulated without using a separate execution-state, e.g. using a class, but this is difficult and
error-prone for more than a small number of activation points. All data needed between activations must be local to
the class and the coroutine structure must be written as a series of cases, each ending by recording the next case that

5

will be executed on re-entry. Simulating a coroutine with a subroutine requires retaining data in variables with global
scope or variables with static storage-class between invocations. However, retaining state in these ways violates the
principle of abstraction and does not generalize to multiple instances, since there is only one copy of the storage in both
cases. Simulating a coroutine with a task, which also has an execution-state, is non-trivial because the organizational
structure of a coroutine and task are different. Further, simulating full coroutines that form a cyclic call-graph is not
possible with tasks because of a task’s mutual exclusion, which would cause deadlock. Finally, a task is inefficient for
this purpose because of the higher cost of switching both a thread and execution-state as opposed to just an execution-
state. In our implementation, the cost of communication with a coroutine is, in general, less than half the cost of
communication with a task, unless the communication is dominated by transferring data (see benchmark timings in
Appendix D).

Coroutine Creation and Destruction

A coroutine is the same as a class-object with respect to creation and destruction, as in:
uCoroutine C {

void main() . . .
public:

void r(. . .) . . .
};
C *cp; // pointer to a C coroutine
{ // start a new block

C c, ca[3]; // local creation
cp = new C; // dynamic creation
. . .
c.r(. . .); // call a member routine that activates the coroutine
ca[1].r(. . .); // call a member routine that activates the coroutine
cp->r(. . .); // call a member routine that activates the coroutine
. . .

} // c, ca[0], ca[1] and ca[2] are destroyed
. . .
delete cp; // cp’s instance is destroyed

When a coroutine is created the following occurs. The appropriate coroutine constructor and any base-class con-
structors are executed in the normal order. The stack component of the coroutine’s execution-state is then created and
the starting point (activation point) is initialized to the coroutine’s main routine; however, the main routine does not
start execution until the coroutine is activated by one of its member routines. The location of a coroutine’s variables—
in the coroutine’s local data area or in routine main—depends on whether the variables must be accessed by member
routines other than main. Once main is activated, it executes until it activates another coroutine or terminates. The
coroutine’s point of last activation may be outside of the main routine because main may have called another routine;
the routine called could be local to the coroutine or in another coroutine.

A coroutine terminates when its main routine terminates or when the statement uCoDie is executed. uCoDie allows
a coroutine to be terminated in a routine other than main. When a coroutine terminates, it activates the coroutine or
task that caused main to start execution. This choice was made because the start sequence is a tree, i.e. there are no
cycles. A thread can move in a cycle among a group of coroutines but termination always proceeds back along the
branches of the starting tree. This choice for termination does impose certain requirements on the starting order of
coroutines, but it is essential to ensure that cycles can be broken at termination. An attempt to communicate with a
terminated coroutine is an error.

Like a routine or class, a coroutine can access all the external variables of a C++ program and the heap area. Also,
any static member variables declared within a coroutine are shared among all instances of that coroutine type. If a
coroutine makes global references or has static variables and is instantiated by different tasks, there is the general
problem of concurrent access to such shared variables.

Inherited Members

Each coroutine type, if not derived from some other coroutine type, is implicitly derived from the coroutine type
uBaseCoroutine, as in:

6

uCoroutine coroutine-name : public uBaseCoroutine {
. . .

};

where the interface for the base class uBaseCoroutine is as follows:

uCoroutine uBaseCoroutine {
protected:

void uSaveFloatRegs();
public:

uBaseCoroutine();
uBaseCoroutine(int stackSize);
void uVerify();

};

The protected member routine uSaveFloatRegs causes the additional saving of the floating point registers during
a context switch for a coroutine. In most systems, e.g. UNIX, the entire state of the actual processor is saved during a
context switch because there is no way to determine if a particular object is using only a subset of the actual processor
state. All objects use the fixed-point registers, while only some use the floating-point registers. Because there is a
significant execution cost in saving and restoring the floating-point registers, we have decided not to automatically
save them. Hence, in � C++ the fixed-point registers are always saved during a context switch, but it may or may not be
necessary to save the floating-point registers. If a coroutine or task performs floating-point operations, it must invoke
uSaveFloatRegs immediately after starting execution. From that point on, both the fixed-point and floating-point
registers are saved during a context switch.

The overloaded constructor routine uBaseCoroutine has the following forms:

uBaseCoroutine() – creates the coroutine with the stack size for its execution-state specified by the current cluster’s
default stack size, a machine dependent value no less than 4000 bytes. (A cluster is a collection of tasks and
virtual processors that execute those tasks and is created from the class-type uCluster. The purpose of a cluster
is to control the amount of parallelism that is possible among concurrent tasks on multiprocessor computers
and is described in detail in Reference [16].)

uBaseCoroutine(int stackSize) – creates the coroutine on the current cluster with the specified stack size (in
bytes).

A coroutine type can be designed to allow declarations to specify the size of the stack by doing the following:
uCoroutine C {

public:
C() : uBaseCoroutine(8192) {}; // default 8K stack
C(int i) : uBaseCoroutine(i) {}; // user specified stack size
. . .

};

C x, y(16384); // x has an 8K stack, y has a 16K stack

The member routine uVerify checks whether the current coroutine has overflowed its stack. If it has, the program
terminates. It is suggested that a call to uVerify be included after each set of declarations, as in the following example:

void main() {
. . . // declarations
uVerify(); // check for stack overflow
. . . // code

}

Thus, after a coroutine has allocated its local variables, a verification is made that the stack was large enough to contain
them. In the future, we plan to automatically insert calls to uVerify to ensure that any stack violation will be caught.

The free routine:
uBaseCoroutine &uThisCoroutine();

is used to determine the identity of the current coroutine. Because it returns a reference to the base coroutine type,
uBaseCoroutine, this reference can only be used to access the public routines of type uBaseCoroutine. For example, a

7

free routine can check whether the allocation of its local variables has overflowed the stack of a coroutine that called
it by performing the following:

int FreeRtn(. . .) {
. . . // declarations
uThisCoroutine().uVerify(); // check for stack overflow
. . . // code

}

Coroutine Control and Communication

Control flow among coroutines is specified by the uResume and uSuspend statements. The uResume statement is
used only in the member routines; it always activates the coroutine in which it is specified, and consequently, causes
the caller of the member routine to become inactive. The uSuspend statement is used only within the coroutine body,
not its member routines; it causes the coroutine to become inactive, and consequently, to activate the caller that most
recently activated the coroutine. In terms of the execution properties, these statements redirect a thread to a different
execution-state. The execution-state can be that of a coroutine or the current task, i.e. a task’s thread can execute using
its execution-state, then several coroutine execution-states, and then back to the task’s execution-state. Therefore,
these statements activate and deactivate execution-states, and do not block and restart threads.

A semi-coroutine is characterized by the fact that it always activates its caller, as in the producer-consumer example
of Figure 1. Notice the explicit call from Prod’s main routine to delivery and then the return back when delivery
completes. delivery always activates its coroutine, which subsequently activates delivery. Appendix B shows a complex
binary insertion sort using a semi-coroutine.

A full coroutine is characterized by the fact that it never activates its caller; instead, it activates another coroutine
by invoking one of its member routines. Thus, full coroutines activate one another often in a cyclic fashion, as
in the producer-consumer example of Figure 2. Notice the uResume statements in routines payment and delivery.
The uResume in routine payment activates the execution-state associated with Prod::main and that execution-state
continues in routine Cons::delivery. Similarly, the uResume in routine delivery activates the execution-state associated
with Cons::main and that execution-state continues in Cons::main initially and subsequently in routine Prod::payment.
This cyclic control flow and the termination control flow is illustrated in Figure 3.

MUTEX TYPES

A mutex type is any type that has a mutex member. Objects instantiated from mutex types have special capabilities
for controlling concurrent access. When uMutex or uNoMutex qualifies a type specifier, as in:

uMutex class M {
private:

char w(. . .);
public:

M();
~M();
int x(. . .);
float y(. . .);
void z(. . .);

};

it defines the default form of mutual exclusion on all public member routines, including the constructor and destruc-
tor. Hence, public member routines x, y, z, M and ~M of monitor type M are mutex members executing mutually
exclusively of one another. protected and private member routines are always implicitly uNoMutex, except for main
in coroutines and tasks. Because the destructor of mutex object is executed mutually exclusively, the termination of a
block containing a mutex object or deleting a dynamically allocated one may block if the destructor cannot be executed
immediately. In our implementation, a mutex member cannot call another mutex member in the same object or the
executing thread deadlocks with itself.

Mutex qualifiers may be needed for protected and private member routines in mutex types, as in:

8

Producer Consumer

uCoroutine Prod {
Cons *c;
int N, status;

void main() {
int p1, p2;
// 1st resume starts here
for (int i = 1; i <= N; i += 1) {

. . . // generate a p1 and p2
status = c->delivery(p1, p2);
if (status == . . .) . . .

} // for
c->delivery(-1, 0);

}; // main
public:

Prod(Cons *c) { Prod::c = c; };
void start(int N) {

Prod::N = N;
uResume; // restart Prod::main

}; // start
}; // Prod

uCoroutine Cons {
int p1, p2, status;

void main() {
// 1st resume starts here
while (p1 >= 0) {

// consume p1 and p2
status = . . .;
uSuspend; // restart Cons::delivery

} // while
}; // main

public:
int delivery(int p1, int p2) {

Cons::p1 = p1;
Cons::p2 = p2;
uResume; // restart Cons::main
return status;

}; // delivery
}; // Cons

int main() {
Cons cons; // create consumer
Prod prod(&cons); // create producer

prod.start(10); // start producer
} // main

Figure 1: Semi-Coroutine Producer-Consumer Solution

uMutex class M {
private:

uMutex char w(. . .); // explicitly qualified member routine
. . .

};

because another thread may need access to these member routines. For example, when a friend task calls a protected
or private member routine, these calls may need to provide mutual exclusion.

For convenience, we also allow a public member of a mutex type to be explicitly qualified with uNoMutex. These
routines are, in general, error-prone in concurrent situations because their lack of mutual exclusion permits concurrent
updating to object variables. However, there are two situations where such a non-mutex public member are useful: first,
for read-only member routines where execution speed is of critical importance; and second, to encapsulate a sequence
of calls to several mutex members to establish a protocol, which ensures that a user cannot violate the protocol since
it is part of the object’s definition.

THREAD CONTROL CONSTRUCTS

The following constructs support waiting for the arrival of a thread to and blocking a thread within a mutex object.

Controlling External Access: the Accept Statement

A uAccept statement, similar to that in Ada [17], is provided to dynamically choose which mutex member executes.
This indirectly controls which caller is accepted next, that is, the next caller to the accepted mutex member. The simple
form of the uAccept statement is as follows:

9

Producer Consumer

uCoroutine Prod {
Cons *c;
int N, money, status, receipt;

void main() {
int p1, p2;
// 1st resume starts here
for (int i = 1; i <= N; i += 1) {

. . . // generate a p1 and p2
status = c->delivery(p1, p2);
if (status == . . .) . . .

} // for
c->delivery(-1, 0);

}; // main
public:

int payment(int money) {
Prod::money = money;
. . . // process money
uResume; // restart prod in Cons::delivery
return receipt;

}; // payment
void start(int N, Cons *c) {

Prod::N = N;
Prod::c = c;
uResume;

}; // start
}; // Prod

uCoroutine Cons {
Prod *p;
int p1, p2, status;

void main() {
int money, receipt;
// 1st suspend starts here
while (p1 >= 0) {

// consume p1 and p2
status = . . .
receipt = p->payment(money);

} // while
}; // main

public:
Cons(Prod *p) { Cons::p = p; };
int delivery(int p1, int p2) {

Cons::p1 = p1;
Cons::p2 = p2;
uResume; // restart cons in Cons::main 1st time

// and cons in Prod::payment afterwards
return status;

}; // delivery
}; // Cons

int main() {
Prod prod; // create producer
Cons cons(&prod); // create consumer

prod.start(10, &cons); // start producer
} // main

Figure 2: Full-Coroutine Producer-Consumer Solution

uWhen (conditional-expression) // optional guard for accept
uAccept (mutex-member-name);

with the restriction that the constructor, destructor, new and delete, and uNoMutex members are excluded from being
accepted. The first four member routines are excluded because these routines are essentially part of the implicit
memory-management runtime support. uNoMutex members are excluded because, in this implementation, they contain
no entry code that could affect the caller or acceptor. While it is possible to block the caller to and the acceptor of a
uNoMutex member and then continue both the caller and acceptor when they synchronize, we do not believe that such
a facility is particularly useful. The syntax for accepting a mutex operator member, such as operator =, is as follows:

uAccept(operator =);

Currently, there is no way to accept a particular overloaded member. However, we have adopted the following rule
when an overloaded member name appears in a uAccept statement: calls to any member with that name are accepted.
The rationale is that members with the same name should perform essentially the same function, and therefore, they
all should be eligible to accept a call.

A uWhen guard is considered true if it is omitted or its conditional-expression evaluates to non-zero. Before
the uAccept statement is executed, the guard must be true and an outstanding call to the corresponding member must
exist. If the guard is true and there is no outstanding call to that member, the task is accept-blocked until a call to
the appropriate member is made. If the guard is false, the program is aborted; hence, the uWhen clause can act as an
assertion of correctness in the simple case.

Once a call is made to an accepted mutex member, either the acceptor’s or the caller’s thread continues in the
object because of the mutual exclusion property. We have chosen the caller’s thread while the acceptor’s thread

10

Start/Terminate Sequence

free main
�

�

prod
�

�

cons

normal

execution

Thread Movement

free main
�

Prod::start
�

(context switch)�

Prod::main
�

Cons::delivery
�

(context switch)�

Cons::main
�

Prod::payment
�

(context switch)�

Cons::delivery
�

Prod::main
�

Cons::delivery
�

(context switch)�

Prod::payment
�

Cons::main
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

termination
sequence

Figure 3: Cyclic Control Flow in Full Coroutine

remains blocked [18]. The accepted member is then executed like a member routine of a conventional class by the
caller’s thread. If the caller is expecting a return value, this value is returned using the return statement in the member
routine. When the caller’s thread leaves the object (or waits, as will be discussed shortly), the acceptor’s thread is
unblocked and has exclusive access to the object.

The extended form of the uAccept statement, similar to the Ada select statement, can be used to accept one of a
group of mutex members, as in:

uWhen (conditional-expression) // optional guard for accept
uAccept (mutex-member-name)

statement // optional statement
uOr uWhen (conditional-expression) // optional guard for accept

uAccept (mutex-member-name)
statement // optional statement

. . .
. . .

uElse // optional default clause
statement

Before a uAccept clause is executed, the guard must be true and an outstanding call to the corresponding member must
exist. If there are several mutex members that can be accepted, the clause nearest the beginning of the statement is
executed. Hence, the order of the uAccepts indicates their relative priority for selection if there are several outstanding
calls. Once the accepted call has completed, the statement after the accepting uAccept clause is executed. If there is
a uElse clause and no uAccept can be executed immediately, the uElse clause is executed instead. If there is no uElse
clause and the guards are all false, the program is aborted. If some guards are true and there are no outstanding calls
to these members, the task is accept-blocked until a call to one of these members is made. Note that the syntax of

11

the uAccept statement precludes the caller’s argument values from being accessed in the conditional-expression of a
uWhen. (However, this deficiency is handled by the ability of a task to postpone requests, as is discussed shortly.)

In contrast to Ada, a uAccept statement in � C++ places the code to be executed in a public member routine of the
task type; thus, it is specified separately from the uAccept statement. An Ada-style accept specifies the accept body as
part of the accept statement, requiring the accept statement to provide parameters and a routine body. Since we have
found that having more than one accept statement per member is rather rare, our approach gives essentially the same
capabilities as Ada. As well, accepting member routines also allows virtual routine redefinition, which is not possible
with accept bodies. Finally, an accept statement with parameters and a routine body does not fit with the design of
C++ because it is like a nested routine definition, and since routines cannot be nested in C++, there is no precedent for
such a facility. It is important to note that anything that can be done in Ada-style accept statements can be done within
member routines, possibly with some additional code. If members need to communicate with the block containing the
uAccept statements, it can be done by leaving “memos” in the task’s local variables. In cases where there would be
several different Ada-style accept statements for the same entry, accept members would have to start with switching
logic to determine which case applies.

Condition Variables and the Wait and Signal Statements

Sometimes it is necessary for the actions performed by a member routine to be postponed until some later time. This
can be done using uCondition variables in conjunction with the uWait and uSignal statements. The type uCondition
creates a queue object on which tasks can be blocked and restarted in first-in first-out order, and is defined:

class uCondition {
public:

int uEmpty();
};

The member routine uEmpty() returns 0 if there are threads blocked on the queue and 1 otherwise. It is not meaningful
to read or to assign to a condition variable, or copy a condition variable (e.g. pass it as a value parameter), or use a
condition variable outside of the mutex object in which it is declared.

The uWait statement blocks the current thread on a condition. Because of the mutual exclusion property, there can
be pending threads from uAccept or uSignal statements (discussed next) that want to continue execution; only one can
be restarted. The only sensible choice is to restart them in last-blocked first-unblocked (stack) order. If there are no
pending threads, the only choice is to do an accept of all the mutex members so that some thread can subsequently
enter the object and signal a waiting thread; otherwise, deadlock will occur.

The uSignal statement makes the thread on the front of the condition queue ready; if there is no thread on the
condition queue, the signaller continues execution. This is different from the uAccept statement, which blocks if there
are no outstanding calls to a mutex member. Once a thread is unblocked by uSignal, only one of the two threads
can continue in the object because of the mutual exclusion property. We have chosen the signalled thread. When the
signalled thread leaves the object or waits, the signaller’s thread is automatically unblocked and it has exclusive access
to the object.

The uAccept, uWait and uSignal statements can be executed by any routine of a mutex type. Even though these
statements block the current task, they can be allowed in member routines because member routines are executed by
their caller, not the task of which they are members. This is to be contrasted to Ada where the use of a statement like
a uWait in an accept body would cause the task to deadlock.

Postponing Requests

We consider the ability to postpone a request to be essential. Postponement may occur multiple times during servicing
of a request while still allowing an object to accept new requests.

In simple cases, the uWhen construct can be used to accept only requests that can be completed without post-
ponement. However, when the selection criteria become complex, e.g. when the parameters of the request are needed
to do the selection or information is needed from multiple queues, it is simpler to unconditionally accept a request
and subsequently postpone it if it does not meet the selection criteria. This avoids complex selection expressions and
possibly their repeated evaluation. In addition, this allows all the programming language constructs and data structures
to be used in making the decision to postpone a request, instead of some fixed selection mechanism provided in the
programming language, as in SR [19] and Concurrent C++ [20].

12

Regardless of the power of a selection facility, none can deal with the need to postpone a request after it has been
accepted. In a complex concurrent system, a task may have to make requests to other tasks as part of servicing a
request. Any of these further requests can indicate that the current request cannot be completed at this time and must
be postponed. Thus, we believe that it is essential that a request be able to be postponed even after it is accepted so that
the acceptor can make this decision while the request is being serviced. Therefore, condition variables seem essential
to support this facility.

Ultimately, we want to restart tasks blocked within a terminating mutex object—on entry queues and condition
variables—by raising an exception to notify them that their call failed. We are currently examining how to incorporate
exceptions among tasks within the proposed C++ exception model.

MONITOR

A monitor is an object with mutual exclusion and so it cannot be accessed simultaneously by multiple threads. A
monitor provides a mechanism for indirect communication among tasks and is particularly useful for managing shared
resources. A monitor type has all the properties of a class. The general form of the monitor type is the following:

uMutex class monitor-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
public:

. . . // these members are visible externally
};

Monitor Creation and Destruction

A monitor is the same as a class-object with respect to creation. Because a monitor is a mutex object, the execution
of its destructor waits until it can gain access to the monitor, just like the other public members of the monitor, which
can delay the termination of the block containing a monitor or the deletion of a dynamically allocated monitor.

Monitor Control and Communication

uWait, uSignal, and uCondition variables provide the same functionality as for a conventional monitor [13]. In � C++,
the uAccept statement can also be used to control which member(s) can be executed next. The ability to use uAccept
in a monitor makes it more general than a conventional monitor because it specifies a mutex member, while uSignal
specifies only a condition variable. This gives the ability to restrict which member can be called, instead of having to
accept all calls and subsequently handle or block them, as for conventional monitors. Figure 4 compares a traditional
style monitor using explicit condition variables to one that uses accept statements. The problem is the exchange of
values (telephone numbers) between two kinds of tasks (girls and boys). (uAccept allows the removal of all condition
variables in this case, but that is not always possible.)

COROUTINE-MONITOR

The coroutine-monitor is a coroutine with mutual exclusion and so it cannot be accessed simultaneously by multiple
threads. A coroutine-monitor type has a combination of the properties of a coroutine and a monitor, and can be used
where a combination of these properties are needed, such as a finite-state machine that is used by multiple tasks.
A coroutine-monitor type has all the properties of a class. The general form of the coroutine-monitor type is the
following:

13

Traditional Method New Method

uMutex class DatingService {
int GirlPhoneNo, BoyPhoneNo;
uCondition GirlWaiting, BoyWaiting;

public:
int Girl(int PhoneNo) {

if (BoyWaiting.uEmpty()) {
uWait GirlWaiting;
GirlPhoneNo = PhoneNo;

} else {
GirlPhoneNo = PhoneNo;
uSignal BoyWaiting;

} // if
return BoyPhoneNo;

}; // Girl
int Boy(int PhoneNo) {

if (GirlWaiting.uEmpty()) {
uWait BoyWaiting;
BoyPhoneNo = PhoneNo;

} else {
BoyPhoneNo = PhoneNo;
uSignal GirlWaiting;

} // if
return GirlPhoneNo;

}; // Boy
}; // DatingService

uMutex class DatingService {
int GirlPhoneNo, BoyPhoneNo;

public:
DatingService() {

GirlPhoneNo = BoyPhoneNo = -1;
}; // DatingService
int Girl(int PhoneNo) {

GirlPhoneNo = PhoneNo;
if (BoyPhoneNo == -1) {

uAccept(Boy);
} // if
int temp = BoyPhoneNo;
BoyPhoneNo = -1;
return temp;

}; // Girl
int Boy(int PhoneNo) {

BoyPhoneNo = PhoneNo;
if (GirlPhoneNo == -1) {

uAccept(Girl);
} // if
int temp = GirlPhoneNo;
GirlPhoneNo = -1;
return temp;

}; // Boy
}; // DatingService

Figure 4: Traditional versus New Monitor Control

uMutex uCoroutine coroutine-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
void main(); // starting member

public:
. . . // these members are visible externally

};

Currently, we have little experience in using a coroutine-monitor, nevertheless we believe it merits further examina-
tion.

Coroutine-Monitor Creation and Destruction

A coroutine-monitor is the same as a monitor with respect to creation and destruction.

Coroutine-Monitor Control and Communication

A coroutine-monitor can make use of uSuspend, uResume, uAccept and uCondition variables, uWait and uSignal to
move a thread among execution-states and to block and restart threads that enter it.

TASK

A task is an object with its own thread of control and execution-state, and whose public member routines provide
mutual exclusion. A task type has all the properties of a class. The general form of the task type is the following:

14

[uMutex] uTask task-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
void main(); // starting member

public:
. . . // these members are visible externally

};

The task type has one distinguished member, named main, in which the new thread starts execution. Instead of
allowing direct interaction with main, we have chosen to make its visibility private or protected. A user then interacts
with a task’s main member indirectly through its member routines. This allows a task type to have multiple public
member routines to service different kinds of requests that are statically type checked. main cannot have parameters,
but the same effect can be accomplished indirectly by passing arguments to the constructor for the task and storing
these values in the task’s local variables, which can be referenced by main. If a C++ program is viewed as an instance
of an object where a thread of control begins in the free routine main, a task is just a generalization of this notion.

Task Creation and Destruction

A task is the same as a class-object with respect to creation and destruction, as in:
uTask T {

void main() . . .
public:

void r(. . .) . . .
};
T *tp; // pointer to a T
{ // start a new block

T t, ta[3]; // local creation
tp = new T; // dynamic creation
. . .
t.r(. . .); // call a member routine that must be accepted
ta[1].r(. . .); // call a member routine that must be accepted
tp->r(. . .); // call a member routine that must be accepted
. . .

} // wait for t, ta[0], ta[1] and ta[2] to terminate and then destroy
. . .
delete tp; // wait for tp’s instance to terminate and then destroy

When a task is created, the appropriate task constructor and any base-class constructors are executed in the normal
order by the creating thread. Then a new thread of control and execution-state are created for the task, which are used
to begin execution of the main routine visible by the inheritance scope rules from the task type. From this point, the
creating thread executes concurrently with the new task’s thread. main executes until its thread blocks or terminates.

A task terminates when its main routine terminates or when its destructor is accepted or when the statement uDie
is executed. uDie allows a task to be terminated in a routine other than main. When a task terminates, so does the
task’s thread of control and execution-state. A task’s destructor is invoked by the destroying thread when the block
containing the task declaration terminates or by an explicit delete statement for a dynamically allocated task. However,
the destructor must not execute before the task’s thread terminates because the storage for the task is released by the
destructor. Therefore, a � C++ block cannot terminate until all tasks declared in the block terminate. Deleting a task on
the heap must also wait until the task being deleted has terminated. An attempt to communicate with a terminated task
is an error.

While a task that creates another task is conceptually the parent and the created task its child, � C++ makes no
implicit use of this relationship nor does it provide any facilities based on this relationship. Once a task is declared it
has no special relationship with its declarer other than what results from the normal scope rules.

Like a coroutine, a task can access all the external variables of a C++ program and the heap area. However, because
tasks execute concurrently, there is the general problem of concurrent access to such shared variables. Further, this
problem may also arise with static member variables within a task that is instantiated multiple times. Therefore, it is

15

suggested that these kinds of references be used with extreme caution.

Inherited Members

Each task type, if not derived from some other task type, is implicitly derived from the task type uBaseTask, as in:

uTask task-name : public uBaseTask {
. . .

};

where the interface for the base class uBaseTask is as follows:

uTask uBaseTask : uBaseCoroutine { // inherit from coroutine base type
public:

uBaseTask();
uBaseTask(int stackSize);
uBaseTask(uCluster &cluster);
uBaseTask(int stackSize, uCluster &cluster);
void uDelay(int times = 1);
uCluster &uMigrate(uCluster &cluster);

};

The protected member routine uSaveFloatRegs and the public member routine uVerify are inherited from uBaseCoroutine,
and they have the same functionality.

The overloaded constructor routine uBaseTask has the following forms:

uBaseTask() – creates the task on the current cluster with the stack size for its execution-state specified by the cur-
rent cluster’s default stack size, a machine dependent value no less than 4000 bytes (same as uBaseCoroutine()).

uBaseTask(int stackSize) – creates the task on the current cluster with the specified stack size (in bytes) (same
as uBaseCoroutine(int stackSize)).

uBaseTask(uCluster &cluster) – creates the task on the specified cluster with the stack size specified by that
cluster’s default stack size, a machine dependent value no less than 4000 bytes.

uBaseTask(int stackSize, uCluster &cluster) – creates the task on the specified cluster with the specified stack
size (in bytes).

A task type can be designed to allow declarations to specify the cluster on which creation occurs and the size of the
stack by doing the following:

uTask T {
public:

T() : uBaseTask(8192) {}; // current cluster, 8K stack
T(int i) : uBaseTask(i) {}; // current cluster and user stack size
T(uCluster &c) : uBaseTask(c) {}; // user cluster
T(int i, uCluster &c) : uBaseTask(c,i) {}; // user cluster and stack size
. . .

};
uCluster c; // create a new cluster
T x, y(16384); // x has an 8K stack, y has a 16K stack
T z(c); // z created in cluster c with default stack size
T w(16384, c); // w created in cluster c and has a 16K stack

The public member routine routine uDelay gives up control of the cluster processor to another ready task the
specified number of times. For example, the routine call uDelay(5) returns control to the � C++ kernel to schedule
another task, hence immediately giving up control of the processor and ignoring the next 4 times the task is scheduled
for execution. If there are no other ready tasks, the delaying task is restarted. uDelay allows a task to relinquish control
when it has no current work to do or when it wants other ready tasks to execute before it performs more work. An
example of the former situation is when a task is polling for an event, such as a hardware event. After the polling
task has determined the event has not occurred, it can relinquish control to another ready task, e.g. uDelay(1). An

16

example of the latter situation is when a task is creating many other tasks. The creating task may not want to create
a large number of tasks before the created tasks have a chance to begin execution. (Task creation occurs so quickly
that it is possible to create 30-50 tasks before pre-emption occurs.) If after the creation of several tasks the creator
yields control, then some created tasks will have an opportunity to begin execution before the next group of tasks
is created. This facility is not a mechanism to control the exact order of execution of tasks; pre-emptive scheduling
and/or multiple processors make this impossible.

Most tasks execute on only one cluster. However, when it is necessary to do so, the member routine uMigrate
is used to move a task from one cluster to another so that it can access resources that are dedicated to that cluster’s
processor(s).

from-cluster-reference = task.uMigrate(to-cluster-reference)

The free routine:
uBaseTask &uThisTask();

is used to determine the identity of the current task. Because it returns a reference to the base task type, uBaseTask, of
the current task, this reference can only be used to access the public routines of type uBaseTask and uBaseCoroutine.
For example, a free routine can delay execution of the calling task by performing the following:

int FreeRtn(. . .) {
. . . // declarations
uThisTask().uDelay(); // delay execution
. . . // code

}

Task Control and Communication

A task can make use of uAccept and uCondition variables, uWait and uSignal to block and restart threads that enter it.
Appendix C shows the archetypical disk scheduler implemented as a task that must process requests in an order other
than first-in first-out to achieve efficient utilization of the disk.

INHERITANCE

While concurrency and our set of elementary execution properties do not imply any particular polymorphism/reuse
mechanism, C++ supports these concepts using inheritance; therefore, this section examines how inheritance affects
our constructs. C++ provides two forms of inheritance: “private” inheritance, which provides code reuse, and “public”
inheritance, which provides reuse and subtyping (a promise of behavioural compatibility). (These terms must not be
confused with C++ visibility terms with the same names.)

In C++ there is only one kind of type specifier, class; class definitions can inherit from one another using both
single and multiple inheritance. In � C++ there are three kinds of types, class, coroutine, and task, so the situation is
more complex. The trivial case where a class or coroutine or task type inherits from another class or coroutine or
task, respectively, is supported in � C++. When coroutines and tasks inherit from other such types, each entity in the
hierarchy may specify a main member; the main member specified in the last derived class of the hierarchy is the
one that is started when a new instance is created. Clearly, there must be at least one main member specified in the
hierarchy. For a task or a monitor type, new member routines that are defined by the derived class can be accepted by
statements in a new main routine or in redefined virtual routines.

Having mutex types inherit from non-mutex types may be useful to generate concurrent usable types from existing
non-concurrent types, for example, to define a queue that is derived from a simple queue and that can be accessed
concurrently. However, there is a fundamental problem with non-virtual members in C++. To change a simple queue
to a sharable queue, for example, would require a monitor to inherit from the class Queue and to redefine all of the
class’s member routines so that the correct mutual exclusion occurred when they are invoked. However, non-virtual
routines in the Queue class might be called instead because non-virtual routines are statically bound. Consider, this
attempt to create a sharable queue from a non-sharable queue:

17

class Queue {
public:

void insert(. . .) . . .
virtual void remove(. . .) . . .

};
uMutex class MutexQueue : public Queue {

virtual void insert(. . .) . . .
virtual void remove(. . .) . . .

};
Queue *qp = new MutexQueue; // subtyping allows assignment
qp->insert(. . .); // call to a non-virtual member routine, statically bound
qp->remove(. . .); // call to a virtual member routine, dynamically bound

Routine Queue::insert does not provide mutual exclusion because it is a member of the class, while routines MutexQueue::insert
and MutexQueue::remove do provide mutual exclusion. Because the pointer variable qp is of type Queue, the call
qp->insert calls Queue::insert even though insert was redefined in MutexQueue; so no mutual exclusion occurs. In
contrast, the call to remove is dynamically bound, so the redefined routine in the monitor is invoked and appropriate
synchronization occurs. The unexpected lack of mutual exclusion would cause many errors. In object-oriented pro-
gramming languages that have only virtual member routines, this is not a problem. The problem does not occur with
private inheritance because no subtype relationship is created and hence the assignment to qp would be invalid.

Currently, we do not support inheritance among different kinds of types. While there are some implementation
difficulties with certain combinations and potential problems with non-virtual routines, the main reason is a funda-
mental one. Types are written as a class or a coroutine or a task possibly with mutual exclusion, and we do not believe
that the coding styles used in each can be arbitrarily mixed. For example, an object produced by a task that inherits
from a class can be passed to a routine expecting instances of the class and the routine might call one of the object’s
member routines that inadvertently blocks the current thread indefinitely. While this could happen in general, we
believe there is a significantly greater chance if users casually combine types of different kinds. We plan to study this
design decision with the expectation of relaxing it in the future.

IMPLEMENTATION AND PERFORMANCE

Our current implementation is a translator that reads a program containing the language extensions and translates
each extension into one or more C++ statements, which are then compiled by an appropriate C++ compiler and linked
with a concurrency runtime library, called the � C++ kernel. Because � C++ is only a translator and not a compiler,
some restrictions apply that would be unnecessary if the extensions were actually part of a C++ programming language
extension. For example, some runtime member routines are publicly visible when they should not be; therefore, � C++
programs should not contain variable names that start with a “u” followed by a capital letter. Similar, but less extensive
translators have been built: Concurrent C++ [20] and MC [21]. All programming examples in this paper compile and
execute using the � C++ translator and concurrency kernel.

The � C++ kernel is a library of classes and routines that provide low-level light-weight concurrency support on
uniprocessor and multiprocessor computers running the UNIX

�

operating system. The � C++ kernel does not call the
UNIX kernel to perform a context switch or to schedule tasks, and it uses shared memory for communication. As a
result, performance for execution of and communication among large numbers of tasks is significantly increased over
UNIX processes. The maximum number of tasks that can exist is restricted only by the amount of memory available
in a program. The minimum stack size for an execution-state is machine dependent, but is as small as 256 bytes.
The storage management of all � C++ objects, the scheduling of tasks on virtual processors within clusters, and the
pre-emptive round-robin scheduling to interleave task execution is performed by the � C++ kernel.

Unfortunately, the � C++ kernel is not yet fully integrated with all the functionality needed by the � C++ constructs.
An example problem is that a task cannot be declared in the external area because the � C++ kernel may not have started
execution before the first task is initialized. As well, � C++ allows at most 32 mutex members because a 32 bit mask is
used to test for accepted member routines. This approach does not extend to support multiple inheritance. As is being
discovered, multiple inheritance is not as useful a mechanism as it initially seemed [22, 23], nor do we believe that the
performance degradation required to support multiple inheritance is acceptable.

�

UNIX is a registered trademark of AT&T Bell Laboratories

18

Benchmark times for several of the key operations in � C++ are given in Appendix D. It takes only one microsecond
to create a class in a block because there is no initialization of any class variables; the one microsecond is the time to
allocate the necessary storage on the stack and execute an iteration of the test loop. It takes more time to create a mon-
itor because the mutex data structure is initialized and there is also an initialization cost for each mutex routine. Notice
that the cost for operations such as accepting a call or resuming/suspending or signaling/waiting are the same in either
uniprocessor or multiprocessor because they are independent of the kind of object. Certain multiprocessor timings
are higher than their uniprocessor counterparts because of the extra synchronization code necessary on multiprocessor
machines.

COMPARISON WITH OTHER WORK

The comparison section is divided into a discussion of concurrency libraries that have been built using C++ and some
programming languages that have attempted to solve problems raised in this paper.

Concurrency Libraries

Initially, we attempted to add the new types and statements by creating a library of class definitions that were used
through inheritance and preprocessor macros. This approach has been used to provide coroutine facilities [24, 25] and
simple parallel facilities [26, 12]. For example, the library approach involves defining an abstract class, Task, which
implements the task abstraction. New task types are created by inheritance from Task, and tasks are instances of these
types.

Task creation must be arranged so that the task body does not start execution until all of the task’s initialization
code has finished. One approach requires the task body to be placed at the end of the new class’s constructor, with
code to start a new thread in Task::Task(). One thread then continues normally, returning from Task::Task() to complete
execution of the constructors, while the other thread returns directly to the point where the task was declared. This
is accomplished in the library approach by having one thread “diddle” with the stack to find the return address of the
constructor called at the declaration. However, this scheme prevents further inheritance; it is impossible to derive a
type from a task type if the new type requires a constructor, since the new constructor would be executed only after
the parent constructor containing the task body. It also seems impossible to write stack diddling code which causes
one thread to return directly to the declaration point if the exact number of levels of inheritance is not known. We tried
to implement another approach that did not rely on stack diddling while still allowing inheritance and found it was
impossible because a constructor cannot determine if it is the last constructor in an inheritance chain. Therefore, it is
not possible to determine when all initialization is completed so that the new thread can be started.

PRESTO solved this problem by providing a start() member routine in class Task, which must be called after the
creation of a task. Task::Task() would set up the new thread, but start() would set it running. However, this two-step
initialization introduces a new user responsibility: to invoke start before invoking any member routines or accessing
any member variables.

A similar two-thread problem occurs during deletion when the destructors are called. The destructor of a task can
be invoked while the task body is executing, but clean-up code must not execute until the task body has terminated.
Therefore, the code needed to wait for a thread’s termination cannot simply be placed in Task::\verb+~+Task(), because
it would be executed after all the derived class destructors have executed. Task designers could be required to put the
termination code in the new task type’s destructor, but that would prevent further inheritance. Task could provide a
finish() routine, analogous to start(), which must be called before task deletion, but that is error-prone because a user
may fail to call finish appropriately, for example, before the end of a block containing a local task.

Communication among tasks also presents difficulties. In library-based schemes, it is often done via message
queues. However, a single queue per task is inadequate; the queue’s message type inevitably becomes a union of
several “real” message types, and static type checking is compromised. (One could use inheritance from a Message
class, instead of a union, but the task would still have to perform type tests on messages before accessing them.) If
multiple queues are used, some analogue of the Ada select statement is needed to allow a task to block on more than
one queue. There is also no way to statically state that a queue is owned by one task; this facility is necessary to
preclude multiple tasks from selecting from potentially overlapping sets of queues. This would be expensive since the
addition or removal of a message to/from a queue would have to be an atomic operation across all queues. Finally,
message queues are best defined as generic data structures, but C++ does not yet support generics.

19

If the more natural routine-call mechanism is to be used for communication among tasks, each public member
routine would have to have special code at the start and possibly at the exits of each public member, which the pro-
grammer would have to provide. Other object-oriented programming languages that support inheritance of routines,
such as LOGLAN’88 [27] and Beta, [28] or wrapper routines, as in GNU C++ [29], might be able to provide automati-
cally any special member code. Further, we could not find any convenient way to provide an Ada-like select statement
without extending the language.

In the end, we found the library approach to be unsatisfactory. We decided that language extensions would better
suit our goals by providing more flexible and consistent primitives, and static checking. It is also likely that language
extensions could provide greater efficiency than a set of library routines.

Concurrent Programming Languages

There are a large number of concurrency designs in an equally large number of programming languages. For this
comparison, we have selected only programming languages that provide statically type-safe communication. In all
the languages examined, requests can be postponed by establishing a protocol between client and server, which may
require creation of new threads for or implicit buffering of each request. However, as stated in the design requirements,
a protocol can violate the server’s abstraction if the client does not adhere to it; therefore, solutions involving a protocol
are deemed inadequate.

Ada

Many of the Ada constructs have been discussed through contrasts with � C++ constructs in previous parts of the paper.
Briefly, Ada supports concurrency through an object-based construct called a task, which has multiple entry points. It
provides an accept statement for accepting calls to a particular entry and a select statement for accepting calls to one
of a number of entries. A task type extends the task construct by allowing instantiation of multiple instances of the
type making it almost identical to a class. However, a task type differs from a traditional class type because the body
of an entry is specified with the accept statement, rather than with the definition of the entry itself.

There are four major problems with the Ada approach to concurrency:

1. There is no direct mechanism to return values from an entry.

2. An accept can only appear in the body of a task.

3. The when clause of a select cannot access the arguments of the accept call.

4. Only a static number of requests can be postponed while continuing to accept new requests, which is further
restricted by not being able to recursively accept a particular entry.

The first restriction is a syntactic annoyance as it is possible to return values through the argument-parameter mech-
anism. The second restriction is more serious as it affects the ability to modularize a program; nevertheless, it is still
possible to write programs, although awkwardly in some cases. The third restriction makes it impossible to use the
state of the request to determine if a request should be accepted. The fourth restriction is very serious as it makes
programs that sensibly need this capability complicated or impossible to implement. Solutions presented to overcome
the third and fourth restriction, e.g. entry families, are not general [30, section 13.2.11].

Our design does not have problems 1, 2 and 4, and problem 3 is handled indirectly by the solution to 4, which is
the ability to receive a request, examine its parameter values, and then postpone it.

BNR Pascal

BNR Pascal [31] provides a task similar to our process construct with type QUEUE, and DEFER and REENTER
statements, which are like our uCondition, uWait and uSignal, respectively. Postponing is done with DEFER(queue-
name), which postpones the current request on the specified queue. Re-acceptance is done with REENTER(queue-
name), which restarts the process at the head of the queue (if any) at the beginning of the entry routine it initially
called, instead of continuing from the point of its suspension. Unfortunately, this scheme causes code at the beginning
of a deferred member to be executed multiple times, which can result in complex switching logic at the start of entry
routines to determine whether or not execution has resulted from a REENTER, and if so, why it was deferred.

20

SR

SR [19] provides concurrent objects that can have both concurrent member routines and entry members with Ada style
accept statements. The way in which a member is invoked (by a call or send) indicates whether or not the caller blocks
until the called member is finished. (A member declaration can state that it can only be called or only sent to.) The four
combinations of call type and member type give SR remote procedure call, Mesa-style process emission, Ada-style
rendezvous and non-blocking message passing.

Our approach and the SR approach can build identical concurrency abstractions. The main difference is in the
way these abstractions are accessed by a user. SR’s send provides a form of asynchronous communication (called
semisynchronous), while our system would require a user to explicitly buffer requests or create a courier or future task
to perform a call and wait for its completion (and possibly a result). As stated in the design requirements, we do not
believe asynchronous communication should be a primitive capability of the programming language because it is too
complex a mechanism to be hidden, and SR’s semisynchronous communication requires automatic buffering.

SR does not provide a mechanism to postpone an accepted request. It does provide facilities to selectively accept
requests, and this capability allows access to the arguments of an entry call.

As an aside, SR also provides a by clause to search a particular queue of pending requests. The by clause cannot
be used to selectively decide to accept an entry, only to choose among available requests after a decision to accept
an entry has been made. However, there is a class of problems that cannot be handled using a by clause [32]. These
problems are characterized by a selection criteria that involves information on two or more entry queues. For example,
tasks G and B each call different entry routines of a task and the acceptance criteria involves testing data from each
others arguments, as in, a G task with argument X must wait until a B task with an argument X appears and vice versa.

Concurrent C++

Our work is similar to that done in Concurrent C++ [20]. However, our design is significantly more extensive in
facilities provided and more general in the ability of a task to service requests in arbitrary order. As well, our design
is a cleaner integration of concurrency into C++ because we did not have to support concurrency within C [33] using
the same mechanism. Concurrent C++ provides the same constructs for deferring requests and searching queues as SR
and, like SR, it cannot postpone an accepted request.

CONCLUSIONS

During the course of this work we have convinced ourselves of the following points:
� Three fundamental execution properties, thread, execution-state, and mutual exclusion, when combined in dif-

ferent ways lead to many existing programming language abstractions and several new and interesting ones.
These execution properties are fundamental to the execution of all programs on von Neumann machines. This
systematic approach to justifying what abstractions to introduce in a programming language is extremely impor-
tant. It shows that programming language design does not have to be based solely on designer biases, but can be
derived from a small set of basic primitives. While we are not yet convinced that all the abstractions presented
by this particular set of elementary properties will be useful in every day programming, at this time we cannot
eliminate any of them. Only concrete experience with these abstractions will provide the necessary information
to make these decisions.

� Statically type-safe direct communication is essential for reliable efficient concurrency and it can be supported
by standard argument-parameter communication in routine calls, independent of any other aspects such as poly-
morphism/reuse.

� Controlling which request is accepted next and servicing requests in arbitrary order can be supported in a stati-
cally type-safe way. This includes the ability to postpone a request after it is accepted, possibly multiple times
during its servicing, while continuing to accept new requests.

� All mutual exclusion can be made implicit by incorporating it as a special property of calls to certain kinds
of objects. Further, the scope of synchronization can be restricted to within objects by restricting the scope of
condition variables.

Finally, it is possible to embed all of these facilities in the language C++ in a reasonably graceful and efficient way.

21

ACKNOWLEDGMENTS

We would like to thank Mike Coffin for reading and commenting on this work.

APPENDIX A � C++ GRAMMAR

The grammar for � C++ is an extension of the grammar for C++ given in Reference [1, Chapter 17]. The ellipsis in the
following rules represent the productions elided from the C++ grammar.

type-specifier:
. . .
uMutex
uNoMutex

class-key:
. . .
uCoroutine
uTask

statement:
. . .
uDie ;
uCoDie ;
uWait expression ;
uSignal expression ;
uSuspend ;
uResume ;
accept-statement

when-clause:
uWhen (expression)

accept-statement:
when-clause ����� uAccept (dname) statement
when-clause ����� uAccept (dname) statement uOr accept-statement
when-clause ����� uAccept (dname) statement uElse statement

APPENDIX B COROUTINE BINARY INSERTION SORT

The coroutine BinarySort inputs positive integer values to be sorted and sorts them using the binary insertion sort
method. For each integer in the set to be sorted, BinarySort is restarted with the integer as the argument. The end of
the set of integers to be sorted is signaled with the value -1. When the coroutine receives a value of -1, it stops sorting
and prepares to return the sorted integers one at a time. To retrieve the sorted integers, BinarySort is restarted once for
each integer in the sorted set. Each restart returns as its result the next integer of the sorted set. The last value returned
by BinarySort is -1, which denotes the end of the sorted set, and then BinarySort terminates.

If the set of integers contains more than one value, BinarySort sorts them by creating two more instances of
BinarySort, and having each of them sort some of the integers. Each of the two new coroutines may eventually have
to create two more coroutines in turn. The result is a binary tree of coroutines.

uCoroutine BinarySort {
int in, out;
void main();

public:
void input(int val) {

in = val;
uResume;

}; // input
int output() {

uResume;
return out;

22

}; // input
}; // BinarySort

void BinarySort::main() {
int pivot;

pivot = in; // first value is the pivot value
if (pivot == -1) { // no data values

uSuspend; // acknowledge end of input
out = -1;
return; // terminate output

} // if

BinarySort less, greater; // create siblings

for (;;) {
uSuspend; // get more input

if (in == -1) break;
if (in <= pivot) { // direct value along appropriate branch

less.input(in);
} else {

greater.input(in);
} // if

} // for

less.input(-1); // terminate input
greater.input(-1); // terminate input
uSuspend; // acknowledge end of input

// return sorted values

for (;;) {
out = less.output(); // retrieve the smaller values

if (out == -1) break; // no more smaller values ?
uSuspend; // return smaller values

} // for

out = pivot;
uSuspend; // return the pivot

for (;;) {
out = greater.output(); // retrieve the larger values

if (out == -1) break; // no more larger values ?
uSuspend; // return larger values

} // for

out = -1;
return; // terminate output

} // BinarySort::main

APPENDIX C DISK SCHEDULER

The following example illustrates a fully implemented disk scheduler using � C++. The disk scheduling algorithm is
the elevator algorithm, which services all the requests in one direction and then reverses direction. A linked list is used
to store incoming requests while the disk is busy servicing a particular request. The nodes of the list are stored on
the stack of the calling tasks so that postponing does not consume resources. The list is maintained in sorted order by
cylinder number and there is a pointer which scans backward and forward through the list. New requests can be added
both before and after the scan pointer while the disk is busy. If new requests are added before the scan pointer in the
direction of travel, they are serviced on that scan.

To prevent deadlocks between the disk and disk scheduler, the disk calls the scheduler to get the next request that
it services. This call does two things: it passes to the scheduler the status of the just completed disk request, which
is then returned from scheduler to disk user, and it returns the information for the next disk operation. When a user’s
request is accepted, the parameter values from the request are copied to local variables in the scheduler and then the

23

user waits on the condition queue CurrentRequest. Hence, the scheduler only has a single copy of the request that is
currently being serviced by the disk. The cost is the restarting of the user to retrieve the values from their stack, which
is small in a shared memory environment.

typedef char Buffer[50]; // dummy data buffer

const int NoOfCylinders = 100;
enum IOStatus { IO_COMPLETE, IO_ERROR };

class IORequest {
public:

int track;
int sector;
Buffer *bufadr;

}; // IORequest

class WaitingRequest : public Sequable { // element for a waiting request list
public:

int track;
uCondition req;
WaitingRequest(int track) { WaitingRequest::track = track; }

}; // WaitingRequest

declare(Sequence, WaitingRequest); // generic doubly linked list

class Elevator : public Sequence(WaitingRequest) {
. . . // make doubly linked list into an ordered list
}; // Elevator

uTask DiskScheduler {
Elevator PendingClients; // ordered list of client requests
boolean DiskInUse;
WaitingRequest *ActiveClient;
IOStatus ActiveStatus;
IORequest ActiveRequest;

uCondition CurrentRequest, DiskWaiting;
void main();

public:
IORequest WorkRequest(IOStatus);
IOStatus DiskRequest(IORequest &);
void Die();

}; // DiskScheduler

void DiskScheduler::main() {
Disk disk(*this); // start the disk

DiskInUse = TRUE;
ActiveClient = NULL;

for (;;) {
uAccept(Die) { // request from system

break;
} uOr uAccept(WorkRequest) { // request from disk
} uOr uAccept(DiskRequest) { // request from clients
} // uAccept

} // for
ActiveRequest.track = -1; // terminate the disk
uSignal DiskWaiting;

} // DiskScheduler::main

IOStatus DiskScheduler::DiskRequest(IORequest &req) {
WaitingRequest np(req.track); // preallocate waiting list element

if (!DiskInUse) { // disk free ?
DiskInUse = TRUE;
ActiveClient = &np;

24

ActiveRequest = req;
uSignal DiskWaiting;

} else {
PendingClients.insert(&np); // insert in ascending order by track number
uWait np.req;
ActiveRequest = req;

} // if
uWait CurrentRequest; // wait for disk to handle request
return(ActiveStatus);

} // DiskScheduler::DiskRequest

IORequest DiskScheduler::WorkRequest(IOStatus status) {
if (ActiveClient != NULL) {

ActiveStatus = status;
uSignal CurrentRequest; // reply to waiting client
ActiveClient = NULL;

} // if

DiskInUse = FALSE;
if (!PendingClients.uEmpty()) { // any clients waiting ?

DiskInUse = TRUE;
ActiveClient = PendingClients.remove();
uSignal ActiveClient->req; // get work from waiting client

} else {
uWait DiskWaiting; // wait for client to arrive

} // if
// the global variable ActiveRequest is assigned the current request
return(ActiveRequest); // return work for disk

} // DiskScheduler::WorkRequest

void DiskScheduler::Die() {
} // DiskScheduler::Die

APPENDIX D � C++ TIMINGS

All timings are run on a Sequent Symmetry S27 (Intel 386, 16Mhz processor), each operation is performed 10,000
times, and both time slicing and runtime checking are turned off. Times are in microseconds.

Uniprocessor

Operation create/ create/ 16 bytes in/ 16 bytes in/ resume/ signal/
delete delete 4 bytes out 4 bytes out suspend wait

Abstraction block dynamic direct call accepted call cycle cycle

class 1 33 4 N/A N/A N/A
coroutine 60 91 4 N/A 25 N/A
monitor 3 38 16 67 N/A 48
coroutine-monitor 62 96 16 67 25 49
task 111 150 N/A 67 N/A 51

Multiprocessor

Operation create/ create/ 16 bytes in/ 16 bytes in/ resume/ signal/
delete delete 4 bytes out 4 bytes out suspend wait

Abstraction block dynamic direct call accepted call cycle cycle

class 1 33 4 N/A N/A N/A
coroutine 60 90 4 N/A 25 N/A
monitor 4 39 19 76 N/A 54
coroutine-monitor 63 97 19 75 25 57
task 126 160 N/A 76 N/A 56

25

REFERENCES

1. M. A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual, Addison Wesley, first edn, 1990.

2. B. Meyer, Object-oriented Software Construction, Prentice Hall International Series in Computer Science.
Prentice-Hall, 1988.

3. Standardiseringskommissionen i Sverige, Databehandling – Programspråk – SIMULA, 1987, Svensk Standard
SS 63 61 14.

4. C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpot, ‘An introduction to trellis/owl’, SIGPLAN Notices,
21, (11), 9–16, Nov. 1986.

5. P. Brinch Hansen, ‘The programming language concurrent pascal’, IEEE Trans. Softw. Eng., 2, 199–206, June
1975.

6. J. G. Mitchell, W. Maybury, and R. Sweet, ‘Mesa language manual’, Technical Report CSL–79–3, Xerox Palo
Alto Research Center, Apr. 1979.

7. R. C. Holt, Turing Reference Manual, Holt Software Associates Inc., third edn, 1992.

8. N. Carriero and D. Gelernter, ‘Linda in context’, Commun. ACM, 32, (4), 444–458, Apr. 1989.

9. R. H. Halstead, Jr., ‘Multilisp: A language for concurrent symbolic programming’, ACM Trans. Prog. Lang. Syst.,
7, (4), 501–538, Oct. 1985.

10. W. M. Gentleman, ‘Message passing between sequential processes: the reply primitive and the administrator
concept’, Software—Practice and Experience, 11, (5), 435–466, May 1981.

11. R. Hieb and R. K. Dybvig, ‘Continuations and concurrency’, SIGPLAN Notices, 25, (3), 128–136, Mar. 1990,
Proceedings of the Second ACM SIGPLAN Symposium on Principles & Practise of Parallel Programming, March.
14–16, 1990, Seattle, Washington, U.S.A.

12. B. N. Bershad, E. D. Lazowska, and H. M. Levy, ‘PRESTO: A system for object-oriented parallel programming’,
Software—Practice and Experience, 18, (8), 713–732, Aug. 1988.

13. C. A. R. Hoare, ‘Monitors: An operating system structuring concept’, Commun. ACM, 17, (10), 549–557, Oct.
1974.

14. C. D. Marlin, Coroutines: A Programming Methodology, a Language Design and an Implementation, volume 95
of Lecture Notes in Computer Science, Ed. by G. Goos and J. Hartmanis, Springer-Verlag, 1980.

15. R. E. Strom, D. F. Bacon, A. P. Goldberg, A. Lowry, D. M. Yellin, and S. A. Yemini, ‘Hermes: A language for
distributed computing’, Technical report, IBM T. J. Watson Research Center, Yorktown Heights, New York, U. S.
A., 10598, Oct. 1990.

16. P. A. Buhr and R. A. Stroobosscher, ‘The � System: Providing light-weight concurrency on shared-memory
multiprocessor computers running UNIX’, Software—Practice and Experience, 20, (9), 929–963, Sept. 1990.

17. United States Department of Defense, The Programming Language Ada: Reference Manual, ANSI/MIL-STD-
1815A-1983 edn, Feb. 1983, Published by Springer-Verlag.

18. A. N. Habermann and I. R. Nassi, ‘Efficient implementation of Ada tasks’, Technical Report CMU-CS-80-103,
Carnegie-Mellon University, 1980.

19. G. R. Andrews, R. A. Olsson, M. Coffin, I. Elshoff, K. Nilsen, T. Purdin, and G. Townsend, ‘An overview of the
SR language and implementation’, ACM Trans. Prog. Lang. Syst., 10, (1), 51–86, Jan. 1988.

20. N. H. Gehani and W. D. Roome, ‘Concurrent C++: Concurrent programming with class(es)’, Software—Practice
and Experience, 18, (12), 1157–1177, Dec. 1988.

26

21. A. Rizk and F. Halsall, ‘Design and implementation of a C-based language for distributed real-time systems’,
SIGPLAN Notices, 22, (6), 83–100, June 1987.

22. H. Bretthauer, T. Christaller, and J. Kopp, ‘Multiple vs. single inheritance in object-oriented programming lan-
guages. what do we really want?’, Technical Report Arbeitspapiere der GMD 415, Gesellschaft Für Mathematik
und Datenverarbeitung mbH, Schlo

�
Birlinghoven, Postfach 12 40, D-5205 Sankt Augustin 1, Deutschland, Nov.

1989.

23. T. A. Cargill, ‘Does C++ really need multiple inheritance?’, In USENIX C++ Conference Proceedings, pages
315–323, San Francisco, California, U.S.A., Apr. 1990. USENIX Association.

24. J. E. Shopiro, ‘Extending the C++ task system for real-time control’, In Proceedings and Additional Papers C++
Workshop, pages 77–94, Santa Fe, New Mexico, U.S.A, Nov. 1987. USENIX Association.

25. P. Labrèche, ‘Interactors: A real-time executive with multiparty interactions in C++’, SIGPLAN Notices, 25, (4),
20–32, Apr. 1990.

26. T. W. Doeppner and A. J. Gebele, ‘C++ on a parallel machine’, In Proceedings and Additional Papers C++
Workshop, pages 94–107, Santa Fe, New Mexico, U.S.A, Nov. 1987. USENIX Association.

27. B. Ciesielski, A. Kreczmar, M. Lao, A. Litwiniuk, T. Przytycka, A. Salwicki, J. Warpechowska, M. Warpe-
chowski, A. Szalas, and D. Szczepanska-Wasersztrum, ‘Report on the programming language loglan’88’, Tech-
nical report, Institute of Informatics, University of Warsaw, Pkin 8th Floor, 00-901 Warsaw, Poland, Dec. 1988.

28. O. L. Madsen, B. Møller-Pedersen, and K. Nygaard, Object-oriented Programming in the BETA, Addison-Wesley,
1993.

29. M. D. Tiemann, ‘Solving the rpc problem in gnu C++’, In Proceedings of the USENIX C++ Conference, pages
343–361, Denver, Colorado, U.S.A, Oct. 1988. USENIX Association.

30. J. D. Ichbiah, J. G. P. Barnes, R. J. Firth, and M. Woodger, Rationale for the Design of the ADA Programming
Language, Under Secretary of Defense, Research and Engineering, Ada Joint Program Office, OUSDRE(R&AT),
The Pentagon, Washington, D. C., 20301, U. S. A., 1986.

31. R. Kamel and N. Gammage, ‘Experience with rendezvous’, In Proceedings of the 1988 International Conference
on Computer Languages, pages 143–149, Oct. 1988.

32. C. L. A. Clarke, ‘Language and compiler support for synchronous message passing architectures’, Master’s thesis,
University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, 1990.

33. N. H. Gehani and W. D. Roome, The Concurrent C Programming Language, Silicon Press, Summit, NJ, 1989.

27

