
µProfiler: A Concurrent Profiler for

Concurrent C++ (µC++)

by

Justyna Gidzinski

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2007

cJustyna Gidzinski 2007

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS
I hereby declare that I am the sole author of this thesis. Thisis a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

A concurrent program, unlike a sequential program, has multiple threads of execution, resulting

in numerous advantages (e.g., faster execution), but also in complex and unpredictable interac-

tion. As a consequence, a concurrent program can easily underutilize available parallelism, and

performance can be extremely difficult for users to predict and analyze on their own.

A profiler is a tool that can help a user identify as well as locate potential performance prob-

lems in a program. Profiling is accomplished through monitoring of the program execution,

and analyzing and visualizing the collected performance data. A profiler must display useful

information in a way that allows a user to effectively and efficiently understand and analyze a

program’s behaviour.

This thesis describes the advancement in design and implementation ofµProfiler, a profiler

for sequential and concurrent programs written inµC++. µC++ is a concurrent dialect of the C++

programming language, which executes in uni-processor andmulti-processor shared-memory en-

vironments. Major advancements to threeµProfiler metrics are presented: the Execution State,

the Exact Routine Call-Graph and the Statistical Routine Call-Graph. The Execution State metric

charts each state for every thread over the entire executionof the program. With high overhead

and perfect accuracy, the Exact Routine Call-Graph metric provides an exact call-graph profile

of the program’s dynamic execution, describing the controlflow among routines. With low over-

head and less accuracy, the Statistical Routine Call-Graphmetric provides a statistical call-graph

profile of the program’s dynamic execution. For each metric,advancements were made through-

out the profiling process (i.e., monitoring, analysis and visualization), addressing goals such as

scalability, functionality, usability and performance. The metrics provide reasonable memory

overhead and, based on the comparison to related work, are state-of-the-art in functionality and

provide similar run-time performance.

iii

Acknowledgements

First of all, I would like to sincerely thank my supervisor Dr. Peter Buhr for all his time, un-

derstanding and guidance. His efforts and active involvement made this process a great learning

experience and my work all that much more enjoyable. I would like to thank my readers, Dr.

David Taylor and Dr. Steve MacDonald, for their valuable suggestions and comments. I would

also like to graciously acknowledge funding from the Natural Sciences and Engineering Research

Council of Canada.

Many thanks go to Richard Bilson for his technical assistance with µC++ andµProfiler, for

his willingness to answer my many questions and give constructive suggestions, and for his many

hours spent editing my thesis. I would also like to thank my other lab mates Ashif Harji and Roy

Krischer. Richard, Ashif and Roy made my time working in the lab truly enjoyable.

Finally, special thanks go to my family and friends, especially my parents. Undoubtedly,

I would not have made it this far without their unconditionallove and support. They always

believed I could do anything I set my mind to and they made me believe the same.

iv

Contents

1 Introduction 1

1.1 Performance of Concurrent Programs. 2

1.1.1 Locating Performance Problems. 3

1.2 Definitions. 4

1.3 Thesis Organization. 5

2 Profiling 7

2.1 Instrumentation. 8

2.1.1 Direct and Indirect Instrumentation. 9

2.1.2 Instrumentation via Insertion. 10

2.1.3 Instrumentation via Hardware Counters. 11

2.2 Monitoring . 11

2.2.1 Exact Monitoring. 12

2.2.2 Statistical Monitoring . 13

2.2.3 Hardware Counters and Monitoring. 13

2.3 Analysis. 14

2.3.1 Real-Time Analysis. 15

2.3.2 Post-Mortem Analysis. 15

2.3.3 Combination . 16

2.4 Visualization . 16

v

3 µProfiler 19

3.1 Target Environment. 19

3.1.1 µC++ . 20

3.1.2 µC++ Language Constructs. 20

3.2 Design Objectives. 22

3.2.1 Profiling on a Per-Thread Basis. 22

3.2.2 Profiling at Different Levels of Detail. 22

3.2.3 Selective Profiling . 22

3.2.4 Support Different Forms of Visualization. 23

3.2.5 Extendibility . 23

3.2.6 Portability, Interoperability, and Maintainability 23

3.3 Instrumentation Insertion. 24

3.3.1 µC++ Kernel Instrumentation. 24

3.3.2 User Code Instrumentation. 24

3.4 µProfiler Kernel. 25

3.5 µProfiler Metrics . 29

3.5.1 Execution Monitors. 29

3.5.2 Analyzers and Visualizers. 29

3.5.3 Alternative Profiler Design. 31

3.6 Accessing Hardware Counters. 31

4 Execution State Chart 33

4.1 Initial Implementation Issues. 35

4.2 Advanced Implementation. 37

4.2.1 Implementation Details. 37

4.2.2 Addressing Initial Issues. 41

4.3 Implementation Issues. 43

4.3.1 Scrollbar Scaling. 43

4.3.2 X-Axis Labelling . 45

vi

4.4 Other Considerations. 46

4.5 Task Details. 47

4.6 Performance. 49

4.6.1 Time . 49

4.6.2 Space. 50

4.7 Related Work . 52

4.7.1 HP Visual Threads. 52

4.7.2 NetBeans Profiler. 55

4.7.3 Borland Optimizeit Thread Debugger. 57

4.7.4 Comparison. 60

4.8 Summary . 62

5 Exact Call-Graph 63

5.1 Initial Implementation Issues. 66

5.2 Advanced Implementation. 67

5.2.1 Data Collection. 67

5.2.2 Visualization . 79

5.2.3 Addressing Initial Issues. 86

5.3 Implementation Issues. 87

5.3.1 Handling Coroutines. 88

5.3.2 Handling Cycles. 89

5.4 Related Work . 91

5.4.1 gprof . 92

5.4.2 Intel VTune. 94

5.4.3 Comparison. 97

5.5 Performance. 99

5.5.1 Time . 99

5.5.2 Space. 100

5.6 Summary . 101

vii

6 Statistical Call-Graph 103

6.1 Initial Implementation Issues. 105

6.2 Advanced Implementation. 106

6.2.1 Data Collection. 106

6.2.2 Visualization . 111

6.2.3 Addressing Initial Issues. 116

6.3 Implementation Issues. 117

6.3.1 Dynamic Memory Allocation . 117

6.3.2 Handling Cycles. 118

6.4 Related Work . 120

6.4.1 HP Caliper . 120

6.4.2 Sun Studio Performance Analyzer. 123

6.4.3 Comparison. 125

6.5 Performance. 127

6.5.1 Time . 127

6.5.2 Space. 129

6.6 Summary . 130

7 Conclusions and Future Work 131

7.1 Future Work. 132

A Object-Oriented Notation 135

B Program Source Code 139

B.1 Call-Graph Test Program. 139

Bibliography 145

viii

List of Tables

4.1 Execution State Chart: Time Performance Results. 51

4.2 Execution State Chart: Comparison of Related Profilers. 60

5.1 Exact Routine Call-Graph: Comparison of Related Profilers. 97

5.2 Exact Routine Call-Graph: Time Performance Results. 99

6.1 Statistical Routine Call-Graph: Comparison of RelatedProfilers 126

6.2 Statistical Routine Call-Graph: Time Performance Results 128

ix

List of Figures

2.1 Direct and Indirect Instrumentation. 9

2.2 Exact Monitoring. 12

2.3 Statistical Monitoring. 14

3.1 A µProfiler Instrumentation Hook. 25

3.2 Flow of Control for Routine-Level Profiling inµProfiler 26

3.3 Object-Oriented Design of theµProfiler Kernel 27

3.4 µProfiler Startup Window . 28

3.5 µProfiler Task/Coroutine Selection Window. 30

4.1 Initial Implementation: Execution State Chart Display. 34

4.2 Advanced Implementation: Execution State Chart Display 37

4.3 Advanced Implementation: Magnification Range. 38

4.4 Advanced Implementation: User Adjustable Options. 40

4.5 Advanced Implementation: Converting Between Time and Pixel Units 44

4.6 Advanced Implementation: Execution State Task DetailsDisplay 48

4.7 Execution State Chart: Time Performance Test Program. 50

4.8 HP Visual Threads Main Window. 53

4.9 HP Visual Threads State Transitions Window. 53

4.10 NetBeans Profiler Threads Timeline. 56

4.11 NetBeans Profiler Threads Details. 56

4.12 Borland Optimizeit Thread Debugger Thread View. 58

x

5.1 Call-Graph . 64

5.2 Initial Implementation: Exact Call-Graph Display. 65

5.3 Comparison of DCT and CCT. 69

5.4 CCT Refinement . 70

5.5 Advanced Implementation: Exact CCT Data Structures. 71

5.6 Adding Back-Edges. 73

5.7 Advanced Implementation: Exact CCT Edge Path. 74

5.8 Advanced Implementation: Routine-Enter Event. 76

5.9 Advanced Implementation: Exact Event-Selection Window 80

5.10 Advanced Implementation: Exact Task/Coroutine-Selection Window 81

5.11 Advanced Implementation: Exact Call-Graph Window. 82

5.12 Advanced Implementation: Exact Options Menu. 84

5.13 Advanced Implementation: Exact Complete Call-Graph Window 85

5.14 Example Cycles. 90

5.15 gprof Flat Profile . 93

5.16 gprof Call-Graph Profile. 93

5.17 Intel VTune Graph Tab. 95

5.18 Intel VTune Call List Tab. 95

6.1 Initial Implementation: Statistical Call-Graph Display 104

6.2 Advanced Implementation: Statistical CCT Data Structures 108

6.3 Advanced Implementation: CCT Call-Stack Paths. 110

6.4 Advanced Implementation: Statistical Event-Selection Window. 112

6.5 Advanced Implementation: Sampling-Interval-Selection Window. 113

6.6 Advanced Implementation: Statistical Task/Coroutine-Selection Window 113

6.7 Advanced Implementation: Statistical Call-Graph Window 115

6.8 Advanced Implementation: Statistical Options Menu. 116

6.9 Advanced Implementation: Example Call-Stack. 120

6.10 HP Caliper Histogram Tab. 122

xi

6.11 HP Caliper Call Graph Tab. 122

6.12 Sun Studio Performance Analyzer Functions Tab. 124

6.13 Sun Studio Performance Analyzer Callers-Callees Tab. 124

A.1 Class and Object Notation. 135

A.2 Active Object Notation. 136

A.3 Inheritance Notation . 137

A.4 Aggregation Notation. 138

A.5 Association Notation. 138

xii

Chapter 1

Introduction

Programming is divided into two forms: sequential and concurrent. A sequential program has

a single thread of execution, while a concurrent program hasmultiple threads of execution (see

Section1.2). The transition from one to many threads significantly increases programming com-

plexity across all dimensions of development and maintenance. Applications employ concur-

rency to get work done faster, to handle larger quantities ofwork, or to simplify the structure of

the application [HH04].

Initially concurrency was a system-level programming technique for use within operating

systems. Now, concurrency is a necessary user-level programming technique used in many com-

mon user applications: database and web servers, Internet search engines, web applications, and

graphical user interfaces [XMN99]. The need for concurrent programming techniques and tools

is especially urgent given the changing direction of hardware. CPU performance increases are

now the result of increasing hardware parallelism, via multi-threading and/or multi-core CPUs,

and not increasing CPU clock-speed, as a plateau has been reached in clock-speed. Concurrent

programming techniques and tools are required to successfully utilize the available parallelism

at both the system and user levels.

Many programming languages support user-level concurrency. Languages such as Ada

[Uni95], Java [AGH00], and C# [HWG03] support user-level concurrency through built-in con-

currency constructs. Other originally sequential languages such as C [KR88] and C++ [Str97]

1

2 Chapter 1. Introduction

have been extended to support user-level concurrency. New language dialects such as Concur-

rent C [GR89], pC++ [MMB+94] andµC++ [BDS+92] are the result of such extensions.

1.1 Performance of Concurrent Programs

Although concurrency is an invaluable user-level programming tool, the performance of concur-

rent programs can be extremely difficult for a user to predictand analyze [HLM95]. Concurrent

programs are inherently more complex than their sequentialcounterparts and their performance

can be affected by a greater number of factors [JFL98]. However, it should be noted that predict-

ing and analyzing the performance of a sequential program can also be a difficult task.

The factors affecting performance include nondeterminism, synchronization, mutual exclu-

sion and context switching.� Nondeterminism: Concurrent programs are inherently nondeterministic; threads interact

with each other in unpredictable ways [CL00]. Synchronization and mutual exclusion

[BH05, x4] (described below) reduce the unpredictable behaviour, but can potentially cause

performance bottlenecks.� Synchronization: Synchronization is used to make thread interaction predictable, i.e., en-

sure operations happen in a certain temporal order. Synchronization is achieved through

the blocking and scheduling of threads. One or more threads are blocked until the con-

straints on their execution order are satisfied. If threads block too frequently or for too

long, performance in reduced.� Mutual exclusion: A resource shared by multiple threads must be protected within a crit-

ical section (i.e., a piece of code manipulating the resource). Mutual exclusion restricts

the number and type of threads given access to a critical section at any given time. If a

critical section is fully occupied (maximum number and typeof threads), then any subse-

quent thread wanting to enter is blocked until other threadsleave the critical section. If a

critical section is large and frequently executed, the number of threads awaiting entry and

the length of their wait increases, and again performance isreduced.

1.1. Performance of Concurrent Programs 3� Context switching: Each time a thread is blocked or preempted, a typically smallamount

of overhead is incurred to save its state and schedule another thread. However, excess

context switching due to unnecessary synchronization, excessive mutual exclusion, a poor

scheduling algorithm or an inappropriate time-slice valuecan cause a reduction in perfor-

mance.

1.1.1 Locating Performance Problems

To achieve a high-performance program (sequential or concurrent), a user must identify potential

performance problems as well as locate the part of the program where the problems occur. Given

the complexity of concurrent programs and the number of factors affecting performance, high-

level tools are essential for effective and efficient performance analysis [HLM95]. These high-

level tools are called profilers, which monitor, analyze andvisualize the execution performance

of a program to help a user verify its expected behaviour, andlocate bottlenecks and hotspots.� Expected Behaviour:A programmer has an expectation of how a program should behave

during execution; however, expected and actual program behaviour often differ. A profiler

provides a programmer with information about the program’sactual execution to compare

against the expectation. This comparison helps the programmer identify the location of

any divergence.� Bottlenecks: Bottlenecks are specific areas of a program that throttle performance (i.e.,

rate determining steps). For example, bottlenecks includeareas of resource contention.

A profiler can help identify bottlenecks, allowing a programmer to focus on areas of the

program that can significantly affect performance.� Hotspots: Hotspots are areas of a program that are frequently executed. For example,

hotspots include the specific routines in which the greatestamount of execution time is

spent. Although such areas may not be the direct cause of a performance reduction, any op-

timization could significantly improve performance due to the disproportionate amount of

4 Chapter 1. Introduction

execution time spent in the areas. A profiler can help locate these hotspots, again allowing

a programmer to focus on areas of the program that can significantly affect performance.

While the primary focus of a profiler is performance, analyzing and understanding the per-

formance of a concurrent program may help a programmer establish its correctness. This thesis

is mainly concerned with the performance side of profiling. Numerous concurrent debugging

tools, whose primary purpose is correctness, also exist [PN93].

This thesis presents the design and implementation of a concurrent profiler calledµProfiler.

µProfiler profiles concurrent programs written inµC++ (a concurrent dialect of C++) and is itself

written in µC++.

1.2 Definitions

This section provides definitions for terms used extensively throughout this thesis.� A thread is an independent sequential execution path through a program [BS07].� A task is a programming language object that contains a thread and an execution state (in-

cluding a stack). Tasks share a common memory and their threads are called user threads.

User threads are implicitly scheduled across one or more kernel threads provided by the

operating system.� A coroutine is a programming language object that contains an executionstate (including

a stack). A coroutine uses the thread of its caller to advanceits own execution state. What

differentiates a coroutine from a routine is that a coroutine can suspend its execution and

return to its callerwithout terminating. The caller can then resume the coroutine at a later

time and it restarts from the point where it suspended, continuing with the local state that

existed at the point of suspension.� An execution stackstores information about the currently active routines as well as the

parameters, return addresses and local variables of those routines. A stack is the major

1.3. Thesis Organization 5

component of a task and coroutine’s execution state. The term “execution entity” refers to

any language entity with its own execution stack.� Concurrency is the logical notion of threads executing simultaneously [BH05, x2]. Hence,

concurrency can occur on a uni-processor system by rapidly interleaved execution of multi-

ple threads on the single processor, or on a multi-processorsystem by interleaved execution

of multiple threads across the processors.� Parallelism is the physical notion of threads executing simultaneously[BH05, x2]. Hence,

parallelism can only occur on a multi-processor system where threads execute simultane-

ously.

Hence, any multithreaded (multi-tasking) program is a concurrent program with the potential

for parallelism if run on a multi-processor system.

1.3 Thesis Organization

This thesis is organized as follows. Chapter2 presents a detailed description of profiling. Chap-

ter3 presents the design and implementation ofµProfiler, which is the profiling tool advanced for

this thesis, including a brief overview of theµC++ programming language, which isµProfiler’s

target environment. The next three chapters present the major contributions of this thesis through

threeµProfiler metrics. Chapter4 explains the Execution State Chart as part of the Execution

State metric, which charts each task’s states during execution of the program. Chapter5 explains

the Exact Routine Call-Graph metric, which provides an exact call-graph of a profiled program.

Chapter6 explains the Statistical Routine Call-Graph metric, whichprovides a statistical call-

graph of a profiled program. Finally, Chapter7 summarizes the contributions of this thesis and

presents possible directions for future work.

Chapter 2

Profiling

A profiler is a high-level tool to help a user understand a program’s run-time behaviour as well as

locate potential performance problems (e.g., bottlenecksand hotspots). Profiling is accomplished

through monitoring of the program execution, and analyzingand visualizing the collected per-

formance data.

Profiling a program consists of three phases:� Instrumentation insertion: instrumentation is inserted into a program to monitor its run-

time behaviour.� Execution and monitoring of instrumented program: the instrumented program is run

and performance data (also called profiling data) is collected.� Analysis and visualization:the performance data is analyzed to extract useful information

to be visually presented to a user.

Profiling is often an iterative process. Once a user analyzesthe visualized performance data

for a profiled program, further data may be required to understand the performance, or changes

can be made to the problematic areas of the program. In both cases, a user profiles the program

again, possibly refining the instrumentation. The process continues until a program’s perfor-

mance is acceptable to a user.

7

8 Chapter 2. Profiling

2.1 Instrumentation

In the instrumentation insertion phase, additional code isadded at specific locations in a program

to generate performance data during execution. Instrumentation can be broken down into points,

primitives and predicates [GKM82, MCC+95]:� An instrumentation point is a location in a program’s code where instrumentation is

inserted.� An instrumentation primitive , a counter or timer with operations to change its value, is

used to collect performance data.� An instrumentation predicate is a boolean expression that guards the execution of an

instrumentation primitive (e.g., anif statement).

For example, in the Exact Routine Call-Graph metric described in Chapter5, a counter counts

the number of times a routine is called and a timer tracks the time spent executing a routine.

Hardware counters are also available to count hardware events, such as the number of instructions

executed, over a given period. However, although a program may make the same number of

routine calls, for example, each time it is run, the number ofroutine calls counted up to a specific

time in the program’s execution may differ between multipleruns of the program because of the

unpredictable interaction of tasks (nondeterminism) in a concurrent program.

An instrumentation primitive and instrumentation predicate form a hook, which is inserted at

various instrumentation points throughout the program to be profiled.

Probe Effect

The insertion of instrumentation into a program results in an overhead, with respect to both time

and space, called a probe effect. The extent of the probe effect is dependent on the amount and

type of instrumentation inserted, the frequency at which instrumentation is executed, as well as

the type of program being profiled (i.e., sequential or concurrent). The probe effect can change

the run-time behaviour and performance characteristics ofa program; therefore, minimizing the

probe effect is an important goal for a profiler [LP85, MH89].

2.1. Instrumentation 9

In sequential programs, the probe effect results in an increase in running time for the program,

but no change in program behaviour, unless the program’s behaviour depends on time. However,

in concurrent programs, the probe effect can lead to the disappearance of existing performance

problems or their movement to different (or unexpected) locations. New performance problems

may also appear [HM93].

2.1.1 Direct and Indirect Instrumentation

Instrumentation is either direct or indirect. In direct instrumentation, code is placed at instrumen-

tation points (see Figure2.1). In indirect instrumentation, execution jumps from an instrumenta-

tion point to a profiling routine, called a trampoline, and returns once the instrumentation code in

the trampoline executes (see Figure2.1). Although indirect instrumentation has a higher probe-

effect as a result of the routine-call-like jump, modularizing the instrumentation code reduces

code duplication and facilitates the dynamic insertion, modification and removal of instrumenta-

tion.

Program
Trampoline1

Trampoline2

entryTime = currentTime

counter = counter + 1
entryTime = currentTime
return

counter = counter + 1

exitTime = currentTime
totalTime =

return
exitTime - entryTime

exitTime = currentTime
totalTime =

exitTime - entryTime
jumpToTrampoline2

Direct Instrumentation

jumpToTrampoline1

Program

Indirect Instrumentation

Unprofiled Code

Profiled Code

Unprofiled Code

Profiled Code

Unprofiled Code

Unprofiled Code

Figure 2.1: Direct and Indirect Instrumentation

10 Chapter 2. Profiling

2.1.2 Instrumentation via Insertion

Instrumentation insertion can be done at almost any point along the compilation/execution chain,

e.g., during program composition, preprocessing, compilation, linking, executable re-writing or

execution. If instrumentation is inserted higher in the chain (e.g., at program composition), it is

programming language dependent, but system/architectureindependent (as long as the language

is supported) [She99]. If instrumentation is inserted lower in the chain (e.g., by executable re-

writing), it is programming language independent, but system/architecture dependent.

The two broad categories generally considered for instrumentation insertion are static and

dynamic.

Static Insertion

Static insertion is instrumentation inserted at any point before program execution [Zak00]. Static

insertion is used by the majority of profilers, as it is both easier and less time-consuming than

dynamic insertion, and it can collect performance data thatis very difficult to obtain by other

methods [Den97]. An example of such data is information regarding the callers and callees of a

routine, which is required when generating a call-graph. Sometimes instrumentation is inserted

at a point in a program that does not help in the location of performance problems, resulting in

unnecessary performance data and probe effect. Through theuse of instrumentation predicates

(see Section2.1), statically inserted instrumentation can be disabled; however, the instrumen-

tation (and hence the cost and effect) cannot be completely removed without stopping program

execution and recompiling. Static insertion is best suitedfor short to medium running programs

since long-running programs magnify the negative effects of unnecessary instrumentation.

Dynamic Insertion

Dynamic insertion is instrumentation inserted during program execution [Hol94]. In an iterative

process, algorithms are run by the profiler to determine when, where and what type of instru-

mentation needs to be added to or removed from an executing program. These decisions are

often related to how effective an instrumentation point is at locating a performance problem and

the movement of performance problems during execution (especially if the profiled program is

2.2. Monitoring 11

a concurrent program). Dynamic insertion is best suited forlong-running programs as decisions

about insertion can take time, but the instrumentation can be selective.

No Instrumentation

Profiling can be done without inserting any instrumentationinto a program; instead the state of

the program is polled or sampled at regular intervals (see Section2.2.2).

2.1.3 Instrumentation via Hardware Counters

Hardware counters can with low cost, and hence low probe-effect, collect information (e.g., the

number of CPU cycles elapsed) inaccessible by any other method of instrumentation. Once

configured, hardware counters run in parallel with the executing program at the hardware level.

Therefore, the cost associated with hardware counters comes almost entirely from the reading of

the counters, storing of the count values and writing of the counters.

2.2 Monitoring

Monitoring is the process of collecting, filtering and storing performance data generated by the

instrumentation during a program’s execution (filtering isoptional, but can substantially reduce

profiling storage requirements by eliminating irrelevant data). For a concurrent program, data

collection and storage is often done on a per-task basis; i.e., data is stored according to the task

executing at the time the data is generated, rather than aggregated across all tasks. This task

separation is carried forward into the analysis and visualization phases. Sometimes it is also

beneficial to collect and store performance data based on other constructs such as coroutines or

objects. For a user, the separation of the performance data allows for a more precise understand-

ing of a program’s performance problems.

Monitoring is divided into two forms: exact and statistical.

12 Chapter 2. Profiling

Profiling Monitor

Program

Event Collection

Instrumentation

Instrumentation

Instrumentation

Instrumentation

Figure 2.2: Exact Monitoring

2.2.1 Exact Monitoring

Exact monitoring (also called event-driven monitoring) collects data at each occurrence of all

relevant events. In this case, the profiling monitor is notified when instrumentation associated

with a relevant event is triggered during program execution(see Figure2.2). A routine call, for

example, is a relevant event when generating a call-graph. By collecting data at the occurrence

of each event, exact monitoring provides accurate performance data, but at the cost of high

overhead, both in time and space, and consequently a higher probe-effect. The amount of data

collected (i.e., space requirements) can be reduced by restricting the scope of the monitoring (to

specific program segments), dynamically filtering unnecessary data or by aggregating data on-

the-fly. Overall, exact monitoring is used to provide an accurate event trace for a short-running

application or short segment of a long-running application, or a summary of execution rather

than a full trace.

2.2. Monitoring 13

2.2.2 Statistical Monitoring

Statistical monitoring (also called polling or sampling) collects data only at specific intervals

called sampling intervals or periods. In this case, the profiling monitor polls the executing pro-

gram at these specific intervals to obtain information aboutthe program’s execution state (see

Figure2.3). The structure of the call-stack, for example, is state information relevant when gen-

erating a call-graph. The sampling interval can be based on time (e.g., every 10 milliseconds) or

the occurrence of hardware events (see Section2.2.3). By collecting data only at specific inter-

vals, statistical monitoring has lower overhead, both in time and space, and consequently a lower

probe-effect, but at the cost of less accurate performance data. The smaller the sampling inter-

val, the greater the accuracy and overhead of the information; however, this approach can never

replace exact monitoring when complete accuracy or event coverage is essential. For example,

if statistical monitoring is used to trace a program’s statetransitions, the resulting trace does

not cover all transitions, resulting in anomalies like a transition from a blocked state to another

blocked state with no intervening execution.

2.2.3 Hardware Counters and Monitoring

Hardware counters are useful for both exact and statisticalmonitoring. In exact monitoring,

hardware counters are used to determine the number of hardware events that occurred during the

execution of a specific section of code by subtracting the counter value read at the start of the

code section from the counter value read at the end of the codesection. In statistical monitoring,

the sampling interval can be based on the occurrence of a specific number of hardware events.

In general, hardware counters count from 0 to 2w�1, wherew is the architecture-dependent

width of the counters in bits. However, to generate a sampling interval ofn events, the hardware

counter is set to a value of 2w�n. When the count exceeds 2w�1, an overflow signal is gener-

ated and delivered to the profiling monitor, which samples the program’s execution state before

resetting the counter to 2w�n. For a concurrent program, hardware-event counts are virtualized

across threads by storing/restoring the counters during context switching.

14 Chapter 2. Profiling

Program

Profiling Monitor

Data Collection

Figure 2.3: Statistical Monitoring

2.3 Analysis

Performance data must be analyzed to extract useful information about a program’s behaviour for

visualization. Before the data is analyzed, it can be optionally filtered in order to reduce the size

of the data set, and hence, the time required for analysis. Various calculations and/or algorithms

are performed on the data, and, if possible, the data is mapped back to the program’s source code.

Once visualized, such processing results in information that is much more understandable to a

user and conducive to locating performance problems. Additional preparation of the information

may be required depending on the format of visualization (e.g., summary view, detailed view).

Analysis of performance data for a concurrent program, versus a sequential program, is more

complex because of the separation of the data by task (and possibly other constructs). Not only

does each separate group of data need to be individually analyzed, but the data from the sepa-

rate groups should be compared so that performance problemsdue to their interactions can be

2.2. Analysis 15

discovered (such analysis can be left to the user during visualization).

Analysis can be done in real-time (also called on-the-fly), post-mortem or a combination of

the two.

2.3.1 Real-Time Analysis

Real-time analysis is done during program execution. Two advantages of real-time analysis are

the ability to dynamically filter unnecessary performance data and the ability to process perfor-

mance data on-the-fly, in both cases reducing storage requirements for profiling. A further advan-

tage is that the information extracted during the analysis can form the basis for decisions made

by the profiler or user regarding dynamic (i.e., decisions regarding the insertion and removal of

instrumentation) or static (i.e., decisions regarding theenabling or disabling of instrumentation

predicates) instrumentation before the program has finished execution.

The major disadvantage of real-time analysis is the higher probe-effect that results from per-

forming the analysis and the display of any visualization. Furthermore, the analyzed information

may only be available after a delay, if the events generatingperformance data are occurring

quickly and/or the analysis and visualization is time-consuming; therefore, effective decisions

regarding instrumentation adjustment are difficult for theprofiler and almost impossible for a

user to make, especially for short-running programs. For this reason and the ability to reduce

storage requirements, real-time analysis is best suited for long-running programs.

2.3.2 Post-Mortem Analysis

Post-mortem analysis is done after the program has finished execution, meaning the monitoring

process is the only contributor to the probe effect. However, dynamic filtering of unnecessary

performance data is impossible and no information is available to make instrumentation ad-

justments. For these reasons, post-mortem analysis is bestsuited for short to medium running

programs. Finally, some profilers save performance data to afile to allow post-mortem analysis

at any time, i.e., even after the visualizations of the performance data have been terminated.

16 Chapter 2. Profiling

2.3.3 Combination

A combination of real-time and post-mortem analysis can also be used. For example, real-

time analysis can be done to allow for dynamic instrumentation by the profiler and post-mortem

analysis can be done to process the collected data for user visualization.

2.4 Visualization

Visualization is the last step in the profiling process. The goal of visualization is to display the

performance data so that a user can understand it and ultimately make decisions regarding the

performance of a program. To achieve this goal, the visualization needs to effectively and clearly

convey all pertinent information without overwhelming a user.

As previously mentioned, for a concurrent program, data is collected, stored and analyzed

according to how it is separated (e.g., per appropriate constructs). In general, the data needs to

be visualized in a similar manner to reflect the user’s high-level execution model. Because vi-

sualization can be complex, displaying summary information for different groupings on a single

screen can help direct a user in choosing which group to examine in greater detail. Performance

data can be visualized as tables, charts and graphs (for further visualization techniques refer to

[Tuf83]).

Tables

Tables, the simplest form of visualization, display discrete values (e.g., numerical data) arranged

in rows and columns, and are often used when significant detail needs to be conveyed.

Charts

Charts are pictures or diagrams that display discrete values. The pictorial format makes trends

in a set of data (as well as among multiple data sets) easier tosee. Examples are bar charts or

histograms, pie charts and Gantt charts [MR82].

2.4. Visualization 17

Graphs

Graphs use points, lines and surfaces to represent multi-dimensional relations [Den97]. Like

charts, graphs use a pictorial format to make trends easier to see, but unlike tables and charts,

graphs can display continuous values.

Chapter 3

µProfiler

µProfiler is a concurrent, object-oriented profiler for concurrent, object-oriented programs writ-

ten in µC++. µProfiler provides multiple metrics for displaying information about the dynamic

behaviour of a program, where each metric is composed of monitoring, analyzing and visualiz-

ing one or more aspects of program performance. Initial workon µProfiler was done in 1997

by Robert Denda [Den97]. In 2000, Dorota Zak [Zak00] added a number of new metrics, and in

2005, Josh Lessard [Les05] added hardware counters and metrics utilizing these counters.

This chapter describes the design and implementation ofµProfiler, covering Robert, Dorota

and Josh’s previous work, in addition to changes I have made during the development of this

thesis.

3.1 Target Environment

A profiler can be loosely or tightly coupled with its execution environment. Loose coupling

indicates a weak integration of the profiler with the target language(s) and run-time system;

hence, the profiler makes few (high level) or no assumptions about the environment’s execution

model. On the other hand, tight coupling indicates a strong integration of the profiler with the

target language(s) and run-time system; hence, the profileris aware of and can access constructs

intrinsic to the environment’s execution model and providefine-grained performance data based

19

20 Chapter 3.µProfiler

on those constructs. Consequently, loosely-coupled profilers can often profile programs written

in a variety of programming languages, whereas tightly-coupled profilers concentrate on a single

or very small subset of similar programming languages.

µProfiler is tightly-coupled with its target execution environment; the profiler collects perfor-

mance data from the execution environment and expresses results in terms of the environment’s

concurrent execution model, i.e., performance data is separated by and related back to the concur-

rency constructs in the environment. Tight coupling facilitates performance analysis and deeper

understanding by allowing a programmer to continue to thinkin terms of the specific execution

model used during program implementation.

This section describes the execution environment needed tounderstand the design and im-

plementation ofµProfiler presented in the remainder of this thesis.

3.1.1 µC++

The target environment forµProfiler is a concurrent extension of the C++ programming lan-

guage [Str97] called µC++ [BDS+92, BS07]. µC++ extends C++ with new language constructs

providing advanced control-flow, including lightweight concurrency, on uni-processor shared-

memory computers (by interleaving task execution) and parallel execution on multi-processor

shared-memory computers (by interleaving and true parallel execution).

µC++ is implemented using a translator and a run-time library(called theµC++ kernel), and

provides an M:N user-to-kernel-thread model. The translator reads aµC++ program containing

language extensions and transforms each extension into C++statements. A C++ compiler gen-

erates the program’s object code and links it to theµC++ run-time library. TheµC++ kernel is

responsible for creating, managing and destroying the new language constructs as well as for

task scheduling.

3.1.2 µC++ Language Constructs

µC++ provides its own execution model through the introduction of six new language con-

structs that support concurrent execution. These constructs are coroutines, monitors, coroutine-

3.1. Target Environment 21

monitors, tasks, virtual processors, and clusters. Only the coroutine and task constructs are

relevant to this thesis (see [BS07] for details on the other constructs).

3.1.2.1 Coroutine

A coroutine is a programming language object that contains its own execution state (including

a stack). Like a routine, a coroutine does not have its own thread of control; it uses the thread

of its caller to advance its own execution state. Unlike a routine, a coroutine’s execution can be

inactivated as control returns to its caller (task or coroutine) without terminating. Therefore, the

coroutine can be again activated at a later time and it restarts from the point where it was last

inactivated (rather than from the beginning), continuing with the local state (i.e., local variables)

that existed at the point of inactivation.

A coroutine has one distinguished member routine calledmain. Direct interaction with themain routine is not permitted, so a coroutine can only be activated indirectly through a call to

one of its public member routines. A public member routine executes a resume statement which

explicitly activatesmain, at the point of the last inactivation, and execution of the caller’s thread

moves from the caller’s stack to the activated coroutine’s stack. A coroutine can be inactivated

by executing a suspend statement and reactivating its caller, or by activating another coroutine

by calling one of its public member routines containing a resume statement. In either case, exe-

cution of the currently active thread moves from the inactivated coroutine’s stack to the activated

coroutine’s stack.

3.1.2.2 Task

A task is a programming language object that contains its ownexecution state (as for a coroutine),

mutually exclusive execution of its member routines, and its own thread of control. A task has

a distinguished member routine calledmain in which the new thread starts execution, and as for

a coroutine, interaction with the task is through public member routines. A task’s thread can

execute on the task’s stack as well as on the stack of another coroutine. A task’s thread runs

concurrently with all other task threads in the same program.

22 Chapter 3.µProfiler

Tasks and coroutines are known as execution entities because both contain their own execu-

tion stack.

3.2 Design Objectives

The current implementation ofµProfiler fulfills six main objectives. These objectives stemfrom

µProfiler’s original design requirements [Den97].

3.2.1 Profiling on a Per-Thread Basis

For a profiler to profile an individual thread or effectively aggregate data across threads, it must

be aware of how its execution environment (µC++ in the case ofµProfiler) handles thread man-

agement and scheduling. Per-thread profiling is essential for concurrent profilers because threads

form the basis of a concurrent language’s execution model.

3.2.2 Profiling at Different Levels of Detail

Collecting, analyzing and visualizing performance data atdifferent levels of detail is required to

provide a user with the most helpful information as well as provide multiple perspectives of the

collected data.µProfiler can profile at the cluster, virtual processor, task,coroutine, object, and

routine levels, across a number of appropriate metrics.

3.2.3 Selective Profiling

Users may be interested in profiling only certain aspects (e.g., specific tasks, routines etc.) of a

program, rather than the entire program.µProfiler provides selective profiling ofµC++ programs

(i.e., instrumentation control) by allowing a user to specify which program modules and which

tasks within the modules are profiled. Per-module profiling is enabled by compiling a module

with the -pro�le flag, and profiled and unprofiled modules are compatible. Per-task profiling can

3.2. Design Objectives 23

be dynamically enabled and disabled for a task during execution by calling thepro�leAtivate
andpro�leInativate routines.

3.2.4 Support Different Forms of Visualization

Different metrics collect different performance data, each requiring various forms of visualiza-

tion. Sometimes the same data needs to be presented in multiple ways.µProfiler supports sev-

eral different visualization forms, from textual to graphical, and provides a custom Motif widget

[HF94] for each one.

3.2.5 Extendibility

Programs, and especially concurrent ones due to their complexity, often require a wide range

of metrics to measure the various performance problems thatarise. Profilers provide a set of

built-in metrics, but when situations arise that cannot be adequately handled by those metrics,

the profiler should allow users to add their own metrics.µProfiler can be extended in this way

through inheritance, allowing a user to derive a new monitor, analyzer and visualizer for a new

metric from a corresponding set of base classes. The new metric can be attached toµProfiler

without recompilation.

3.2.6 Portability, Interoperability, and Maintainabilit y

µC++ supports several operating system/architecture pairs, with µProfiler currently running on

three of those operating system/architecture pairs. However, nothing inµProfiler’s design or

implementation prevents a port to any other systems.

Maintainability is an essential design consideration during the software development process

as it makes future corrections, improvements and adaptations easier. Maintainability has been

an important objective of the work done inµProfiler for this thesis. Numerous new reusable

components have been developed, and consistency, in data structures and visualization, across

metrics has been greatly increased.

24 Chapter 3.µProfiler

3.3 Instrumentation Insertion

µProfiler uses both direct and indirect instrumentation insertion. For direct instrumentation,

hooks are inserted into theµC++ kernel, and for indirect instrumentation, shared trampoline calls

are inserted into the user code of theµC++ program during compilation.

3.3.1 µC++ Kernel Instrumentation

Hooks have been inserted at various locations in theµC++ kernel and are present whether or not

a target program is being profiled. However, a hook is only triggered, and hence performance

data is only collected, if the instrumentation predicate guarding its execution evaluates to true.

Figure3.1is an example of aµC++ kernel hook that can be triggered when a task changes its

execution state. This hook is triggered for the Execution State metric described in Chapter4. Theif statement surrounding the routine call is the predicate, and its boolean expression must evalu-

ate to true in order for the hook to be triggered. The boolean expression is true if thepro�leAtive
flag is true and ifuPro�ler::uPro�ler_registerTaskExeState is non-null. Thepro�leAtive flag

is true when profiling is enabled for the currently active task (i.e., the task changing state).uPro�ler::uPro�ler_registerTaskExeState is a routine pointer that, if non-null, points to theuPro�ler::registerTaskExeState member routine.uPro�ler::uPro�ler_registerTaskExeState is

non-null when at least one module of the program is compiled with the -pro�le flag and at least

one metric requiring this hook is selected, i.e., that metric’s execution monitor (see Section3.5.1)

has registered to receive notifications upon triggering. All µC++ kernel hooks are structured and

activated in the same way.

3.3.2 User Code Instrumentation

Shared trampoline calls are inserted into a target program during compilation. The -pro�le flag

tells theµC++ translator to activate the -�nstrument-funtions flag, which in turn tells the C++

compilerg [GCC] to insert the trampoline calls.g inserts an entry trampoline call at each

routine entry and an exit trampoline call at each routine exit, for each routine in a module. The

3.4. µProfiler Kernel 25

void uBaseTask::setState(uBaseTask::State s) {

if (profileActive && uProfiler::uProfiler_registerTaskExecState) {

(*uProfiler::uProfiler_registerTaskExecState)(uProfiler::profilerInstance, *this, state);
}

...
}

...

Figure 3.1: AµProfiler Instrumentation Hook

trampoline calls are passed the address of the routine beingentered or exited, and the address

of the call site in its caller routine. These shared trampolines are inserted for the Routine Call-

Graph metrics described in Chapters5 and6. Figure3.2 shows the execution of the trampoline

during a routine call in aµC++ program. However, if the -pro�le statistial flag is specified all

profiling is activated except the -�nstrument-funtions flag as trampoline calls are not required

for statistical metrics. By specifying the -pro�le statistial flag, the large number of trampoline

calls is avoided, which has a positive impact on the running time of a profiled program.

For modules with inserted trampolines, if routine-level profiling is not enabled for at least one

active metric requiring it then the trampoline code is not executed and execution returns to the

instruction immediately following the trampoline call. Otherwise, metric-specific data structures

are updated to reflect the new execution-state (i.e., reflectthe current state of the stack - a new

routine being entered or a routine being exited), data collection is performed and, if active, the

corresponding hook is triggered.

3.4 µProfiler Kernel

The µProfiler kernel provides the main functionality ofµProfiler. Figure3.3 shows, using the

object-oriented notation described in AppendixA, the relationship between theµProfiler kernel

26 Chapter 3.µProfiler

* collect performance data

call exit trampoline

Target Program

}

Rtn {

...

call entry trampoline

}

* if routine-level hook active, trigger it

* update data structures

* if routine-level profiling not needed, return

__cyg_profile_func_exit {

Exit Trampoline

Entry Trampoline

__cyg_profile_func_enter {

* if routine-level profiling not needed, return

* update data structures

* collect performance data

* if routine-level hook active, trigger it

}

Figure 3.2: Flow of Control for Routine-Level Profiling inµProfiler

and the metrics’ execution monitors, analyzers and visualizers. TheµProfiler kernel consists of

the following objects:uPro�ler, StartMenuWindow, uPro�leTaskSampler, uExeutionMonitor,Analyze, Pro�lerAnalyze, andSymbolTable.uPro�ler is a task that acts as a proprietor [Gen81, p. 446] for all active metrics, handling

registration and management. Once created, the execution monitor for each active metric regis-

ters itself withuPro�ler, and registers for any required instrumentation hooks (seeSection3.5.1).

Monitors for metrics doing exact profiling are notified byuPro�ler when their registered instru-

mentation hooks are triggered during program execution, indicating to the monitor that an event

has occurred. Monitors for metrics doing statistical profiling are notified byuPro�ler at specific

intervals, indicating it is time for the monitor to sample the program’s execution state. Once

3.4. µProfiler Kernel 27

AddToList

ListSelectable

uTableWidget

uProfileBarChartWidget

. . .

1

1
1

0,n

StartMenuWindow

1

1

1

Analyzer

uProfileSampler

ProfilerAnalyze

Analyze

Metric
Analyzer

Metric

0,n

0,n

Monitor
Metric

. . .

Metric
Monitor

Symbol Table
1

uExecutionMonitor
1

ListSelectWindow
1 1

1

uProfiler Kernel

1

1

1
0,n 0,1

uVisualDevice

0,1

Metric
Analyzer
Window

Metric
Analyzer
Window

1

1

uProfiler

Figure 3.3: Object-Oriented Design of theµProfiler Kernel

28 Chapter 3.µProfiler

monitoring is complete,uPro�ler invokesPro�lerAnalyze which creates and invokes an analyzer

(see Section3.5.2) for each registered monitor.

Before the target program is executed, a user must select alldesired metrics from the list of

available metrics presented on the startup window (see Figure 3.4). StartMenuWindow creates

the startup window and also creates and invokes an executionmonitor for each selected metric.

Figure 3.4:µProfiler Startup Window

A uPro�leTaskSampler is created for each profiled task and coroutine to store, in var-

ious per-metric data structures, the related performance data collected during monitoring.uExeutionMonitor andAnalyze are abstract base-classes explained in Section3.5.

When the target program is compiled, the compiler generatesan architecture-dependent sym-

bol table. The program symbol table is accessible through the Binary File Descriptor (BFD)

Library [Cha91]. SymbolTable provides a high-level interface to the BFD library, abstracting the

3.5. µProfiler Metrics 29

symbol table details and providing access to its information (e.g., routine names and locations in

files).

3.5 µProfiler Metrics

Reflecting the profiling process, aµProfiler metric consists of an execution monitor, analyzer

and visualizer. Firstly, an execution monitor, derived from theuExeutionMonitor abstract base-

class, collects performance data during the monitoring phase of profiling. Secondly, an analyzer,

derived from theAnalyze abstract base-class, processes the performance data during the analysis

phase of profiling. Finally, a visualizer, using a device provided byµProfiler or derived from theuVisualDevie base class, displays the processed performance data on screen during the visual-

ization phase. In this way, work related to the various phases remains separated and each metric

becomes a separate entity allowing for easy extendibility and maintenance.

3.5.1 Execution Monitors

µProfiler’s execution monitors are passive objects that monitor a target program’s run-time be-

haviour. A monitor registers with and is managed byuPro�ler, as described in Section3.4.

Furthermore, for those monitors which register for hooks with uPro�ler, theuExeutionMonitor
abstract base-class includes one hook-notification routine for each hook, which is defined by the

derived monitor and called when that particular hook is triggered.

3.5.2 Analyzers and Visualizers

µProfiler does post-mortem analysis. Therefore, only after monitoring (and program execution)

is complete doesuPro�ler invokePro�lerAnalyze to create and invoke the analyzers for all reg-

istered monitors. TheuExeutionMonitor base class has a virtual routine calledreateAnalyze,
which is defined by the derived execution monitor and called by Pro�lerAnalyze to create the

analyzer object.

30 Chapter 3.µProfiler

Figure 3.5:µProfiler Task/Coroutine Selection Window

Once analysis is complete, visualization of data begins; however, further analysis may occur

as a user makes selections or chooses certain options on the various visualization windows. Each

µProfiler analyzer creates an analyzer window (a selection window), derived from a common

base-class calledListSeletWindow. ListSeletWindow is useful for summary information, pro-

viding routines for left/right panes with selection for drilling down in the data. For example,

in Figure3.5, call-graph summary information is displayed for each profiled task and coroutine

listed on the left-hand pane. By clicking on a task or coroutine, another window is displayed pro-

viding specific information for that selection (e.g., the per-task or per-coroutine call-graph). The

windows displaying specific information derive from a common base-class, calledListSeletable,
and often also derive from the classTextInfoWindow. TextInfoWindow is useful for detailed in-

formation, providing routines for creating and managing various types of window panes (e.g.,

hideable panes, clickable panes etc.). These powerful baseclasses are available inµProfiler to

simplify construction of complex graphical user interfaces.

3.6. Accessing Hardware Counters 31

3.5.3 Alternative Profiler Design

Other profiler designs exists to the one monitor, analyzer and visualizer metric-design described

for µProfiler. The alternatives decouple the monitors, analyzers and visualizers from one another

as opposed to the tightly-couple approach inµProfiler. Monitors would deposit performance data

into a common repository that is accessible to all the analyzers and visualizers, allowing data to

be more easily analyzed and visualized in multiple ways as well as enabling the addition of new

metrics into a profiler. Clearly, this design is very different and much more complex than the

currentµProfiler design, but is a potential long-term goal forµProfiler.

3.6 Accessing Hardware Counters

µProfiler has support for hardware counters on three different architectures: the UltraSPARC

I/II/III running Solaris, the x86 (including Intel Pentium/MMX/Pro/II/III/4 and AMD Athlon)

running Linux, and the IA-64 (Itanium 2) running Linux.

Each processor has a fixed number of hardware counters, each with a set of countable hard-

ware events. Because the hardware counter properties of each processor vary, this information

is encapsulated in per-processor event tables. Usually, the number of hardware counters is fairly

small (e.g., only 2 counters for the UltraSPARC III [Sun04]) and a particular hardware event is

often bound to only a subset of those counters; therefore, only a limited number of events can be

counted at any given time.

A substantial amount of fairly complex code must be executedin order to cause the hardware

counters to count specific hardware events, but these underlying details are encapsulated and

abstracted away by theHWCounters class [Les05]. TheHWCounters API provides the program-

mer with routines to choose events to be counted as well as to read from and write to the various

counters counting those events. User-level events, system-level events, or both can be counted.

For metrics such as the Exact and Statistical Routine Call-Graph metrics described in Chapters5

and6, a user can decide which level of events to count via an options box.

Chapter 4

Execution State Chart

This chapter describes the advances made inµProfiler’s Execution State Chart (ESC) within the

Execution State (ES) metric.

TheESCdisplays the states of individual tasks during execution. In µC++, a task can transi-

tion through five states during execution:� start: the task has been created but has not started execution.� ready: the task is ready to execute but is not currently scheduled for execution.� running: the task is executing on a processor.� blocked: the task is waiting for an event to occur.� end: the task has finished but has not been deleted.

TheESmetric collects the required data through tracing: each state entered and the duration

of the state is recorded on a per-task basis. TheESC uses a Gantt Chart [MR82] to display

the states for every task over the entire execution of the program, i.e., one continuous line per-

task. An example display of the initial implementation is presented in Figure4.1. Each line is

subdivided into segments representing the states. The colour of a segment indicates the type of

state, and the segment length indicates the duration of the state. The statesstart andend are

33

34 Chapter 4. Execution State Chart

in yellow, ready in blue, running in green, andblocked in red. The name of theµC++ task

associated with each line appears to the left of the chart, and the X-axis shows the elapsed time

of execution.

Figure 4.1: Initial Implementation: Execution State ChartDisplay

A user is able to magnify the chart (i.e., zoom-in and zoom-out). Zooming-in increases the

magnification, showing the chart in greater detail so each pixel represents a smaller duration

of execution time, and hence, each state (and line) expands in length. The duration of time

represented by one pixel is the scale ratio. In the initial implementation of theESC [Zak00], the

4.1. Initial Implementation Issues 35

scale ratio is updated as a user changes the scale factor in the “Scale” pull-down menu (see top

menu bar in Figure4.1). The scale factor is an integer value between 0 and 9. To compute the

scale ratio the entire execution duration is divided by a number associated with the current scale

factor. At scale factor 0 the number is 300, and the number increases to 30,000 by scale factor 9.

Therefore, the larger the scale factor, the smaller the scale ratio and the higher the magnification.

The overall goal of the advances discussed in this chapter isto developµProfiler’sESmetric,

primarily theESC, into a state-of-the-art metric with good performance thatscales to programs

of long duration and with large numbers of tasks and states.

4.1 Initial Implementation Issues

This section describes several issues arising in the initial implementation of theESC. I addressed

each issue in the advanced implementation of theESC and the solutions are discussed in Sec-

tion 4.2.2.

The first issue involves scaling theESC to programs with large numbers of tasks and long

execution. In the initial implementation, the entire chart(i.e., the entire execution of the program)

is drawn, all at once, into an X-window drawing area. A user then uses the horizontal and vertical

scrollbars to move the window over the drawing area. However, an X-window drawing area is

restricted to 32,000 x 32,000 pixels. Given this restriction, if the number of tasks within a

program is sufficiently large, the drawing area cannot vertically accommodate a line for each

task, or if a line is sufficiently long (i.e., long execution or high magnification), the drawing

area cannot horizontally accommodate the entire line. In fact, some instances of the X-server,

which handles the display and input devices, terminate the profiler application if the drawing

area exceeds the X-server’s size restrictions, and hence, no information is displayed for a user.

The second issue involves a loss of information at lower magnification. At lower magnification,

many states are represented by line segments too small to draw, i.e., less than one pixel in width.

Such a loss of information can result in a chart that is very confusing and misleading for a user.

For example, two distinct states of the same type can appear as one continuous state if the states

occurring between them are not drawn because they are too small at the current magnification. In

36 Chapter 4. Execution State Chart

an attempt to deal with this problem, the initial implementation always draws at least one pixel

for each line segment. However, this artificially lengthensthe line, and consequently the elapsed

time of execution does not always correctly match with the X-axis tick-marks.

The third issue involves the X-axis. In the initial implementation, the axis always shows the

elapsed time of execution in millisecond time units. Additionally, no fractional tick-mark inter-

vals (duration of time between two consecutive tick-marks on the axis) are used, and therefore,

the smallest tick-mark interval is one millisecond. Millisecond time units are not always the best

choice. Using nanoseconds for programs of very short execution and at higher magnification, and

seconds for programs of longer execution and at lower magnification is much more appropriate,

intuitive and allows for greater precision. Similarly, theuse of fractional tick-mark intervals al-

lows a more precise division of the axis so it is easy to associate a position along a line with a

specific execution time.

The fourth issue involves the visibility of the legend and the task names. Both the legend

and the task names appear to the left of the chart, but are drawn into the same drawing area as

the chart itself (see Figure4.1). Therefore, as a user moves the horizontal scrollbar to theright

these items disappear from the window. The consequence of the legend no longer being visible

is often minimal. However, given a large number of tasks it can be difficult to remember which

line corresponds to which task. This forces a user to constantly move the horizontal scrollbar

between the region under examination and the far left side.

The final issue involves visualization performance. As the number of states grows larger (e.g.,

several million states), the amount of time needed to process the state data in order to display

the corresponding lines also becomes larger. The decline inperformance is noticeable and can

be frustrating for a user (e.g., 5-30 seconds of delay when zooming as the entire set of state data

must be processed and redisplayed). This issue is significant because programs that make several

million state transitions are common.

4.2. Advanced Implementation 37

4.2 Advanced Implementation

In addition to addressing the issues from the initial implementation of theESC, the advanced

implementation has also progressed in other areas. An example display is presented in Figure4.2.

The advanced display consists of two panes, the task pane (left) containing the task names and

the chart pane (right) containing the states.

Figure 4.2: Advanced Implementation: Execution State Chart Display

4.2.1 Implementation Details

Each pixel of a line in the chart pane corresponds to a specificduration of execution time. As in

the initial implementation, the number of nanoseconds corresponding to one pixel is represented

by a scale ratio. The scale ratio is a continuous (floating-point) value. Requiring a user to set

the scale ratio in order to adjust the magnification is problematic because a user is forced to

relate particular magnifications to long floating-point values. Furthermore, the existence of a

large number of magnifications can clearly complicate user interaction. Therefore, I chose to

have a user indirectly control the magnification (i.e., the chart detail) by adjusting either of the

two parameters, the scale factor or the magnification step, instead of directly adjusting the scale

38 Chapter 4. Execution State Chart

(a) Minimum (b) Maximum

Figure 4.3: Advanced Implementation: Magnification Range

ratio, restricting adjustment to discrete integer values.The purpose of the restriction is solely to

simplify user interaction by providing small, repeatable values for controlling the magnification.

The scale factor is a unit-less integer value between 1 and a maximum. The maximum indi-

cates the number of magnifications between the minimum magnification (i.e., at scale factor 1,

see Figure4.3(a)), where each state is maximally compressed in length, and the maximum mag-

nification (i.e., at the maximum scale factor, see Figure4.3(b)), where each state is maximally

expanded in length. As the scale factor is increased, the scale ratio decreases, and hence, the

magnification increases (see Equation4.1). The number of integral scale factors (i.e., the max-

imum scale factor) is determined by the magnification step. The magnification step defines the

percentage change in magnification for each step in the scalefactor. Defining the change in this

way allows a user to magnify more quickly, but still have fine-grained control with the selection

of the magnification step. As a result, the scale ratio is an (inverse) exponential function of the

magStepandscaleFactor(see Equation4.1). The lower the magnification step, the greater the

number of scale factors because each step in scale factor represents a smaller percentage change

in magnification; therefore, more steps are required to reach the maximum magnification. For

example, a magnification step of 100% means that at each step of the scale factor the magnifica-

tion is doubled. The chart displayed at the minimum and maximum magnifications is the same

regardless of the magnification step.

The scale ratio (and correspondingly the chart displayed) is updated given any change in the

4.2. Advanced Implementation 39

scale factor (scaleFactor) or the magnification step (magStep). The scale ratio is computed by

the following formula

scaleRatio= totalDuration

magStepscaleFactor�1�MinDisplayPixels
(4.1)

The smaller the scale ratio, the higher the magnification because each pixel represents a smaller

duration of execution time. The smallest scale ratio possible, MinScaleRatio, is 0.1, meaning

that one nanosecond is represented by 10 pixels.

Solving forscaleFactorin Equation4.1gives the following formula for computing the scale

factor

scaleFactor= �
logmagStep

�
totalDuration

scaleRatio�MinDisplayPixels

��+1 (4.2)

The current scale factor is updated given a change in the magnification step. The new magnifica-

tion step and updated scale factor are then used to compute the scale ratio. The scale factor calcu-

lation attempts to preserve the current scale ratio (i.e., the current magnification) while keeping

the scale factor an integer value.MinDisplayPixelsis 100 and represents the number of pixels

used to display the entire chart at scale factor 1. Similarly, the maximum scale factor is updated

given a change in the magnification step, but computed using Equation4.2 with MinScaleRatio

instead ofscaleRatio. However, the maximum scale factor does not always lead to the maximum

magnification (i.e., the lowest scale ratio,MinScaleRatio) because the scale factor is maintained

as an integer value. Therefore, in many situations, when themaximum scale factor is reached,

the corresponding scale ratio is still noticeably aboveMinScaleRatio. I considered having the

ability to reach the maximum magnification important, but itrequired an exception to the scale

factor being an integer value. To avoid the fractional scalefactor (just above the integral maxi-

mum) one extra scale factor is made available. The maximum integral scale factor followed by a

‘+’ sign is used to represent this value.

The magnification step has both a display and an internal value. The display value is the

percentage form of the internal value and that value is presented to and set by a user. The max-

imum magnification step, a display value which remains constant, is computed by the following

40 Chapter 4. Execution State Chart

formula

maxMagStep=�
totalDuration

MinScaleRatio�MinDisplayPixels
�1

��100 (4.3)

Setting the magnification step to the maximum results in the availability of only two scale factors,

i.e., it results in a maximum scale factor of 2. In this case, only one step is required to go from

the minimum magnification to the maximum magnification.

(a) Options Menu (b) Dialog Box

Figure 4.4: Advanced Implementation: User Adjustable Options

As previously mentioned, a user can set both the scale factorand the magnification step,

which is accomplished via a pull-down menu associated with the “Options” button on the menu

bar (see Figure4.2). This pull-down menu is presented in Figure4.4(a). The “Scale” option can

be used to set the scale factor between 1 and the current maximum scale factor (or maximum+ if

a final fractional part exists). Figure4.4(b)shows the dialog box for setting a new scale factor.

Alternatively, the scale factor can be increased or decreased sequentially by one using keyboard

and mouse shortcuts (see Section4.4). The default scale factor is 5. The “Magnification Step”

option can be used to set the magnification step between 1 and the maximum magnification step.

The default magnification step is 50%. The current scale factor and magnification step values are

displayed beside their respective options in the pull-downmenu. In addition, the current scale

factor is displayed directly above the task pane on the left side (see Figure4.2, the scale factor is

12).

4.2. Advanced Implementation 41

4.2.2 Addressing Initial Issues

Whereas in the initial implementation every line and every line’s entire execution duration is

drawn into the drawing area, in the advanced implementationonly the lines and the execution du-

ration visible within the chart pane are drawn. Consequently, for each movement of the horizontal

scrollbar in the chart pane, the section of the chart starting at the execution time of the beginning

of the chart pane needs to be drawn for the length of the chart pane, i.e.,chartWidth�scaleRatio

nanoseconds of time, wherechartWidthis the width of the chart pane in pixels. By only render-

ing the section of the chart visible within the chart pane, theESCnow scales to programs of long

execution (hours and days) and to higher magnification (0.1 nanoseconds per pixel). As the verti-

cal scrollbar is moved, the chart is also redrawn to include lines for the tasks that are now visible

and remove lines for the tasks that are no longer visible, accommodating large numbers of tasks.

Programs with large numbers of tasks (e.g., 10,000 tasks or more) are not unrealistic and do exist

in practice. While only displaying the visible lines and execution duration in the chart pane is

an obvious solution, it required a complete transformationof the initial implementation with sig-

nificant complexity. For example, the explicit management of some scrollbar functionality was

required to ensure the proper section of the chart is displayed at all times.

To address the loss of information at lower magnification, states represented by line segments

too small to draw must still be addressed. When the duration of a state is less than the scale ratio,

the corresponding line segment is considered to beinvisible, but is indicated in black on the line.

A black state signals that one or more states exist within that duration of time, but at the current

magnification, further detail cannot be displayed. The legend gives the black state the name

“Elided”, meaning information is being omitted. In the linedrawing algorithm, the durations of

successiveinvisible line segments are summed until a visible line segment is encountered. At

that point, a black line segment is drawn to represent theinvisibleline segments, unless the black

line segment is less than one pixel in width. In this case, a pixel is stolen from the front of the

upcoming visible line segment. Stealing a pixel from the visible line segment may in turn result

in that line segment becominginvisible, and hence, also being represented within the current

black line segment. The advantage over the solution in the initial implementation is that a line

is not artificially lengthened, so the elapsed time of execution always correctly matches with the

42 Chapter 4. Execution State Chart

X-axis tick-marks.

To address the issue of the static X-axis, the elapsed time ofexecution is no longer limited

to millisecond time units. Nanoseconds, microseconds, milliseconds, seconds, and kiloseconds

are all available as axis time-units. The most appropriate time unit is determined based on the

magnitude of the duration of time (i.e.,chartWidth�scaleRationanoseconds) visible within the

chart pane. Magnitudes of less than 103 use nanoseconds, 103 to 106�1 use microseconds, 106

to 109�1 use milliseconds, 109 to 1012�1 use seconds, and 1012 or greater use kilo-seconds.

The selected time unit is displayed to the left of the axis immediately followed by the starting

time of the currently drawn chart section and a ‘+’ sign (see below the menu bar in Figure4.2,

‘us’ means microseconds). Adding the value of a tick-mark label to the starting time gives

the elapsed time of execution for that chart position in the selected time unit. The maximum

precision of the tick-mark interval (and the tick-mark labels) is 3 decimal places. The precision

of the starting time is equal to the precision of the tick-mark interval, with one exception. If the

tick-mark interval is an integer value the starting time still displays 1 decimal place.

To address the visibility of the legend and the task names, both are no longer drawn into the

same drawing area as the chart. Therefore, the legend and thetask names remain visible to a user

at all times. The legend appears in the menu bar after the “Options” button. The task names are

now drawn into a separate task pane (see left column in Figure4.2). In addition to the task pane

maintaining a separate horizontal scrollbar, the line separating the task pane from the chart pane

can be pulled to the left or right, adjusting the width of the task and chart panes. Both features

accommodate longer task names. The vertical scrollbar scrolls both the task pane and chart pane

at the same time.

To address the visualization performance issue, the data structure storing the states was al-

tered; states are now stored in blocks of equal size. Each block is 32 kilobytes in size and stores

2046 states. Therefore, a line consisting of 1,000,000 states is separated into 489 blocks. The

maximum state duration is calculated and stored for each block. This information is then used

to improve the performance of the line-drawing algorithm. Before each state within a block is

processed and drawn, the maximum state duration for the block is compared against the scale

ratio. If the maximum state duration is less than the scale ratio, then the entire block isinvisible;

4.3. Implementation Issues 43

therefore, the individual states within the block do not need to be processed and a black line seg-

ment (representing the duration of the block) can be drawn. The improvement in performance is

most apparent for programs with large numbers of state transitions at the minimum magnifica-

tion, where the entire chart is drawn and consists entirely of invisible line segments. Using the

example above, 489 blocks are processed rather than 1,000,000 states.

4.3 Implementation Issues

This section describes implementation issues I encountered and solved during the writing of the

advanced implementation of theESC.

4.3.1 Scrollbar Scaling

This issue involves scaling with respect to the horizontal scrollbar in the chart pane. A scrollbar

manages its position, representing the distance from the beginning of execution, as well as a

width for the sliding bar and a maximum position. The meaningof the X-window scrollbar

values is up to the application, within the limits of a signed32-bit integer value. To simplify the

implementation, the scrollbar values are chosen to be the pixel equivalent of the time values. For

example, the maximum position is given by the following formula

maximum= �
totalDuration

scaleRatio

�+1 (4.4)

This formula computes the number of pixels needed to represent the entire execution duration

(totalDuration) at the current scale ratio. Figure4.5 illustrates the simple conversion between

time and pixel units:

Multiplying a position in pixel units by the scale ratio results in the corresponding time units;

dividing a position in time units by the scale ratio results in the corresponding pixel units. How-

ever, given a scale ratio of 5 nanoseconds per pixel and an execution duration of 1 minute, with

nanosecond precision, the maximum scrollbar position in pixels requires more than 32 bits (in

44 Chapter 4. Execution State Chart

scrollbar
position

0
multiply

by
scaleRatio

divide
by

scaleRatio

totalDuration

maximum scrollbar
position

In Time Units
(floating-point)

In Pixel Units
(64-bit integer)

chart window

0

Total
Execution

for all Tasks

Figure 4.5: Advanced Implementation: Converting Between Time and Pixel Units

this example, 34 bits are required); hence, a 64-bit integeris needed to store this value in pixel

units. Unfortunately, an X-window scrollbar manages values as signed 32-bit integers, limiting

the scalability to programs of longer execution as well as the ability to increase magnification.

Since the internal representations of the scrollbar cannotbe changed, I adopted another solu-

tion: the scrollbar values are scaled. Given a change in the scale ratio, the maximum position

is computed (see Equation4.4) and used to determinenumShi f ts. numShi f tsis the number of

bit shifts required to convert the maximum position (i.e., the largest value given to the scrollbar)

into a signed 32-bit integer. Any value given to the scrollbar is shifted to the right bynumShi f ts,

and any value retrieved from the scrollbar is shifted to the left by numShi f ts. Consequently, a

numShi f tsof 3, for example, means that a one unit move of the scrollbar moves the chart by

23 pixels (or 23� scaleRationanoseconds) rather than 1 pixel. AsnumShi f tsbecomes large, a

one unit move of the scrollbar can result in a large movement of the chart. If the movement is

greater than the width of the chart pane then some areas of thechart become inaccessible. For

example, if the visible area of the chart pane is 500 pixels inwidth and a one unit move of the

scrollbar moves the chart by 512 pixels, then for every 512 pixels the last 12 are inaccessible.

However, such a situation can only occur for programs of longexecution at high magnification.

In the previous example, at a magnification of one nanosecondper pixel, the program must run

for 1099.5 seconds.

4.3. Implementation Issues 45

I also considered an alternative solution of keeping two separate numbers for each scrollbar

value. One number is maintained by the scrollbar and consists of the 31 most-significant bits of

the whole value. The other number is maintained by the program and consists of the remaining

least-significant bits of the whole value (i.e.,numShi f tsbits). This solution does overcome the

issue of inaccessible chart areas because the extra bits arenot discarded; however, it generates

significant complexity. Functionality currently handled independently by the scrollbar needs to

be overridden because the scrollbar maintains only 31 bits of the whole value. Before a decision

on an appropriate scrollbar action can be made, the 31 most-significant bits need to be combined

with the remaining least-significant bits. The complexity introduced by the alternative solution

seemed greater than the benefit gained for the extreme cases where it is needed, and therefore,

the previous solution was selected.

4.3.2 X-Axis Labelling

This issue involves the selection of appropriate tick-markintervals and labels for the X-axis.

The length of the longest tick-mark label must be consideredbecause each label needs a certain

number of pixels for display; therefore, the tick-marks must be sufficiently spaced apart to allow

for the display of the longest label. Ideally, the tick-marks should be frequent. Yet, as the

elapsed time of execution increases, the labels become verylengthy, resulting in fewer tick-

marks. To maintain frequent tick-marks the starting time ofthe currently drawn chart section

is subtracted from the label values and, as previously mentioned, displayed to the left of the

X-axis. The tick-mark labels and lengths are now limited to the incremental increase of the tick-

mark interval. Therefore, the number of digits in the longest possible tick-mark label is equal to

the number of digits in the integer part of the duration of time being represented within the chart

pane (converted into the selected time unit), plus one for the decimal place and plus the maximum

allowable number of decimal places (i.e., 3). This maximum length in digits is converted into

pixels (maxPixels) and used to compute the initial tick-mark interval,tikInt, as follows:

46 Chapter 4. Execution State Chart// ompute numTiks given length of longest labelunsigned int numTiks = (unsigned int)(hartWidth / maxPixels);// ompute tikInt given number of tik marksdouble tikInt = dur / numTiks;// round tikInt up to one signi�ant digitdouble exponent = oor(log10(tikInt));double mantissa = tikInt / pow(10, exp);tikInt = eil(man) * pow(10, exp);// reompute numTiksnumTiks = (unsigned int)(dur / tikInt);
The number of tick-marks along the X-axis isnumTiks. The tikInt is rounded up to one

significant digit in order to provide a reasonable interval.However, as a result of the rounding

the initial tick-mark interval may need to be iteratively increased. IfnumTiks is less than the

number of tick-marks possible given the longest label, the tick-marks are increased (i.e.,tikInt�0:5) as long as the longest label can still be displayed. In the majority of cases, at most one

increase is made. Overall, the procedure produces a well divided X-axis.

4.4 Other Considerations

I also considered additional factors relating to the user experience in the advanced implementa-

tion of theESC.

One way to move the horizontal scrollbar in the chart pane is to click the arrow button located

at each end of the scrollbar. The default action is that one click of an arrow button moves the

scrollbar by one unit. The corresponding movement of the chart, in pixels, depends on the current

value of numShi f ts(see Section4.3.1). However, users can use the “Horizontal Increment”

option in the pull-down menu associated with the “Options” button to define the number of

units that the scrollbar moves given one click of an arrow button (see Figure4.4), but again

the corresponding movement of the chart depends onnumShi f ts. This option allows users to

4.5. Task Details 47

precisely adjust the movement of the scrollbar according tothe requirements of their current

situation.

The mechanisms to control the interface to the data are repeated in multiple forms to satisfy

different user preferences. The keyboard keys, the mouse buttons and the scroll wheel can be

used as shortcuts to perform various actions. The ‘i’ key andthe middle mouse button can be

used to increase magnification; both increase the scale factor by one. The ‘o’ key and the right

mouse button can be used to decrease magnification; both decrease the scale factor by one. The

left/right arrow keys can be used to move the horizontal scrollbar in the chart pane by the user-

defined number of units, as can the scroll wheel, or by the width of the chart pane if holding

the ‘control’ key. The up/down arrow keys can be used to move the vertical scrollbar by one

line, and the page up/down keys can be used to move the vertical scrollbar by the number of

lines currently visible. Similar control functionality exists for the task pane. For example, the

left/right arrow keys can be used to move the task names by onepixel. Scrolling through the task

names in the task pane, using the up/down arrow keys, also appropriately scrolls the lines within

the chart and moves the vertical scroll bar on the right.

A single gridline, positioned at the middle-most X-axis tick-mark, is displayed behind the

lines in the chart pane (see gridline descending from 400 in Figure4.2). A user can line-up any

state precisely at the gridline to aid in the reading of the chart. The single gridline, as opposed to

a full grid, does not clutter the chart pane.

4.5 Task Details

By clicking on a task name in the task pane of theESC, detailed information about the selected

task’s execution is displayed in a new window (see Figure4.6). The upper pane of the window

displays the execution summary information for the task. The summary information includes

the total lifetime of the task, the total duration of time spent in various states, the minimum

and maximum state durations, and the creation and deletion clock times. The lower pane of the

window lists the task’s states, including details for each state. The details include the start time

of the state, the duration of the state, the cumulative duration of the task’s execution at the time

48 Chapter 4. Execution State Chart

Figure 4.6: Advanced Implementation: Execution State TaskDetails Display

the state is entered, and the name of the routine in which the task entered the state. This window

was available in the initial implementation, but now interacts with theESC (and vice versa).

Clicking on a state or scrolling in the state list results in theESC being scrolled horizontally to

the corresponding state location. Similarly, clicking on aline segment in theESCscrolls to and

highlights the corresponding state in the state list. Such functionality allows a user to quickly

obtain detailed information about any area of theESC. Additionally, a user can use the “File

4.6. Performance 49

Info” option in the “Options” pull-down menu to display, foreach state, the file name (and path)

containing the routine in which the state was entered and theline number corresponding to the

start of the routine within the file.

4.6 Performance

This section describes the performance of theESC with respect to both time and space. I was

unable to compare theESC, in these respects, to the related profiling tools (described in Sec-

tion 4.7) because I did not have access to the tools or the environmentrequired to run them.

4.6.1 Time

To evaluate the time cost of a state transition, I constructed a worst-case test program (see Fig-

ure 4.7), profiled this program with theES metric, and compared its running time to the same

test program run without profiling. Only the running time of the test program itself was mea-

sured, i.e., the time includes monitoring and data collection but not time spent during analysis or

visualization.

The test program simply calls the task yield routine, causing a state transition from running to

ready; then the task is immediately scheduled (because no other tasks are in the system), causing

a state transition from ready to running. In other words, onecall to the yield routine results in two

state transitions. The test program is a worst-case scenario because it does no work, other than

change state by calling the yield routine. In most applications, the cost of a task’s computation

would dominate the cost of its state transitions.

The test program was compiled with optimization (i.e., O2 flag) and run multiple times with

an increasing number of state transitions (2000 to 30000). Table4.1 shows the results of the

performance testing on a per-transition basis (in microseconds).

The per-transition time is calculated by dividing the totalrunning time by the number of

state transitions. As the number of state transitions increases, the running time of the program

increases for both the profiling and no profiling cases; as seen in the table, the time per-transition

50 Chapter 4. Execution State Chart#inlude <uC++.h>_Task Worker {int loop;void main() {for (int i = 0; i < loop; i += 1) {yield();} // for} // Worker::mainpubli:Worker(int loop) : loop(loop) {} // Worker::Worker}; // Workervoid uMain::main() {int loop = 1;if (arg == 2) loop = atoi(argv[1℄);Worker w(loop);} // uMain::main
Figure 4.7: Execution State Chart: Time Performance Test Program

remains relatively constant. However, the average time per-transition for the profiling case is

70% higher than that of the no profiling case, signifying thatthe ES metric increases running

time by 70% in this worst-case program. Such an increase is reasonable given the overhead

of creating the storage data structures, and at each state transition, collecting and storing the

necessary data.

4.6.2 Space

To determine the space cost of a state, the space cost of a state object and a block (see Sec-

tion 4.2.2) needs to be considered. A state object stores data for an individual state. Each state

object consists of a long integer to store the start time of the state, an integer to store the type of

state and a pointer to the routine in which the state was entered. Therefore, in a standard 32 bit

system with 4 byte pointers, 4 byte integers and 8 byte long integers, each state object requires

16 bytes of space.

4.6. Performance 51

No. State No Profiler Time µProfiler Time % Increase
Transitions per-Transition (µs) per-Transition (µs)

2000 0.81 1.42 76.09
4000 0.79 1.35 71.79
6000 0.78 1.33 71.01
8000 0.77 1.31 70.39
10000 0.75 1.30 72.05
12000 0.76 1.30 70.74
14000 0.77 1.29 68.40
16000 0.76 1.29 69.31
18000 0.75 1.29 72.58
20000 0.76 1.29 70.03
22000 0.75 1.29 71.80
24000 0.76 1.28 69.40
26000 0.75 1.28 70.46
28000 0.76 1.28 68.03
30000 0.76 1.29 70.02

Table 4.1: Execution State Chart: Time Performance Results

Each block object consists of a pointer to link the blocks, header information, and an array

of N state objects. The header contains an integer to store the number of elements in the array,

4 bytes of padding to maintain proper data structure alignment, and a long integer to store the

maximum state duration in the block. Therefore, each block object requires 24 bytes of space in

addition to the space required for the state objects stored in the block’s array.

A block index is also created to provide random access and forperforming searches. The

index (an array) has one entry for each block object consisting of a pointer to the block object

and a long integer to store the maximum start time in the block. Therefore, an index entry

requires 12 bytes of space and, in order to compute the per-block cost, needs to be added to the

cost of a block object.

As previously mentioned each block object stores 2046 states, so the total space cost per-

52 Chapter 4. Execution State Chart

block is

Total space per-block= 12 bytes+24bytes+(2046�16bytes) = 32;772bytes (4.5)

All state objects equally share the cost of the block in whichthey reside. To compute the space

cost per-state the above result is divided by 2046. Therefore, in a standard 32 bit system, the

space cost per-state is 16.018 bytes. In a standard 64 bit system with 8 byte pointers, no padding

is necessary, leaving storage for 2045 states, so the space cost per-state is 20.018 bytes.

4.7 Related Work

This section describes three current profiling tools that include execution-state charts. HP Visual

Threads [HP04] provides profiling metrics for programs using a POSIX threads library, includ-

ing C, C++, and Java; however, its use with Java applicationsis limited. The NetBeans Profiler

[Net] and Borland Optimizeit Thread Debugger [Bor03] both provide profiling metrics for mul-

tithreaded Java programs. Other profiling tools that include execution-state charts exist in the

literature [HP06, ejt07, App, gra96].

4.7.1 HP Visual Threads

The HP Visual Threads tool analyzes programs to detect problems associated with multithread-

ing, including performance, data protection, and deadlock[HP04]. The profiling data undergoes

real-time analysis and visualization; therefore, the information presented to a user is continuously

updated. The data can also be saved to a tracefile for later visualization. Two visualizations pro-

vide the state data: the Main Window and the State Transitions Window.

Main Window

The Main Window provides a high-level overview of the globalexecution-state (see Figure4.8).

The displayed graph is generated by statistical profiling (i.e., sampling), so data is collected only

at specific time intervals (i.e., sampling interval). The graph shows the number of active threads

4.7. Related Work 53

Figure 4.8: HP Visual Threads Main Window

Figure 4.9: HP Visual Threads State Transitions Window

54 Chapter 4. Execution State Chart

within the program over time. At any point in time, each band of colour shows the portion of

the active threads in the associated state: running, ready,blocked, waiting, or terminated. The

states are defined similarly to those in theESC, with the addition of the waiting state indicating

a thread is blocked on an event such as a system call, page fault, join, or on a condition variable,

rather than on a mutex object or lock as is the case in the blocked state. The sampling interval

is indicated by the X-axis tick-mark interval and can be changed by a user. All subsequently

graphed data is displayed using the new interval, so the currently graphed data is removed. The

connected line segments on the graph show the number of events processed per interval, where

events include acquiring a mutex object, a deadlock, entering or exiting a routine, etc. Severity

icons can be displayed at various times along the X-axis to indicate that a violation (e.g., of a

deadlock condition or performance threshold) has occurred. Several control buttons (i.e., fast

forward, play, pause, stop) are also available to a user for controlling the profiling of a program.

For example, the play button allows a user to start, restart or resume profiling. The speed slider

allows a user to control how often the graph is updated with new data.

State Transitions Window

The State Transitions Window displays an execution-state chart (see Figure4.9). The chart is

generated by exact profiling, meaning all states are recorded in the chart. The State Transitions

Window, like theESC, shows the elapsed time of execution across the top of the chart and the

list of threads on the left. The colour coded states represented in the chart are the same as those

described for the Main Window. Buttons are available to sortthe threads by name or their current

state, to overlay colours on blocked states indicating which mutex objects threads are blocked

on, and to zoom-in and zoom-out. Waiting and blocked states are also sorted by the blocking

reason (e.g., the mutex object the thread is blocked on). Thedisplay order of the threads changes

according to the sorting criteria as the chart is updated in real-time (e.g., threads currently in a

particular state are grouped together). The highest magnification is 2 milliseconds per pixel and

the lowest magnification is 12 seconds per pixel. Moving the cursor over a line segment displays

the text description of the corresponding state (and blocking reason if applicable) in the status

box below the chart. Horizontal and vertical scrollbars exist to move through the chart. As new

4.7. Related Work 55

data is displayed in real-time, the chart is automatically scrolled to ensure the new data is visi-

ble. As in the Main Window, several control buttons are available for controlling the profiling.

Clicking a line segment displays the Event Details Window which provides information about

the event that caused the thread to enter the selected state.The information includes the event

type, the time the event occurred, the threads involved in the event, and a call-stack. Clicking

on a thread name displays the Object Details Window, which provides general information about

the thread. The information includes statistics about the thread, related objects, and details such

as the thread ID.

4.7.2 NetBeans Profiler

The NetBeans Profiler tool is a profiler for the NetBeans Integrated Development Environment

and provides CPU, memory and threads profiling as well as basic Java Virtual Machine monitor-

ing to analyze and solve memory and performance problems [Net]. The profiling data collected

undergoes real-time analysis and visualization; therefore, the information presented to a user is

continuously updated. The data can also be saved as snapshots for later visualization. Two visu-

alizations provide the state data: the Threads Timeline Taband the Threads Details Tab.

Threads Timeline Tab

The Threads Timeline Tab displays an execution-state chart(see Figure4.10). The chart is gen-

erated by statistical profiling, so thread states are collected only at specific time intervals. The

Threads Timeline Tab, like theESC, shows the elapsed time of execution across the top of the

chart and the list of threads on the left. The colour coded states represented in the chart are: run-

ning, sleeping, wait, and monitor. Here, the running state means the thread is running or ready

to run, the sleeping state means the thread has called the sleep function, the wait state means the

thread is blocking on a condition variable in a monitor (i.e., executing a wait function), and the

monitor state means the thread is waiting to enter a monitor held by another thread. Buttons are

available to zoom-in and zoom-out as well as to scale the chart to fit the window. The threads

can be filtered to display all threads, active threads, or finished threads. Horizontal and verti-

56 Chapter 4. Execution State Chart

Figure 4.10: NetBeans Profiler Threads Timeline

Figure 4.11: NetBeans Profiler Threads Details

4.7. Related Work 57

cal scrollbars exist to move through the chart, and the current state of a thread is indicated next

to the thread name using colour. Gridlines are also displayed to ease the reading of the chart.

Control buttons are available to stop the profiling and to rerun the previous profiling command

(e.g., same program, same options). Double clicking a thread displays the thread’s details in the

Threads Details Tab. Additionally, a VM Telemetry Tab displays a graph showing the number of

active threads within the program over time (separated intouser and system threads).

Threads Details Tab

The Threads Details Tab provides detailed information about the threads (see Figure4.11). A

user can display the details for all threads, active threads, finished threads, or for particular

threads selected in the Threads Timeline Tab. The state linefor the thread and a list of the

thread’s states (corresponding to the line), including thestart times of the states, is displayed

for each selected thread. Clicking a line segment in the state line highlights the corresponding

state in the list. A pie chart illustrating the percentage oftime the thread spent in each state is

displayed on the General Tab (chart not visible in Figure4.11) to provide a quick overview of

the thread’s activity. Finally, a short text description ofthe thread is provided.

4.7.3 Borland Optimizeit Thread Debugger

The Borland Optimizeit Thread Debugger tool reveals how a Java program uses computer re-

sources, identifying thread contentions, thread starvation, unnecessary locking, and deadlocks to

understand and improve the performance and reliability of aJava program [Bor03]. The pro-

filing data collected undergoes real-time analysis and visualization; therefore, the information

presented to a user is continuously updated. The main visualization that provides the state data

is the Thread View.

Thread View

The Thread View displays an execution-state chart (see Figure 4.12). The chart is generated

by exact profiling, meaning all states are recorded in the chart. The colour coded states repre-

58 Chapter 4. Execution State Chart

Figure 4.12: Borland Optimizeit Thread Debugger Thread View

sented in the chart are: running, blocking, waiting, and blocking (I/O). Here, blocking means the

thread is waiting to enter a monitor held by another thread, waiting means the thread is blocking

on a condition variable in a monitor (i.e., executing a wait function), and blocking (I/O) means

the thread is not making progress as a result of waiting on an I/O operation. On the left, the

Thread View displays several columns of information for each thread, in addition to the thread

name. The default information includes the number of monitors the thread currently holds and

the length of time the thread has blocked for a monitor. A usercan display further information

such as the number of times the thread has blocked for a monitor, the number of times the thread

has waited in a monitor, etc. The information is aggregated for all monitors. A user can sort the

4.7. Related Work 59

threads in the chart on any of the available columns. The Thread View shows the elapsed time of

execution across the top of the chart. Gridlines are also displayed to ease the reading of the chart.

Horizontal and vertical scrollbars exist to move through the chart. As new data is displayed in

real-time, the chart is automatically scrolled to ensure the new data is visible. Several control

buttons (i.e., play, pause, stop) are available to a user forcontrolling the profiling of a program.

For example, the play button allows a user to start or resume profiling. A thread can be selected

by clicking anywhere on the thread’s state line and a time range can be selected by highlighting

an area right on the chart. The selected thread or time range determines the range of information

displayed in the other views. A Source Code Viewer is available to display code related to a

detected event (e.g., routine where a thread is blocking).

Other Views and Displays

The Contention View provides information to understand whycontention among threads occurs

for a monitor. The view displays a backtrace of routine callsleading to the routine where a

thread is blocking. Upon selecting a contended monitor, details are provided explaining all the

threads involved in the contention. The Waiting View provides information to understand why

a thread is not making progress (e.g., waiting in a monitor, blocked on an I/O operation). The

view displays a backtrace of routine calls leading to the location of the thread’s stalled progress

and provides the wait time. The Monitor Enter View describeswhere a thread enters and holds

monitors to understand and correct unnecessary locking. The view provides a backtrace of rou-

tine calls indicating locations where the thread enters various monitors. The number of times a

routine enters any monitor and the corresponding percentage of the total entrances are provided

for each routine.

The Monitor Display provides deadlock detection by providing a real-time graph showing

the relationship of threads and monitors within a deadlock cycle. Selecting a relationship (e.g.,

thread blocking on a monitor) in the graph displays the backtrace of routine calls resulting in

the relationship. The Monitor Usage Analyzer Display provides warnings about possible unsafe

situations that can lead to deadlock and identifies the threads involved in the warnings. For

example, the lock and wait warning occurs when a thread enters one monitor and then waits for

60 Chapter 4. Execution State Chart

another monitor before releasing the first, possibly causing deadlock.

4.7.4 Comparison

Table4.2 summarizes and compares the relevant features ofµProfiler’sES metric and the three

profiling tools discussed in the previous sections. Some of the important features are discussed

in detail.

µProfiler HP Visual NetBeans Borland
ES Metric Threads Profiler Debugger

Real-time Analysis and Visualization
p p p

Aggregate Views
p p

Exact Profiling
p p p

Saving Tracefile or Snapshot
p p

Blocking Reasons or Backtrace
p

(minimal)
p p

State List
p p

Thread Summary Information
p p p p

Zooming-in and out
p p p

Fine-grained Zooming Control
p

Sorting or Filtering
p p p

Gridlines
p p p

Eliding
p

Table 4.2: Execution State Chart: Comparison of Related Profilers

Using statistical versus exact profiling to generate an execution-state chart is an important

difference. The choice of profiling approach comes down to a trade-off between accuracy and

overhead. In statistical profiling, thread states are only collected at specific time intervals, so state

transitions occurring within the time interval are lost, thereby reducing the accuracy of the chart.

Exact profiling provides complete accuracy because each state transition is recorded as it occurs.

In statistical profiling, only collecting data at specific time intervals gives a lower data collection

overhead, both in time and space, than in exact profiling and consequently a lower probe effect.

The NetBeans Profiler uses statistical profiling for its execution-state chart. HP Visual Threads

4.7. Related Work 61

also uses statistical profiling, not for its execution-state chart, but for its global execution-state

graph. In such a situation, the loss of accuracy may be less ofan issue as the graph is only trying

to illustrate an overall view of the execution state.µProfiler, HP and Borland use exact profiling

for their execution-state charts, choosing complete accuracy over a reduction in overhead.

Unlike the other profiling tools,µProfiler’sESmetric does not provide real-time analysis and

visualization. Real-time analysis and visualization is useful when a user pauses profiling (e.g.,

by using a control button or due to the interactive nature of the program) and proceeds to examine

the data displayed up to that point. Otherwise, because the display is updated in real-time, a user

would be overwhelmed by the constantly changing data since many programs generate hundreds

to thousands of state transitions per second.

Although two out of the three profiling tools provide magnification (i.e., the ability to zoom-

in and out), theESC provides higher magnification and, unlike all the other profiling tools,

fine-grained control. HP Visual Threads, for example, has a maximum magnification of only 2

milliseconds per pixel, whereas theESC has the maximum magnification of 0.1 nanoseconds

per pixel. High magnification is essential for analyzing theexecution of threads with states of

short duration (e.g., micro or nanosecond duration). States of short duration are common in

many concurrent programs. TheESC additionally provides fine-grained control through the

“Magnification Step” option, allowing a user to control the percentage change in magnification

for each step in the scale factor.

The other profiling tools do not provide an elided state or similar functionality; therefore, at

lower magnification, states represented by line segments too small to draw are not drawn. The

loss of states at lower magnification can result in a chart that is very misleading and confusing

for a user because the chart is not accurate and may be logically inconsistent. A chart is logically

inconsistent when it displays adjacent states, resulting from a loss of states in between them,

such that the second state is not logically reachable from the first state.

Overall,µProfiler’sES metric provides many important features, and furthermore,includes

new features unavailable in the other profiling tools. Some features not currently provided in

µProfiler, such as aggregate views, saving tracefiles and sorting, are possible enhancements for

future work.

62 Chapter 4. Execution State Chart

4.8 Summary

The advancements made toµProfiler’sESmetric have achieved the goals stated at the beginning

of the chapter. Firstly, based on functionality and the comparison to related work,µProfiler’sES

metric is similar to state-of-the-art vendor execution-state metrics. Secondly, the evaluation of

time and space costs reveals good performance in both areas.Finally, theESCscales to programs

of long duration and with large numbers of tasks and states.

Chapter 5

Exact Call-Graph

This chapter describes the advancements made inµProfiler’s Exact Routine Call-Graph (ECG)

metric.

TheECG generates an exact profile of aµC++ program’s dynamic execution (called a call-

graph). The profile provides the dynamic calling relationship among routines in the program and

gives a user some indication about the program’s control flow. A dynamic call-graph includes

only those routines called during a particular execution ofthe program, in contrast to a static call-

graph that includes all routines in a program (called or not). To express the calling relationships

among routines, the parents and children of each routine areindicated. The set of routines that

call a specific routine one or more times are that routine’s parents or callers. The set of routines

that a specific routine calls one or more times are that routine’s children or callees. Figure5.1is a

graphical representation of a call-graph where A, B, C, D, E and F represent routines. A directed

edge represents a call being made from one routine (the caller) to another routine (the callee). In

Figure5.1, routine A calls routine D; therefore, routine D has routineA as a caller and routine

A has routine D as a callee (as well as routine B). The routines, starting at the root (i.e., routine

A), along the call-path leading to a specific routine are thatroutine’s ancestors (e.g., routines A

and D are ancestors of routine E). The routines having a specific routine as an ancestor are that

routine’s descendants (e.g., routines B, C, D, E and F are descendants of routine A). However,

if a routine is an ancestor of itself, then there exists a callcycle in the call-graph. In Figure5.1,

63

64 Chapter 5. Exact Call-Graph

routines A, B and C are ancestors of routine B; therefore, routine B is an ancestor of itself and

the call-graph includes a cycle, namely B! C! B.

A

B D

E FC

Figure 5.1: Call-Graph

For each routine, various data can be collected. The data caninclude the number of calls

to a routine, the inclusive time of a routine, the self or exclusive time of a routine, the block

time of a routine, and the descendant time of a routine. Inclusive time is the time spent for the

entire execution of the routine (i.e., total time between routine enter and exit). The inclusive

time is the sum of the routines exclusive, block and descendant times. Exclusive time is the time

spent executing the routine itself and does not include the time spent blocking. Block time is the

time spent while the task executing the routine is blocked inthe routine itself. Descendant time

is the time spent executing the descendants of the routine. The descendant time is the sum of

the inclusive times of the routine’s callees. The total number of calls, inclusive time, exclusive

time, descendant time and block time for a routine can be broken down by caller. Similarly, the

total descendant time for a routine can be broken down by callee. It is also possible to measure

hardware events (e.g., number of completed instructions) corresponding to these times.

The exact nature of theECG implies profiling data is collected at each occurrence of a

relevant event; therefore, accurate information is provided at the cost of higher overhead (in

both time and space). For theECG the relevant events include:� routine enter: the routine is called by a parent routine and starts executing.� routine exit: the routine completes and execution returns to the parent routine.

Exact Call-Graph 65� task block: the task stops executing while waiting for an event to occur (including a

voluntary yield or involuntary preemption).� task unblock: the task starts executing when an event occurs.� coroutine discontinue: the coroutine stops executing.� coroutine continue: the coroutine starts executing.

Figure 5.2: Initial Implementation: Exact Call-Graph Display

The initial µProfiler ECG implementation allows a user to display a call-graph for each

task’s execution. An example display of the initial implementation is presented in Figure5.2.

The information provided in the display includes the numberof calls to the routine, the exclusive

time of the routine (called CPU time), the inclusive time of the routine (called real time), and

the average, maximum and minimum of those values [Zak00]. This information is displayed for

each routine executed (totalled over all calls to it) as wellas for each callee routine of each caller

routine (totalled over all calls to the callee by the caller). In addition to time, the information can

66 Chapter 5. Exact Call-Graph

be displayed in terms of hardware events [Les05]. However, only the hardware events counted

during the execution of the routine itself (exclusive events) are displayed, and no maximum or

minimum values are provided. The initial implementation also displays a list of call cycles.

The overall goal of the advances discussed in this chapter isto developµProfiler’sECG met-

ric into a state-of-the-art metric with good performance that scales to programs of long duration

and complex behaviour, providing an environment conduciveto more thorough yet simpler user

analysis of a call-graph.

5.1 Initial Implementation Issues

This section describes several issues arising in the initial implementation of theECG. I ad-

dressed each issue in the advanced implementation of theECG and the solutions are discussed

in Section5.2.3.

The first issue involves theECG existing as two separate metrics. In the initial implemen-

tation, one version of the metric displays the call-graph interms of time, and another version

of the metric displays the call-graph in terms of hardware events. Having two separate starting

points and displays for the same metric is an unnecessary complication and confusing for a user.

Furthermore, as previously mentioned, the hardware-event-based version only displays a subset

of the information displayed in the time-based version. Both versions of the metric can col-

lect and analyze the same type of profiling data, and thus, should consistently display the same

information to a user.

The second issue involves the lack of separation between tasks and coroutines. During a

task’s execution, the task may execute one or more coroutines (i.e., execute on one or more

coroutine stacks). In the initial implementation, each per-task call-graph combines information

regarding task routines (executed on the task’s stack) and coroutine routines (executed on the

coroutine stacks) without any indication of which routine comes from which context. The lack

of separation between task and coroutine routines can result in an increased amount of analysis

time for a user. Also, by only providing a per-task break down, the call-graph for each coroutine

is split across the various per-task call-graphs, again complicating the analysis.

5.2. Advanced Implementation 67

The third issue involves the simplicity of the visualization. The display provided by the initial

implementation is very simple in nature, providing all information at once, in one format, in a

static window. There is no opportunity for a user to interactin any way with the call-graph data.

One purpose of the call-graph is to give a user some indication about the program’s control flow;

however, such information can be made clearer if a user can insome way progress through and

view the call-graph step-by-step. Also, since only the callees of a routine are listed, a user must

analyze the entire call-graph in order to determine the set of callers of any given routine.

The final issue involves the lack of scaling of the displayed values. All values displayed

are either in millisecond time units or un-scaled hardware-event counts. With respect to time,

millisecond time units are not always the best choice. Usingnanoseconds for routines of very

short duration and seconds for routines of longer duration is much more appropriate. With respect

to hardware events, the hardware-event counts need to be scaled to an appropriate unit, as event

counts can quickly become very large even for routines of short duration. Appropriately scaled

values can make the call-graph much more readable as well as easier to understand and analyze.

Furthermore, there is only a limited amount of space on the window, and hence, displaying un-

scaled values of small or large magnitude uses up valuable space.

5.2 Advanced Implementation

While addressing the issues from the initial implementation of theECG, the advanced imple-

mentation has progressed in two major areas: the data structures used to store the profiling data

collected during monitoring and the visualization of the collected data.

5.2.1 Data Collection

At each occurrence of the previously described relevant events, profiling data is collected and

stored in specific data structures.

At any time during execution of the program, there exists a caller-callee routine pair (i.e.,

a call edge) corresponding to the current state of execution. The callee represents the routine

68 Chapter 5. Exact Call-Graph

executing at that time and the caller represents the routinethat called the callee.

In the initial implementation of theECG, the data structure consisted of a hash table. One

hash table was maintained for each task. Each hash-table entry represented a caller routine (i.e.,

a routine with one or more callees) and it maintained a list ofcallee objects (one for each routine

called by the caller routine). The hash-table key was the routine address of the caller and each

callee in the caller’s callee list was also identified by its routine address. The profiling data

collected during monitoring, at the occurrence of a relevant event, was stored within the callee

object corresponding to the current state of execution. Before any profiling data could be stored,

the corresponding caller-callee routine pair needed to be found in the hash table. This involved

a hash-table look-up using the routine address of the caller, followed by a linear search of the

caller’s callee list comparing the routine address of the callee. The profiling data stored included

the number of calls to the callee from the caller as well as theinclusive and exclusive time for

the callee when called by the caller. Furthermore, at each occurrence of the routine-enter event,

the corresponding caller-callee routine pair may need to beinserted into the hash table (i.e., add

a hash-table entry for the caller and/or a callee object to the caller’s list for the callee).

The advanced implementation of theECG replaces the hash table with a calling context

tree (CCT) [FFMC03]. A CCT is a space-efficient refinement of a dynamic call tree (DCT),

which represents the calling behaviour of a program [ABL97]. In a DCT, a tree node represents

a routine activation and a tree edge represents a call from one routine to another routine (i.e.,

directed edge going from the caller routine to the callee routine). In other words, a DCT adds a

new tree node and edge for every routine call (or activation), so the size of a DCT is proportional

to the number of calls in the execution of the program. Figure5.3 shows an example DCT and

the corresponding CCT. A CCT maintains unique calling contexts (i.e., the set of call-paths in

the CCT and DCT are identical) while removing the redundant data in the DCT by reducing its

vertex set according to the following equivalence: two treenodes in a DCT are equivalent if they

represent the same routine and they have the same caller in the tree. In the example in Figure5.3,

the CCT maintains the two unique calling contexts for routine C (i.e., M! A ! C and M!
D ! C), while discarding the redundant data present in the DCT. In other words, in a CCT,

a tree node represents a routine, and tree nodes and edges aggregate data for multiple routine

5.2. Advanced Implementation 69

calls. The CCT was chosen over the DCT because it is a significantly more space-efficient data

structure than the DCT. However, aggregation in the CCT means data on a per-routine-call basis

is lost, unlike the DCT. Fortunately, this data is not required for theECG because it provides

information on a per-routine basis only.

B

D

C B C C

A

M

B

D A

C B

M

A D

B C A C

Calling Context TreeDynamic Call Tree

A

A

C

Figure 5.3: Comparison of DCT and CCT

A further refinement has been made to the CCT with the additionof back-edges [ABL97].

A back-edge is an edge from a specific routine to an ancestor ofthat routine; therefore, a back-

edge represents a call cycle. Figure5.4 shows a CCT with and without back-edges. There are

two advantages of back-edges. Firstly, back-edges can reduce the space requirements of a CCT

(i.e., provide a bound on the size of a CCT); given no back-edges and a recursive program, the

size of a CCT is unbounded. Secondly, back-edges indicate the locations of call cycles in the

CCT, reducing the amount of time required for analysis. There are also two disadvantages of

back-edges. Firstly, there is a small amount of additional work required to determine when to

add a back-edge to the CCT (described in Section5.2.1.1). Secondly, back-edges can destroy the

context-uniqueness property of a CCT. Using a conservativeapproach to path detection, some

call-paths fail to be detected. For example, in Figure5.4, the call-path A! B! C! B! D is

not detected in the CCT with back-edges; only the call-pathsA ! B! D and A! B! C! B

are detected. On the other hand, a liberal approach to path detection can detect some call-paths

not executed. For example, in Figure5.4, the call-path A! B ! C ! B ! D is detected in

the CCT with back-edges even if only the call-paths A! B ! D and A! B ! C ! B are

70 Chapter 5. Exact Call-Graph

executed. I chose the liberal approach to path detection andthe consequences of this and the

corresponding solutions are discussed in Section5.3.2. I chose to include back-edges because I

felt the advantages outweigh the disadvantages.

CCT without back-edgesCCT with back-edges

A

B

DC

D

B

C

B

A

Figure 5.4: CCT Refinement

In the advanced implementation, a CCT is a collection of nodeobjects rooted at a single

node, where each node represents a routine. Each node maintains a pointer to its caller node

in the tree (i.e., the routine’s caller), except the root, and a list of callee edge objects (i.e., the

routine’s callees). Each edge maintains a pointer to its corresponding callee node in the tree. The

profiling data collected during monitoring is stored withinthe edge object corresponding to the

current state of execution. Figure5.5 illustrates the specific data structures composing the CCT.

The data objects are discussed in Section5.2.1.2.

As just mentioned, the size of the CCT is bounded. Letn be the number of routines executed

in the program. Since back-edges are used in the CCT, the depth of the CCT is bounded byn.

For each node in the CCT, its number of callee edges (and hencenodes) is at mostn�1 because

each callee represents a unique routine called from the nodeand if the node calls itself that call

is instead represented by a back-edge. Thus at each depth in the tree, there can be at mostn�1

nodes for each node at the previous depth in the tree. Since the tree starts with one node at

5.2. Advanced Implementation 71

(task 2)
datadata

data

. . .

node

callee node

data

callee edge

callee node

data

callee edge

. . .
(task 1)

addressaddress

address

caller node

callee edges

caller node

callee edges

.

node

caller node

callee edges

(callee 2)(callee 1)

node

(task 1)
data

(task 2)

. . .

. . .

Figure 5.5: Advanced Implementation: Exact CCT Data Structures

the root and has a depth ofn, the maximum number of nodes at the lowest depth of the tree is(n�1)n�1. In other words, the breadth of the CCT is bounded by(n�1)n�1.

The use of a CCT is more appropriate than a hash table because its structure mirrors the

calling structure or call-graph of a task’s execution in theprogram. The call-graph reconstructed

from a hash table is not as accurate; the hash table does not maintain all the unique calling

contexts that a CCT does because it only maintains the caller-callee routine pairs rather than

entire call-paths. Furthermore, a CCT lends itself to the use of efficient tree traversal algorithms

needed during analysis (e.g., depth-first-search algorithm).

72 Chapter 5. Exact Call-Graph

5.2.1.1 Creating and Updating a CCT

During execution of the program, the edge associated with the current state of execution is stored

and changes at each routine-enter and routine-exit event. This edge represents the currently exe-

cuting caller-callee routine pair and provides access to the current node (i.e., node representing

the callee routine currently executing).

The structure of the CCT is formed during routine-enter events. When a routine-enter event

occurs, this means the routine represented by the current node has made a call to another routine,

say routine N. A call to N can result in one of three mutually exclusive actions:

1. One of the current node’s edges is reused. If the current node previously called routine N,

then there exists in its list of edges, one edge representinga call to routine N. This edge is

reused.

2. A new back-edge is created. If a node representing routineN appears as an ancestor of the

current node then a new edge representing a call to routine N is added to the current node’s

list of edges. This edge is marked as a back-edge and represents a cycle in the tree. Finding

an ancestor node requires following the caller pointer maintained by each node from the

current node up to the root node. At each node along this path,the routine address of N

is compared to the routine address of the routine represented by the node. More efficient

ways of finding an ancestor node are possible (e.g., using a Bloom filter [Blo70]); however,

in practice a call-path of length 16 is considered long and a linear search along such a path

is reasonable.

3. A new node and edge are created. The new edge representing acall to routine N (rep-

resented by the new node) is added to the current node’s list of edges. The new edge

maintains a pointer to the new node.

In all three cases, the reused or new edge becomes associatedwith the current state of execution

and is updated with the appropriate profiling data. The profiling data is stored at the edge objects,

rather than the node objects, because of back-edges in the CCT. Since a back-edge represents a

call from a node to one of its ancestor nodes, the routine represented by the ancestor node now

5.2. Advanced Implementation 73

B

A

C

(a) Current Approach

A

B

C

B

(b) Alternative Approach

Figure 5.6: Adding Back-Edges

has multiple callers. For example, in Figure5.4, routine B has two callers: routine A and routine

C via the back-edge. However, in a call-graph, data for a specific routine needs to be broken down

by caller, so storing data at the edge objects provides a means of keeping that data separated.

An alternative approach exists for adding back-edges to theCCT (proposed by thesis reader,

David Taylor). A back-edge from the current node to an ancestor node is added only if the

ancestor-node’s caller-routine, represented by its caller pointer, is the same as the routine repre-

sented by the current node. For example, given the call-pathA!B!C! B!C, Figure5.6(a)

shows the resulting CCT for the current approach and Figure5.6(b)shows the resulting CCT for

the alternative approach. The alternative approach does result in one extra node being added to

the CCT for each cycle path, but now each node has a uniquely defined caller (e.g., caller B for

routine C in Figure5.6(b)). Therefore, data can be stored in the node objects and the edge objects

are no longer required. This alternative approach can be considered for future work.

When a routine-exit event occurs, this means the routine represented by the current node

has completed and execution is being transferred back to itscaller routine. Therefore, the edge

associated with the current state of execution changes. Unfortunately, an issue arises given the

presence of back-edges, as this edge cannot always be determined by following the caller pointer

of the current node. As previously mentioned a routine can have multiple callers. The current

node’s caller may not be the routine represented by its caller pointer, but may instead be a routine

74 Chapter 5. Exact Call-Graph

represented by a back-edge leading to the current node. In the example in Figure5.7, routine A

calls routine B, which then calls routine C, which then callsroutine B. The routine represented

by B’s caller pointer is A (corresponding to EAB); however, for this call-path, routine B’s caller

is actually routine C represented by the back-edge ECB. To solve this issue, I store an edge path

(an array of edges representing the current runtime stack) associated with the current state of

execution instead of one edge. This edge path (see Figure5.7) simply represents the current call-

path in the tree. Therefore, when a routine-enter event occurs, the reused or new edge is added

to the end of the array and the array pointer is incremented. When a routine-exit event occurs,

the array pointer is decremented. At all times the array pointer points to the edge associated with

the current state of execution.

Current State

Path
Edge

E

CB

CB

EBCEABE

E
BC

AB

C

B

A

E

Figure 5.7: Advanced Implementation: Exact CCT Edge Path

The profiling data stored in an edge object, which representsa caller-callee routine pair,

includes the number of calls to the callee from the caller (calls) and the total self or exclusive time

(totalExclTime), total block time (totalBlockTime), and total inclusive time (totalInclTime) for

the callee when called by the caller. The total descendant-time is computed according to the

5.2. Advanced Implementation 75

following formula:

totalDescTime= totalInclTime� totalExclTime� totalBlockTime (5.1)

To compute the totals during monitoring, additional variables corresponding to each total are

required (startInclTime, startExclTime, startBlockTime). These variables keep track of the

starting times of the various relevant events. Since the information provided by theECG can

be displayed in terms of hardware events as well as time, eachof the previously mentioned time

variables also exists in hardware-event count form and all calculations are similarly executed.

One exception, discussed shortly, is the hardware-event counts associated with the blocking pe-

riod.

Subsets of the variables are updated at the various relevantevents. At the routine-enter event,

profiling data is updated at two edges: the caller edge and thecallee edge. Figure5.8 illustrates

a CCT before (Figure5.8(a)) and after (Figure5.8(b)) a routine-enter event where routine D

calls routine E. The caller edge represents the edge associated with the current state of execution

before the routine call (e.g., edge EBD in Figure5.8(b)) and the callee edge represents the edge

associated with the current state of execution after the routine call, or in other words, after the

routine-enter event (e.g., edge EDE in Figure5.8(b)). Therefore, the callee edge before a routine-

enter event occurs (e.g., edge EBD in Figure5.8(a)) becomes the caller edge after the routine-enter

event occurs. For the callee edge, execution is starting (e.g., for routine E), so number ofcalls is

incremented and bothstartInclTimeandstartExclTimeare initialized to the current time. For

the caller edge, exclusive execution is temporarily stopped (e.g., for routine D), sototalExclTime

is increased according to the following formula:

totalExclTime= totalExclTime+(current time�startExclTime) (5.2)

At the routine-exit event, profiling data is also updated at the caller edge and the callee edge.

The callee edge represents the edge associated with the current state of execution before the

routine exit and the caller edge represents the edge associated with the current state of exe-

cution after the routine exit. Therefore, these edges correspond to the same edges as in the

76 Chapter 5. Exact Call-Graph

(D executing)

BDE
Callee Edge

D

Caller Edge

BCE

C

ABE

B

A

(a) CCT Before Routine Enter

(E executing)

DEE
Callee Edge

E

Caller Edge

D

BCE BDE

C

ABE

B

A

(b) CCT After Routine Enter (D calls E)

Figure 5.8: Advanced Implementation: Routine-Enter Event

previous routine-enter event. For the callee edge, execution is ending (e.g., for routine E), so

totalExclTimeis increased (see Equation5.2) andtotalInclTimeis increased (replaceExcl with

Incl in Equation5.2). For the caller edge, exclusive execution is restarting (e.g., for routine D),

sostartExclTimeis reinitialized to the current time.

At the task block and unblock events, profiling data is updated only at the callee edge, the

edge associated with the current state of execution. At a task block, exclusive execution is tem-

porarily stopping, sototalExclTimeis increased andstartBlockTimeis initialized to the current

time. At a task unblock, exclusive execution is restarting,sostartExclTimeis reinitialized to the

current time andtotalBlockTimeis increased (replaceExcl with Block in Equation5.2). How-

ever, for the hardware-events, the event counts for the period spent blocking are not computed

because of the multi-processor environment. In a multi-processor environment, each processor

has its own set of hardware counters with different hardware-event counts. When a task becomes

blocked, it does so on a particular processor, and so, it would record the current hardware-event

counts of that processor’s hardware counters (instartBlockCountsfor example). When a task be-

comes unblocked, it may do so on a different processor with a different set of hardware counters.

5.2. Advanced Implementation 77

The current hardware-event counts for this processor cannot be used to compute the event counts

of the blocking processor (e.g.,startBlockCounts) because these event counts are unrelated;

therefore the increase tototalBlockCountscannot be computed. There is no analogous problem

for the time event because the system clock is global and synchronized across the processors.

AlthoughtotalBlockCountsis not computed, additional inclusive event-count computations are

required at the block and unblock events. Because of a blocking event, a task may be running

on one processor when a specific routine starts, but on another processor when that routine ends.

Therefore, at a task block,totalInclCountsis increased and at a task unblockstartInclCountsis

reinitialized to the current event counts for all active routines (i.e., these computations are done

not only at the callee edge) because any of the active routines may have started on a different pro-

cessor and execution eventually returns to each. To accomplish this, the edge path representing

the current call-path in the tree is walked and these computations are done for each edge along

that path.

An alternative approach to walking up the edge path on each block and unblock event is to

carry an adjustment up on each routine return (proposed by thesis reader, David Taylor). At

the block event, totalInclCounts is increased only at the callee edge, and at the unblock event,

startInclCounts is reinitialized only at the callee edge. After the unblock event, the increment to

totalInclCounts is propagated up one level in the edge path at the next routine-exit event. The time

between the unblock event and the routine-exit event (at thefirst propagation) and the time be-

tween routine-exit events (at each following propagation)must be added to the increment because

startInclCounts is only reinitialized for the callee edge at the unblock event. The time of any sub-

sequent blocking periods must also be added to the increment. During coroutine execution, the

current task may not exit all routines along the edge path before a coroutine-discontinue event oc-

curs (see Section5.3.1); however, the edge path is walked up at each coroutine-discontinue event,

so the increment can be propagated all the way up to the root atthat time. This approach does

require an additional variable (for the increment) to be maintained and additional computations

to be made at each routine-exit event. The efficiency of each implementation approach depends

heavily on program behaviour. Programs that block infrequently and have short call-paths (e.g.,

16 or less), but make frequent routine calls (as often occursin object-oriented programs), would

78 Chapter 5. Exact Call-Graph

benefit from the first implementation approach. Programs that block frequently and have long

call-paths, but make few routine calls, would benefit from the second implementation approach.

I believe the first category of programs are more common than the latter, and hence, feel the first

implementation approach would be more efficient in general.

5.2.1.2 Coroutines

A CCT, and its associated edge path, is maintained for each execution entity having its own

stack; i.e., one for each task and each coroutine. However, because multiple tasks may execute

a single coroutine (i.e., multiple tasks’ threads may execute on a coroutine’s stack), a CCT must

keep profiling data separated by task. Therefore, each edge object maintains a list of profiling

data objects, one for each task executing along that edge, rather than a single set of data (see

Figure5.5). For each per-task CCT, the lists consists of only one element because only the task’s

thread may execute on the task’s stack.

Any execution entity can activate a coroutine (i.e., a task can activate a coroutine and a

coroutine can activate another coroutine). When an execution entity activates a coroutine (e.g.,

coroutine resume), the entity (i.e., the task’s thread executing the entity) begins execution of the

coroutine at the point of the last inactivation (e.g., coroutine suspend). During the coroutine’s

execution, routines may be called and executed until the coroutine becomes inactive. An inac-

tivation may occur anywhere within a routine. Therefore, execution of the coroutine can start

and end anywhere within a routine. Furthermore, the subsequent activation may be made by

an execution entity executed by a different task’s thread, meaning execution of the coroutine

starts from the point of the last inactivation reached by an execution entity executed by another

task’s thread. For this reason, a coroutine activation is treated similarly to a routine call and

a coroutine inactivation is treated similarly to a routine return. When a coroutine becomes ac-

tive, a coroutine-discontinue event occurs for the execution entity activating the coroutine and a

coroutine-continue event occurs for the coroutine. Execution moves from the execution entity

and its stack to the coroutine and its stack. When a coroutinebecomes inactive, a coroutine-

discontinue event occurs for the coroutine and a coroutine-continue event occurs for another

execution entity. Execution moves from the coroutine and its stack to the execution entity and its

5.2. Advanced Implementation 79

stack.

Different actions are taken at a coroutine-discontinue anda coroutine-continue event. A

coroutine-discontinue event is treated similarly to a routine-exit event. Therefore,totalExclTime

and totalInclTimeare increased. A coroutine-continue event is treated similarly to a routine-

enter event. Therefore,startExclTimeandstartInclTimeare reinitialized to the current time.

However, instead of incrementing the number ofcalls, the number ofcontinuesis incremented.

The name continues represents the continuation of execution from the point of the last inactiva-

tion. The profiling data is updated, as just described, at thecallee edge (edge associated with the

current state of execution), but other edges, discussed in Section5.3.1, are also updated.

5.2.2 Visualization

The first step in running theECG metric involves selecting the events (i.e., time and/or hardware

events) for which the profiling data is collected and subsequently displayed. The event-selection

window is shown in Figure5.9 with the “Time” and “Completed Instructions” events selected.

As hardware events are selected the remaining hardware events become greyed out depending

on the number of hardware counters available and the capabilities of those counters, i.e., which

events they are able to count [Les05]. For hardware events, a user can also choose to have

profiling data collected while executing user and/or systemcode (see upper right options box of

Figure5.9).

Once program execution and monitoring are completed, the task/coroutine-selection window

is displayed (see Figure5.10). A user can select the call-graph for any task or coroutine by

clicking on a task or coroutine name in the left column. The tasks are listed above the dashed

separator line and the coroutines below it. Summary information, broken down for each event

selection from Figure5.9, is displayed for each task and coroutine. The summary information

includes total execution-time or event-counts as well as total block-time for the time event. The

purpose of the summary information is to give a user some direction as to which call-graph to

analyze first. For example, a task with a large time or count value is a potential “hot-spot” of

execution.

80 Chapter 5. Exact Call-Graph

Figure 5.9: Advanced Implementation: Exact Event-Selection Window

The call-graph window in Figure5.11is displayed after selecting a task in the task/coroutine-

selection window. Figure5.11 shows the call-graph window for task T1 from Figure5.10.

The call-graph window contains several panes (from top to bottom): routine pane, callers pane,

callees pane, callees-visited pane, cycles pane and coroutine-selection pane. All data displayed

in the call-graph window is for a single selected event (i.e., time or a hardware event). In Fig-

ure5.11, the call-graph is currently displaying the time-event data for task T1.

The routine pane lists each routine executed by a task. For each routine, the information

includes (left to right) the number of calls/continues to the routine as well as a histogram showing

that number as a percentage of the total, the self time of the routine as well as a histogram

showing that number as a percentage of the total, the descendant time of the routine, the block

time of the routine, and the routine name (optionally followed by a file and line number of the

5.2. Advanced Implementation 81

Figure 5.10: Advanced Implementation: Exact Task/Coroutine-Selection Window

routine source). All values displayed for a specific routineare totalled over all calls to the routine.

The percentage values are represented by histograms, allowing a user to quickly analyze and

understand the distribution of calls and time among the various routines. The routines are sorted

by self time and the currently selected routine is highlighted in white (e.g., routine�ndNextNode
in Figure5.11). Any routine in this pane can be selected by clicking on its line. Once a routine

is selected, the callers and callees panes are updated for the selected routine.

For each caller, the callers pane lists the number of calls/continues and times attributed to the

caller by the selected routine. Therefore, the sum of the values of the callers for each individual

field (calls, self, descendant and block) is equal to the total value displayed for the selected

routine in the routine pane. For each callee, the callees pane lists the times attributed to the

selected routine by the callee as well as the number of calls/continues from the selected routine

to the callee. Therefore, the sum of the values of the calleesfor all time fields (self, descendant

and block) is equal to the total descendant time displayed for the selected routine in the routine

pane. A caller or callee routine can be selected from their respective panes, by clicking on its

line, and this routine then becomes the selected routine in the routine pane.

82 Chapter 5. Exact Call-Graph

Figure 5.11: Advanced Implementation: Exact Call-Graph Window

5.2. Advanced Implementation 83

The callees-visited pane keeps track of the current path visited by a user in the call-graph. As

callee routines are selected the path increases (routines are added to the visit pane list) because a

user is moving down the call-graph. As caller routines are selected the path decreases (routines

are removed from the visit pane list) because a user is movingup the call-graph. This pane allows

a user to keep track of the position in the call-graph at all times.

The cycles pane displays all cycles detected in the call-graph. If no cycles exist the cycles

pane is not shown.

The final pane is the coroutine-selection pane. This pane lists each coroutine executed by the

task. If the task executes no coroutines this pane is not shown. A user can select any number of

coroutines from the list by clicking on the coroutine name. Also, the “All” and “None” buttons

allow a user to quickly select or deselect all coroutines. Bydefault no coroutines are selected

because I cannot without user input determine which coroutines to select. Once one or more

coroutines are selected, the coroutine’s routines executed by the task are displayed below a sep-

arator line in the routine pane. The separator line providesa clear division between the task and

coroutine routines. The same information displayed for a task routine is displayed for a coroutine

routine. The percentages represented by the histograms are, for task routines above the separator

line, percentages of the total for the task, and for coroutine routines below the separator line,

percentages of the total for the selected coroutines.

The coroutine selections also affect the total execution time displayed in the top title bar of

the routine pane. If no coroutines are selected, the total represents the total execution time for

the task while executing task routines. If one or more coroutines are selected, the total execution

time for the task while executing the selected coroutines’ routines is included in the total.

Various options are available from the pull-down menu associated with the “Options” button

(see Figure5.12). The “Histogram” option allows a user to show or hide the histograms in the

routine pane. The “File Info” option allows a user to show or hide file information for each

routine displayed in the routine, callers, callees and cycles panes. The file information includes

the file name (and path) containing the routine and the line number corresponding to the start

of the routine within the file. The pull-down menu associatedwith the “Events” option allows

a user to choose the event for which the call-graph data is displayed. The events available are

84 Chapter 5. Exact Call-Graph

those events previously selected on the events-selection window (e.g., “Time” and “Completed

Instructions” in Figure5.9). If the event is changed from “Time” to “Completed Instructions”,

then the data displayed in the call-graph window (Figure5.11) changes from time to hardware-

event counts (i.e., the number of completed instructions).When a hardware event is selected, the

“Block” field is hidden in the routine, callees and callers panes because this data is not collected

for hardware events (see Section5.2.1).

Figure 5.12: Advanced Implementation: Exact Options Menu

The final option, “Complete Call-Graph”, opens a complete call-graph window, displaying

caller and callee information for all routines rather than just a selected routine (see Figure5.13).

For each routine, the callers are listed above the routine and the callees are listed below the

routine. Information is displayed for all task routines andthe routines of the currently selected

coroutines. The complete call-graph window provides another means by which a user can view

the call-graph data; a user can see and analyze the entire call-graph at once. However, a user may

not wish to view the entire call-graph for all events at one time, so from the “Options” menu on

the complete call-graph window, a user can show or hide data for individual events. As well, from

the “Options” menu the user can show or hide file information for each routine. The routines

displayed in the complete call-graph window are sorted by the value of the “Weight” column.

For each event, a routine’s self time or hardware-event counts, as a percentage of the total for

the event, is computed. A routine’s weight is the average percentage over the events currently

displayed in the window. For example, given two events displayed, if a routine accounts for 20%

of the total for one event and 11% of the total for the other event, then the routine’s weight is

5.2. Advanced Implementation 85

Figure 5.13: Advanced Implementation: Exact Complete Call-Graph Window

15.5 (i.e.,(20+11)=2).

If a coroutine is selected on the task/coroutine-selectionwindow (see Figure5.10), the call-

graph window displayed and the functionality of that windowis very similar to that for a task.

One difference is the presence of a task-selection pane instead of a coroutine-selection pane.

This pane lists each task that executed the coroutine. Like the coroutine-selection pane, a user

can select any number of tasks from the list. By default all tasks are selected because I chose not

to initially display an empty window, since without user input I cannot determine which tasks to

select. The call-graph data displayed is aggregated for allthe selected tasks. In other words, if a

coroutine’s routine is executed by more than one currently selected task, the data displayed for

this routine is the summation of values for those tasks. If a routine is not executed by any of the

currently selected tasks the routine is not displayed in theroutine pane. Also, the cycles pane

86 Chapter 5. Exact Call-Graph

only lists those cycles fully executed by the selected tasks. If no tasks are selected all panes are

empty.

5.2.3 Addressing Initial Issues

To address the existence of the initialECG as two separate metrics, both versions, time and

hardware-event based, have been combined into one metric with a single starting point and dis-

play in the advanced implementation. From the event-selection window (see Figure5.9), a user

can now select the time event as well as various hardware events. After profiling is completed

and a task or coroutine is selected, a single call-graph window (see Figure5.11) is displayed

and a user can, via the pull-down menu associated with the “Events” option, choose the spe-

cific event to display. Such functionality provides a consistent view across the various events, as

nothing changes in the call-graph window except the actual values. Furthermore, the complete

call-graph window now allows a user to easily analyze the call-graph across any subset of the

selected events.

Whereas in the initial implementation coroutine information is combined with information

associated with the task, in the advanced implementation coroutines and tasks are cleanly sep-

arated in both the per-task and per-coroutine call-graphs.On the per-task call-graph window,

a user can select which coroutines to include/exclude from the display and that information is

visually separated from that of the task. Such functionality allows a user to more easily and ac-

curately analyze the execution of the task on each individual execution stack (task or coroutine)

as well as the execution as a whole. On the per-coroutine call-graph window, a user can again

select which tasks to include/exclude from the display. Such functionality allows a user to ag-

gregate coroutine information across tasks in a single call-graph window. Having both a per-task

and per-coroutine call-graph provides two means by which toview the call-graph data associated

with a specific coroutine. Multiple views can be invaluable depending on the program and the

purpose of the analysis. The improvements all stem from the careful separation of the task and

coroutine profiling data during monitoring (see Sections5.2.1.2and5.3.1), allowing for analysis

on a per-task and per-coroutine basis.

5.3. Implementation Issues 87

To address the simplicity of the visualization, the call-graph window was completely re-

designed with functionality, interactivity and understanding in mind (see Section5.2.2). The

window now provides a more interactive experience for a user. The ability to select coroutines

or tasks allows a user to control the amount of information displayed in the call-graph window.

Such control provides an environment more conducive to thorough analysis and understanding.

Also, a user can progressively move down and up the call-graph by selecting routines in the

routine, callers and callees panes, with that movement being tracked in the callees-visited pane.

Such functionality allows a user to better understand and visualize the program’s control flow.

Since multiple views are often beneficial, the complete call-graph window also provides a user

with the means to view the entire call-graph at once.

To address the lack of scaling in the initial implementationof theECG, the values displayed

in the call-graph window are no longer limited to millisecond time units or un-scaled hardware-

event counts. In the advanced implementation, the scaling ranges from nano units all the way

up to peta units, taking into account very small and very large values. All values are scaled on

an individual basis. The most appropriate unit is determined based on the size of the value. For

example, values of less than 10�6 use nano units and values of 1012 or greater use peta units.

Such scaling allows the call-graph to be scalable to routines (and programs) of short and long

duration. Also, scaling individual values makes the call-graph window much easier to read and

analyze given that the values displayed are often a mixture of both smaller and larger size (e.g.,

microseconds and milliseconds in Figure5.11).

5.3 Implementation Issues

This section describes implementation issues I encountered and solved during the writing of the

advanced implementation of theECG.

88 Chapter 5. Exact Call-Graph

5.3.1 Handling Coroutines

This issue involves the creation and maintenance of the per-coroutine CCT. I chose to store pro-

filing data related to coroutine execution in separate CCTs (see Section5.2.1.2). This choice

was made after considering an alternative solution. The alternative solution maintains one CCT

per-task only. The per-task CCT has multiple tree branches (or subtrees), one representing exe-

cution on the task’s stack and one or more representing execution on the coroutine stacks of the

coroutines executed by the task. During monitoring, beforeprofiling data can be stored, a linear

search of the CCT’s subtrees is required to find the subtree associated with the current execution.

However, as previously explained, multiple tasks may execute one coroutine, and on a corou-

tine activation, a task may start execution of that coroutine at the point of the last inactivation

reached by a different task. In other words, a task does not necessarily execute the entire corou-

tine; therefore, on any particular coroutine activation, the subtree corresponding to that coroutine

may not be structurally up-to-date in the task’s CCT. This means that at each coroutine-continue

event, the corresponding subtree needs to be updated beforeany profiling data can be stored. The

subtree either needs to be compared against the subtree of the task which previously executed

the coroutine or a separate tree structure needs to be maintained for the coroutine to store the

structure of the overall coroutine execution. Such a comparison and subsequent update is a time

consuming and complicated process, which would substantially increase the profiling overhead,

and therefore, this solution was rejected.

Per-coroutine CCTs do require some additional work at each coroutine continue and discon-

tinue event, also because a task does not necessarily execute the entire coroutine. Updating is

required for all active routines. On a coroutine-continue event, the edge path representing the

current call-path in the tree needs to be walked down from theroot to the current node. While

walking down the path, the data object at each edge corresponding to the task (i.e., the currently

executing task thread) needs to be initialized. Initialization is required because the current task

may not have executed along all the edges of the current path,so if a coroutine’s routine exits, it

may exit into a routine never initialized for that task. Initialization includes settingstartInclTime

to the current time. On a coroutine-discontinue event, the edge path representing the current call-

path in the tree needs to be walked up from the current node to the root. While walking up the

5.3. Implementation Issues 89

path, the data object at each edge corresponding to the task (i.e., the currently executing task

thread) needs to be finalized. Finalization is required because the current task may never actu-

ally exit all the routines along the edge path, leaving values in an incomplete state. Finalization

includes increasingtotalInclTime. When a coroutine continue or discontinue event occurs for

a task (update per-task CCT versus per-coroutine CCT), suchactions are taken not because the

path needs to be initialized or finalized (since only the task’s thread executes on the task’s stack),

but in order to maintain consistency across execution entities in terms of time calculations. In

other words, for any execution entity, the inclusive time for a routine does not include the time

spent executing another execution entity.

In the per-coroutine CCT, a linear search is required when updating an edge in order to find

the data object associated with the executing task. A hash table can be used instead of a list in

order to prevent linear searches. However, in general it is good programming practice to keep

the number of tasks executing a particular coroutine (or accessing any shared resource) relatively

small to minimize contention, which can cause a program to run slowly and/or require complex

synchronization. If the number of tasks is large the linear search is at most compounding an

existing inefficiency rather than creating a new one.

5.3.2 Handling Cycles

This issue involves the handling of cycles during monitoring, analysis and visualization. During

monitoring, the current call-path may include an edge of theCCT multiple times (recursive

invocations). An edge can be recursively invoked given cycles such as A! A ! A (recursive

invocation of edge EAA) and A! B ! C ! A ! B (recursive invocation of edge EAB). A

variableinRoutineCountis used to detect recursive invocations to prevent double counting of the

inclusive time at an edge. If an edge is recursively invoked,the inclusive times of all invocations

after the first are contained within the inclusive time of that first invocation. inRoutineCount

is incremented at the end of the routine-enter event and is decremented at the beginning of the

routine-exit event. At the routine-enter event,startInclTimeis initialized to the current time only

if inRoutineCountis zero, meaning this is not a recursive invocation so inclusive time should be

90 Chapter 5. Exact Call-Graph

B

A

C

(a) Call-Graph 1

B

DC

A

(b) Call-Graph 2

Figure 5.14: Example Cycles

counted. At the routine-exit event,totalInclTimeis increased only ifinRoutineCountis zero,

meaning this invocation is the first in a recursive sequence (or not part of any recursion) so the

inclusive time should be added to the total.

During analysis, the CCTs are analyzed using a depth-first-search. During this search, if

a back-edge is detected, a cycle has been found. A cycle can becollapsed or the back-edge

can be ignored. The profiler gprof first introduced the notionof collapsing cycles [GKM82].

Collapsing a cycle involves reducing the cycle to a single node or pseudo-routine. Therefore,

the number of calls and time totals for all members (i.e., routines) of the cycle are summed

together to arrive at totals for the single-cycle node. Unfortunately, when a cycle is collapsed,

the execution behaviour of the cycle members is lost. Therefore, I chose to ignore back-edges

rather than collapse cycles. To compute the total inclusivetime for each routine, the inclusive

time from each of the routine’s callers is summed together. However, given a cycle, such as the

one in Figure5.14(a), this summation can lead to double counting. In the example,routine B has

two callers: routine A and routine C via a back-edge. However, the inclusive time for routine

B, when called by routine A, already includes the inclusive time for routine B when called by

routine C; therefore, the inclusive times from all back-edges are ignored.

One consequence of ignoring back-edges becomes apparent during the analysis of the callers

5.4. Related Work 91

and callees of a given routine. The total descendant time foreach routine is accurately computed

by subtracting the total exclusive and block times for a routine from the total inclusive time for a

routine (see Section5.2.1.1). The total descendant time for a routine should also equal the sum

of the descendant times of its callers as well as the sum of theexclusive, descendant and block

times for its callees (see Section5.2.2). This is the desired result for each routine, including those

routines involved in a cycle. However, for a routine that starts and ends a cycle (e.g., routine B in

Figure5.14(a)), this is not the case. In the example, the descendant time from caller A and from

callee C includes routine B’s exclusive time when called by caller C, leading to inflated values.

In this example (and other similar cycles), the exclusive time of the back-edge simply needs to be

subtracted from the descendant time of the cycle’s caller edge (EAB) and the cycle’s first callee

edge (EBC).

Unfortunately, such adjustments are insufficient for all cycles because back-edges are in-

cluded in the CCT. The inclusion of back-edges in a CCT prevents some call-paths from being

detected. In Figure5.14(b), the call-path A! B ! C! B ! D cannot be detected. Only the

call-paths A! B ! D and A! B ! C! B can be detected. In this example, the descendant

time from both caller A and caller C includes the exclusive time for routine D when routine D

is called through the call-path A! B! C! B ! D; however, this double counting cannot be

adjusted given that the call-path A! B! C! B! D is not detected.

Since adjustments for routines that start and end cycles canonly be made for a limited group

of cycles, I chose not to make adjustments in any case; therefore, for those routines, the total

descendant time does not add up. In order to bring the issue toa user’s attention on the call-graph

window, the descendant time of any routine which starts and ends a cycle is highlighted in green

on the routine pane (see descendant value 134u on line 13 in the routine pane of Figure5.11).

5.4 Related Work

This section describes two current profiling tools that include exact call-graphs. gprof profiles C

and C++ programs, but provides limited support for multithreading. Intel VTune is programming

language and compiler independent, so it provides profilingmetrics for programs, including

92 Chapter 5. Exact Call-Graph

multithreaded programs, written in C, C++, Java, Fortran and other languages.

5.4.1 gprof

gprof uses a combination of exact and statistical call-graph profiling [GKM82]. Each call made

to every routine is recorded, providing the exact call counts and the structure of the call-graph.

However, the time spent in each routine is derived by sampling. Samples are taken at a sampling

interval of approximately 10 milliseconds. By default, gprof combines the static and dynamic

call-graphs of the executing program. The profiling data collected is later processed, upon user

instruction, to produce a file containing a flat profile (listseach routine) and a call-graph profile

(lists each routine with its callers and callees) of the program. No graphical user interface is

available, but gprof does allow data from multiple profilingruns to be combined into one file.

Flat Profile

The flat profile lists each routine in the program in decreasing order of self time (see Figure5.15).

The information provided for each routine includes the selftime of the routine as well as that

number as a percentage of the total, the cumulative self timeof the routine (i.e., self time of the

routine plus those routines above it), the number of calls tothe routine, and the per-call self and

total (or inclusive) time of the routine.

Call-Graph Profile

The call-graph profile lists each routine with the callers ofthe routine listed above and the callees

of the routine listed below (see Figure5.16). The total self and descendant times are provided

for the routine as well as the total number of calls and recursive calls to the routine. For each

caller of the routine, the self and descendant time attributed to the caller (from the routine) is

displayed as well as the number of calls from the caller to theroutine over the total number of

calls to the routine. For each callee of the routine, the selfand descendant time attributed from

the callee (to the routine) is displayed as well as the numberof calls from the routine to the callee

over the total number of calls to the callee. The routines aresorted by the percentage of the total

5.4. Related Work 93

Figure 5.15: gprof Flat Profile

Figure 5.16: gprof Call-Graph Profile

94 Chapter 5. Exact Call-Graph

execution time of the program accounted for by the inclusivetime of the routine. In gprof, cycles

are collapsed, and therefore, reduced to single pseudo-routines.

gprof provides options for a user to limit data collection tospecific routines and their callees

during monitoring (i.e., instrumentation control), remove specific routines from calculations dur-

ing analysis, and prevent the output of data for specific routines (including routines that exist

only in the static call-graph) as well as specific edges (caller-callee routine pairs) in the produced

profiles.

5.4.2 Intel VTune

Intel VTune helps a user maximize application performance by providing various profiling met-

rics including an exact call-graph metric and a system-wideperformance metric (which uses

sampling) [Int07]. A graphical user interface and command line version of VTune are available.

Profiling data can also be saved for later visualization. Twovisualizations provide the exact call-

graph (dynamic) data: the Graph Tab and the Call List Tab.

Graph Tab

The Graph Tab displays a flat profile and a call-graph in tree form (see Figure5.17). The flat

profile lists the routines, which can be grouped by module, thread or class. The information

provided for each routine includes the number of calls to theroutine, the self, total (or inclusive)

and block times of the routine, the number of callers to and callees of the routine, file informa-

tion about the routine as well as various average and percentage values. A user can sort on any

column and show, hide or reorder columns of data. Clicking ona routine highlights the routine

in the tree and updates the Call List Tab for that routine.

The tree provides a graphical and interactive view of the program’s call-graph. Each tree node

represents a routine and is colour coded. The nodes are divided into colour groups according to

their self time (e.g., nodes with the highest self-time are bright orange) and the colour scheme is

customizable. If a user chooses to view data by thread, each thread is represented as a separate

tree, otherwise each thread is represented as a separate root of a single tree where routines exe-

5.4. Related Work 95

Figure 5.17: Intel VTune Graph Tab

Figure 5.18: Intel VTune Call List Tab

96 Chapter 5. Exact Call-Graph

cuted by multiple threads are displayed as a single node withaggregated data. A user can show

or hide a node as well as show or hide various callers and callees of a node. Indicator buttons on

each node tell a user whether all, none or some of its callers and callees are currently displayed.

Information about a particular node or edge can be obtained by hovering over the node or edge

with the mouse. Red edges indicate the critical path (i.e., most time-consuming call path on the

basis of self time), which is recomputed after any routine ishidden or shown. The critical path

to the root or to the bottom of the tree can be displayed from any node. A user can zoom-in and

out as well as highlight specific nodes and edges (e.g., top 10nodes by self time, nodes involved

in a cycle etc.). A user can also define what percentage of routines to view at any time and this

percentage is used to determine which callees to display foreach node. Clicking a node in the

tree highlights the corresponding routine in the flat profile.

Call List Tab

The Call List Tab displays information for the caller and callee routines of the routine currently

selected in the flat profile on the Graph Tab (see Figure5.18). For each caller of the routine,

the percentage of the total time of the routine attributed tothe caller is displayed as well as the

total and wait time attributed to the caller and the number ofcalls from the caller to the routine.

For each callee of the routine, the percentage of the total time of the routine attributed from the

callee is displayed as well as the total and wait time attributed from the callee and the number

of calls from the routine to the callee. The data displayed onthe Call List Tab can be further

broken down by call site. Therefore, instead of listing onlyeach caller and callee routine, the list

displays each call site in the individual caller and callee routines. Also, by right-clicking on a

routine and selecting “View Source”, a user can see the source code line of the call site. VTune

does not collapse cycles, and furthermore, does not make adjustments in order to prevent double

counting.

VTune provides numerous profiling options. A user can pause and resume data collection for

the running program (but not perform real-time analysis) using control buttons or an application

program interface (API). Also, VTune allows a user to selectthe level of instrumentation (i.e.,

for which routines profiling data is collected). A user can choose to instrument only specific

5.4. Related Work 97

routines as well as all routines in a particular module.

5.4.3 Comparison

Table5.1summarizes and compares the relevant features ofµProfiler’sECG metric and the two

profiling tools discussed in the previous sections. Some of the important features are discussed

in detail.

µProfiler gprof Intel
ECG Metric VTune

Hardware Events
p

Combine Profiling Runs
p

Instrumentation Control
p p p

No gprof Fallacy
p p

Data Saved to File
p p

Graphical User Interface
p p

Interactive Caller-Callee Display
p p

Interactive Tree with Critical Path
p

Cycles Information
p p

(via tree)
Complete Call-Graph

p p
(via tree)

Call-Graph Break Down
p p

Sorting
p

Source Information
p p p

Callees Visited List
p

Histograms of %s
p

Table 5.1: Exact Routine Call-Graph: Comparison of RelatedProfilers

The gprof fallacy is an assumption made by a profiler that the time spent in a routine is

independent of the routine’s caller (i.e., execution time is always the same). However, this as-

sumption is often incorrect as the amount of time spent in a routine can depend on which routine

calls it, and making such an assumption can lead to misleading results. gprof, unlike the other

profiling tools, suffers from this fallacy because it estimates the amount of time spent in a routine

when called by a particular caller from the number of calls tothe routine by that caller, regard-

98 Chapter 5. Exact Call-Graph

less of the time actually spent in the routine [GKM82]. Neither of the exact call-graph metrics

of µProfiler or Intel VTune suffer from the gprof fallacy, and hence, provide a user with more

accurate call-graph information.

Although theECG does not allow a user to combine data from multiple profiling runs as

gprof does, theECG can collect profiling data for multiple events (e.g., time and hardware

events) during one run. gprof and VTune only provide the timeevent. Also, in theECG, a user

can view and compare the data from the multiple events on a single display (complete call-graph

window). Multiple events allow a user to view the call-graphinformation from several different

perspectives. Furthermore, combining data from multiple profiling runs is not always appropriate

in a concurrent (or sequential) system as each run of the program can produce a very different

pattern of execution.

Unlike gprof, theECG and VTune have a graphical user interface that provides a user with

an interactive environment. VTune also includes an interactive tree which is used to present the

complete call-graph, call cycles, etc. to a user. TheECG does not include such a tree, but does

instead provide a list of call cycles and a complete call-graph window. Also, by providing a

callees-visited list, theECG allows a user to keep track of the path in the call-graph. Although

the two forms of visualization are different, they can be equally valuable. A tree does provide

a user with a quick visual representation of the call-graph;however, it is often easier to analyze

a call-graph presented in table form (e.g., complete call-graph window in Figure5.13). In table

form, the data is visible in its entirety and a user does not need to highlight or select individual

tree nodes or edges in order to view the associated data.

Although all three profilers provide instrumentation control, µProfiler only provides control

at the module and task level. gprof and VTune allow a user to enable or disable instrumentation

at the routine level, allowing for more precise control of the data collection.

Overall, µProfiler’s ECG metric provides many important features, and furthermore,in-

cludes features unavailable in the other profiling tools. Some features not currently provided in

µProfiler, such as routine-level instrumentation control, saving data to file, sorting and critical

path display, are possible enhancements for future work.

5.5. Performance 99

5.5 Performance

This section describes the performance of theECG with respect to both time and space.

5.5.1 Time

To evaluate the running time of theECG, I constructed a worst-case test program (see Ap-

pendixB.1), profiled the program with theECG metric, and compared its running time to the

same test program run without profiling. The program was alsorun with gprof and Intel VTune

for a cross-profiler comparison. Only the running time of thetest program itself was measured,

i.e., the time includes monitoring and data collection but not time spent during analysis or visu-

alization.

The test program produces a call-graph of depth 8 (routines Athrough H). Starting at routine

A, each routine calls 6 subsequent routines. Therefore, routine A calls routines B1, B2, B3,

B4, B5 and B6, each routine B1 through B6 calls routines C1, C2, C3, C4, C5 and C6, etc.

This calling process continues until routines G1 through G6are called. Routines G1 through G6

simply call routine H1 30,000 times. The test program is a worst-case scenario because it does

no work, other than make routine calls. Also, the depth and breadth of the call-graph is large.

The test program was compiled with optimization (i.e., O2 flag). Table5.2shows the results

of the performance testing in milliseconds. The percentageincrease is with respect to the no

profiling case.

No Profiler µProfiler gprof Intel VTune
Time Time % Increase Time % Increase Time % Increase

9349.69 2023384.23 21541.19 83387.16 791.87 1811403.12 19273.94

Table 5.2: Exact Routine Call-Graph: Time Performance Results

As seen in the table, the percentage increase over the no profiling case for theECG and

the other profilers is large. Such an increase is to be expected for this worst-case program be-

cause every routine call in the program is instrumented (i.e., profiling data is collected at each

100 Chapter 5. Exact Call-Graph

routine call). Furthermore, in theECG, each routine exit, task block, task unblock, etc. is also

instrumented. The percentage increase for gprof is considerably smaller because gprof is not a

completely exact call-graph profiler (see Section5.4.1); therefore, much of the work is done at

a less frequent sampling interval. As well, gprof instruments only routine enter and not routine

exit. The percentage increase for theECG compared to Intel VTune is slightly larger (difference

of 2267.25%).

5.5.2 Space

To examine the total space cost of a CCT, the space costs of theindividual data structures (see

Section5.2.1) are examined. The data structures include the general treeobject, the node object,

the edge object and the data object. The general tree object maintains a pointer to the root

node of the tree, an array (of size 240) of edge object pointers representing the edge path and an

integer storing the position of the edge (in the path) associated with the current state of execution.

Therefore, in a standard 32 bit system with 4 byte pointers and 4 byte integers, each tree object

requires 968 bytes of space (i.e.,(4 bytes�240)+8 bytes).

Each node object consists of a routine address (a pointer), apointer to its caller node in the

tree and a queue of pointers to its callee edge objects. A queue requires 8 bytes of space; and

therefore, each node object requires 16 bytes of space. Eachedge object consists of a pointer to

link the edge object in a node’s queue, a pointer to its calleenode in the tree, a boolean specifying

whether or not the edge is a back-edge and a queue of pointers to its data objects. Therefore,

given a 1 byte boolean (with 3 bytes of padding to maintain proper alignment), each edge object

requires 20 bytes of space. Each data object consists of a pointer to link the data object in an

edge’s queue, a pointer to the task associated with the data and the variables storing the number

of calls, number of continues, times and hardware-event counts. The variables include 4 integers,

6 long integers and 4 arrays of long integers (with one array entry for each hardware counter).

Therefore, given 8 byte long integers, the space cost of eachdata object is computed according

to the following formula

Total space per-data-ob ject= 72bytes+4� (number o f hardware counters�8 bytes) (5.3)

5.6. Summary 101

The test program used to evaluate the running time of theECG creates one tree (single task

program) with 102,644 node objects, 102,643 edge objects and 102,643 data objects. Assuming

the test program is run on a processor with 4 hardware counters, the total space cost for the tree

is

Total space cost= 968bytes+(102644�16bytes)+(102643�20bytes)+(102643�200bytes) = 24;224;732bytes
(5.4)

The space cost of 23.10 MB is reasonable given the depth and breadth of the call-graph is signif-

icantly large, i.e., large number of node, edge and data objects in the tree.

5.6 Summary

The advances made toµProfiler’sECG metric have achieved the goals stated at the beginning

of the chapter. Firstly, based on functionality and the comparison to related work,µProfiler’s

ECG metric is similar to state-of-the-art vendor exact call-graph metrics. Secondly, the run-time

of the ECG metric compared to the related work shows similar performance and reasonable

space costs. Thirdly, theECG metric, through the careful collection, separation, analysis and

visualization of profiling data, scales to programs of long duration and complex behaviour. Fi-

nally, I believe the collective achievement of the goals results in a call-graph metric providing an

environment conducive to more thorough and simpler user analysis.

Chapter 6

Statistical Call-Graph

This chapter describes the advances made inµProfiler’s Statistical Routine Call-Graph (SCG)

metric.

The SCG generates a statistical profile of aµC++ program’s dynamic execution. As in the

ECG, the profile provides the dynamic calling relationship among routines in the program and

gives a user some indication about the program’s control flow. The statistical nature of the

call-graph metric implies that profiling data is collected (or a sample is taken) only at specific

intervals, called a sampling interval; therefore, theSCG has a lower overhead (in both time and

space) at the cost of less accurate information. A sampling event can be time or a hardware

event (e.g., completed instructions), and a user can choosea custom sampling interval for each

sampling event (e.g., sample every 10ms and every 10,000 completed instructions). The overall

structure of the call-graph is the same as described for theECG, but the data is collected in terms

of samples taken versus exact time or exact hardware-event counts.

The initial µProfiler SCG implementation allowed a user to display a call-graph for each

task’s execution. An example display of the initial implementation is presented in Figure6.1.

The information provided in the display includes a histogram showing the distribution of sam-

ples across the routines executed by the task, the complete call-graph for the task (similar to

the complete call-graph window in theECG) and a list of call cycles [Les05]. The complete

call-graph shows the number of samples taken while executing the routine itself (self or exclu-

103

104 Chapter 6. Statistical Call-Graph

Figure 6.1: Initial Implementation: Statistical Call-Graph Display

6.1. Initial Implementation Issues 105

sive samples) and the number of samples taken while executing the descendants of the routine

(descendant samples). This information is displayed for each routine (totalled over all calls to

the routine) as well as for each of its caller routines (totalled over all calls to the routine by the

caller) and callee routines (totalled over all calls to the callee by the routine). Whereas the com-

plete call-graph displays information for all hardware events selected (as sampling events), the

histogram only displays samples for one hardware event currently selected using the “Options”

menu. When a user chooses time as a sampling event, a display virtually identical to Figure6.1

is displayed; however, time and hardware sampling events cannot be simultaneously selected for

one profiling run.

The overall goal of the advances discussed in this chapter, as in theECG, is to develop

µProfiler’sSCG metric into a state-of-the-art metric with good performance that scales to pro-

grams of long duration and complex behaviour, providing an environment conducive to more

thorough yet simpler user analysis of a call-graph.

6.1 Initial Implementation Issues

This section describes several issues arising in the initial implementation of theSCG. I addressed

each issue in the advanced implementation of theSCG and the solutions are discussed in Sec-

tion 6.2.3. The issues are very similar to those of theECG.

The first issue involves theSCG existing as two identical yet mutually exclusive metrics.

In the initial implementation, one run of the profiler can collect and display data for the time

event, but another run of the profiler is required to collect and display data for the hardware

events. Having to run the profiler multiple times is an unnecessary complication for a user. By

not combining the information into one display, a user must switch between two windows and

cannot easily compare the data. Furthermore, given a concurrent program and the statistical

nature of the metric, data from different runs can often not be compared in detail.

The second issue involves the lack of separation between tasks and coroutines. This issue is

identical to the one described for theECG in Section5.1.

The third issue involves the simplicity of the visualization. The display provided by the

106 Chapter 6. Statistical Call-Graph

initial implementation is again very simple in nature, providing almost all the information at

once with little opportunity for a user to interact with the call-graph data. One purpose of the

call-graph is to give a user some indication about the program’s control flow; however, as in

the ECG, such information can be made clearer if a user can in some wayprogress through

and view the call-graph step-by-step. Also, the display is inconsistent as some information (e.g.,

complete call-graph) is displayed for all events selected while other information (e.g., histogram)

is displayed for only one event.

The final issue involves the unnecessary differences between the implementations of theECG

andSCG in terms of the visualization of profiling data and the data structures used to store profil-

ing data. Unnecessary differences lead to maintainabilityissues forµProfiler. Also, differences

in visualization lead to increased learning time for a user.

6.2 Advanced Implementation

While addressing the issues from the initial implementation of theSCG, the advanced imple-

mentation has progressed in two major areas: the data structures used to store the profiling data

collected during monitoring and the visualization of the collected data.

6.2.1 Data Collection

When a sample is taken at each sampling interval, the profiling data collected is stored in specific

data structures.

In the initial implementation of theSCG, the data structure consists of a list of sample objects.

One list is maintained for each processor, where a processorcorresponds to a kernel thread. Each

sample object maintains all the information for one sample.The information collected and stored

in each sample object includes an array of routine addresses(program counters) representing the

call-stack at the time of the sample, a bitmask indicating the event triggering the sample and

a pointer to the task executing at the time of the sample. Since sample objects for all tasks

executing on a particular processor are stored in one list, before any analysis can take place, the

6.2. Advanced Implementation 107

list entries must be separated by task.

The advanced implementation of theSCG replaces the list with a calling context tree (CCT)

[FFMC03]. The CCT stores all call-stacks (routine addresses representing the entries in the call-

stacks) taken during sampling. Here, the CCT is referred to as an approximate CCT because it

is only being approximated through sampling [AS00]. In other words, since a full call-stack is

stored at each sample (versus just the executing caller-callee routine pair), the call-graph rep-

resented by the CCT is connected, but not necessarily complete as sampling may not cover all

routines executed by a task.

In the advanced implementation, a CCT is a collection of nodeobjects rooted at a single

node, where each node represents one call-stack entry (i.e., one routine address). Each node

maintains a pointer to its caller node in the tree, except theroot, and a list of callee nodes. The

profiling data collected during monitoring is stored withinthe node objects. Figure6.2illustrates

the specific data structures composing the approximate CCT.The data objects are discussed in

Section6.2.1.1.

Unlike the CCT for theECG, the approximate CCT does not include back-edges. Adding a

back-edge requires the same process as described for theECG (i.e., searching ancestor nodes),

but the process must be executed for each entry in the call-stack as it is being added to the

CCT, considerably increasing the time required at each sample. Because theSCG is a statistical

metric there is an expectation that the profiling overhead isrelatively low; therefore, the increase

in overhead related to back-edges is a major disadvantage. As a consequence of not including

back-edges, the profiling data can be stored within the node objects, and hence, no edge objects

are required (see Section5.2.1p. 71 for a comparison to theECG where the CCT stores data at

the edges). Although not including back-edges is opposite to the goal of making the SCG and

ECG data structures consistent, in the case of a statisticalmetric the reduction in overhead is of

primary importance to reduce the probe effect. If deemed necessary, back-edges can be added to

the CCT in the future.

Another consequence of not including back-edges relates tothe size of the CCT. No back-

edges means the depth of the CCT is bounded by the length of thelongest call-stack observed

during program execution which, given recursion, can be much greater than the number of rou-

108 Chapter 6. Statistical Call-Graph

. . .

(callee 1)

address

caller node

data

callee nodes

node node

caller node

callee nodes

data

address

node

. . .

. . .

(task 2)

(task 2)

(task 2)(task 1)

. . .data
(task 1)

data

. . .data
(task 1)

data

. . .datadata

(callee 2)

address

caller node

data

callee nodes

Figure 6.2: Advanced Implementation: Statistical CCT DataStructures

tines executed in the program. Letd be the depth of the CCT andn be the number of routines

executed in the program. For each node in the CCT, its number of callee nodes is at mostn

because each callee represents a unique routine called fromthe node. Thus, at each depth in the

tree, there can be at mostn nodes for each node at the previous depth in the tree. Since the tree

starts with one node at the root and has a depth ofd, the maximum number of nodes at the lowest

depth of the tree isnd�1. In other words, the breadth of the CCT is bounded bynd�1.

6.2.1.1 Creating and Updating a CCT

At each sample, the call-stack at the time of the sample is inserted into the CCT. Insertion starts

at the root of the CCT and moves downward with the last node object added representing the

6.2. Advanced Implementation 109

address of the routine executing at the time of the sample. However, as call-stacks are inserted

into the CCT, subsequent insertions may require the addition of fewer or no node objects due to

existing entries.

Inserting a call-stack into the CCT requires three steps:

1. The longest prefix of the call-stack already in the CCT is found. The first address on

the call-stack (i.e., root entry of the call-stack) is compared to the addresses represented

by the callee nodes of the root of the CCT. The root itself represents a null address to

allow for the possibility of call-stacks rooted at different addresses. Once a node with an

identical address is found, the second address on the call-stack is compared to the addresses

represented by the callee nodes of that node. This process continues until, at a particular

node along the path, no address identical to the current call-stack address is found among

its callees or the end of the call-stack is reached (indicating the call-stack already exists in

the CCT). The node at which the process terminates represents the longest prefix.

2. If the longest prefix found in the first step is not the entirecall-stack, the remaining portion

of the call-stack (suffix) is inserted into the tree startingat that terminating node. One new

node is created for each address in the suffix of the call-stack and becomes a callee of the

preceding node (i.e., added to the preceding node’s list of callee nodes).

3. The last node found or added is updated to indicate that a call-stack terminating at the

address represented by this node was sampled (i.e., addressof the routine executing at

the time of the sample). The update involves incrementing a counter associated with the

sampling event triggering the sample. An array of counters is maintained with one entry for

the time event and one entry for each of the hardware countersused to count the hardware

events.

A CCT is maintained for each execution entity having its own stack; i.e., one for each task and

each coroutine. As for theECG, multiple tasks may execute a single coroutine (i.e., multiple

tasks’ threads may execute on the coroutine’s stack), so theCCT must keep profiling data sep-

arated by task. To handle this issue, each node object maintains a list of profiling data objects,

110 Chapter 6. Statistical Call-Graph

data

B

C F G

E

A

D
data *

data * data *

data *

data

data

data

root

Figure 6.3: Advanced Implementation: CCT Call-Stack Paths

rather than a single set of data (see Figure6.2). Each data object consists of the array of counters

described above. For each per-task CCT, the lists consist ofat most one element because only

the task’s thread may execute on the task’s stack.

Every call-path (i.e., path from the root to any node) in the CCT represents a call-stack;

however, every call-path does not represent a call-stack sampled during profiling. Each path

of nodes in the CCT, starting at the root and ending at a node with one or more data objects,

represents a call-stack sampled at least once during profiling. Therefore, an empty list at a node

means that a call-stack terminating at the address represented by this node was never sampled.

In the example CCT in Figure6.3(a simplified representation of a CCT), each node marked with

an “*” has a list with one or more data objects. Therefore, thepaths in the CCT that represent

sampled call-stacks are: A! B, A ! B! C! D, A ! E! F and A! E! G.

6.2. Advanced Implementation 111

The CCT is a more space efficient data structure than the list in the initial implementation.

Whereas the list stores every call-stack in its entirety (one for each sample), the CCT stores the

common prefixes of the various call-stacks only once with counters indicating the number of

times and for which sampling events the call-stack is sampled. The simultaneous occurrence of

multiple sampling events is detected. As a consequence, in the CCT, profiling data for duplicate

call-stacks is aggregated during monitoring, significantly reducing the number of call-stacks to

be analyzed, and hence, the time needed for analysis. With the list, analysis is required for every

call-stack including duplicate call-stacks. However, space efficiency and reduced analysis time

are achieved at the cost of increased monitoring time. The time required to insert a call-stack

into the CCT (as previously described) is greater than the time required to add a call-stack to the

end of a list. Also, storing call-stacks in a list preserves the temporal ordering of the samples.

The temporal information can be useful during analysis; however, this information was not used

in the initial implementation.

6.2.2 Visualization

The first step in running theSCGmetric involves selecting the sampling events (i.e., time and/or

hardware events) for which samples are taken. The event-selection window, similar to that of the

ECG, is shown in Figure6.4with the “Time” and “Completed Instructions” events selected.

By clicking the “Sampling Periods” button at the bottom, a user can choose a custom sam-

pling interval for each selected event. For example, in Figure6.5a user has specified samples are

taken every 10 ms. and every 10,000 completed instructions.For the time event, the interval can

range from a minimum value dependent on the operating system’s clock resolution to 1000 ms.,

and for the hardware events, the interval must be greater than zero, although very small intervals

may cause problems because of the high number of interrupts (i.e., signals specifying a sample

is to be taken). If a user enters an invalid interval the textbox is highlighted in red, signalling an

error.

Once program execution and monitoring are completed, the task/coroutine-selection window

is displayed (see Figure6.6). A user can select the call-graph for any task or coroutine by clicking

112 Chapter 6. Statistical Call-Graph

Figure 6.4: Advanced Implementation: Statistical Event-Selection Window

on a task or coroutine name in the left column. The tasks are listed above the dashed separator

line and the coroutines below it. The total number of samplestaken, totalled over all sampling

events, is displayed for each task and coroutine. The purpose of this information is to give a user

some direction as to which call-graph to analyze first. For example, a task with a large number

of samples is a potential “hot-spot” of execution.

The call-graph window in Figure6.7 is displayed after selecting the task T1 on the

task/coroutine-selection window. All data displayed in the call-graph window is for a single

selected event (i.e., time or a hardware event). The call-graph, in Figure6.7, is currently dis-

playing the completed-instructions data for task T1. The call-graph window contains several

panes (from top to bottom): routine pane, callers pane, callees pane, callees-visited pane, cycles

pane and coroutine-selection pane. The panes and the overall functionality of the window is

6.2. Advanced Implementation 113

Figure 6.5: Advanced Implementation: Sampling-Interval-Selection Window

Figure 6.6: Advanced Implementation: Statistical Task/Coroutine-Selection Window

114 Chapter 6. Statistical Call-Graph

nearly identical to that of theECG described in Section5.2.2; therefore, only the differences are

examined in this section.

The main difference is that the data displayed in the routinepane (as well as the callers and

callees panes) is presented in terms of samples taken versusexact time or exact hardware-event

counts. For each routine, the information includes (left toright) the number of self samples

for the routine as well as a histogram showing that number as apercentage of the total and a

percentage of the maximum (for any routine), and the number of self plus descendant samples

for the routine as well as a histogram showing that number as apercentage of the total. All values

displayed for a specific routine are totalled over all calls to the routine. The routines are sorted

by the number of self samples, and as in theECG, all individual values are scaled.

The callers pane lists, for each caller, the samples attributed to the caller by the selected

routine (highlighted in the routine pane). Therefore, the sum of the samples of the callers for

each individual field (self and descendant) is equal to the total value displayed for the selected

routine on the routine pane. The callees pane lists, for eachcallee, the samples attributed to the

selected routine by the callee. Therefore, the sum of the samples of the callees for all fields (self

and descendant) is equal to the total number of descendant samples displayed for the selected

routine on the routine pane.

There is also one additional option called “Format” available from the pull-down menu as-

sociated with the “Options” button (see Figure6.8). This option allows a user to choose the

format to display the data in the call-graph window. The formats available are uninterpreted

samples and samples interpreted by the sampling period/interval. The uninterpreted samples

format, currently chosen for the call-graph window in Figure 6.7, simply displays all the data

as the number of samples. If the samples interpreted by the sampling period/interval format

is chosen, the number of samples is multiplied by the sampling interval, changing the units of

the data to the number of events executed (for hardware events) or the time spent (for the time

event). Therefore, in Figure6.7, the fields displaying 1 sample, for example, would instead dis-

play 10,000 completed instructions (i.e., 1�10;000) in the alternate format (and scaled to 10k).

If the call-graph window is displaying data for the CPU cycles event, then there is one additional

format, called CPU cycles time, available. When this formatis chosen the following calculation

6.2. Advanced Implementation 115

Figure 6.7: Advanced Implementation: Statistical Call-Graph Window

116 Chapter 6. Statistical Call-Graph

Figure 6.8: Advanced Implementation: Statistical OptionsMenu

is executed to convert the number of samples into a corresponding time value

time value= (number o f samples�sampling interval) = processor speed (6.1)

where theprocessor speedis the number of cycles executed per-second. This calculation relies

on the assumption that the CPU cycle rate is constant. While this is true for many microproces-

sors, some do vary the cycle rate (e.g., to conserve power). If the program is sampled during an

interval of variable clock speed, the time values calculated are inaccurate.

Finally, there is also a complete call-graph window available similar to that of theECG. A

user can show or hide data for individual events, change the format of the data for individual

events, etc. The routines displayed in the complete call-graph window are sorted by the value of

the “Weight” column. For each event, a routine’s number of self samples as a percentage of the

total for the event can be computed. A routine’s weight is theaverage percentage over the events

currently displayed in the window.

6.2.3 Addressing Initial Issues

In the advanced implementation, to address the existence ofthe initial SCG as two mutually

exclusive metrics, one run of the profiler can now collect data for both the time and hardware

events, providing more comparable data. After profiling is completed and a task or coroutine

6.3. Implementation Issues 117

is selected, a single call-graph window (see Figure6.7) is displayed and a user can, via the

pull-down menu associated with the “Events” option, choosethe specific event to display. Such

functionality decreases the number of windows a user needs to manage and allows a user to easily

compare all the available data via the complete call-graph window.

The issue of the lack of separation between tasks and coroutines in the initial implementa-

tion is addressed identically to that of theECG in Section5.2.3. Again, the improvements all

stem from the careful separation of the task and coroutine profiling data during monitoring (see

Section6.2.1.1), allowing for analysis on a per-task and per-coroutine basis.

To address the simplicity of the visualization, the call-graph window was completely re-

designed in the same fashion as the call-graph window of theECG (see Section5.2.3). The

call-graph window is now interactive, conducive to thorough analysis and understanding, and

consistent.

The changes made to data collection and visualization in theadvanced implementations of

theECG andSCGhave resulted in greater consistency between the metrics. In the initial imple-

mentations, the data structures used were very different (ahash table versus a list), but now both

metrics use a CCT, although slightly different forms. The consistency in visualization decreases

the amount of time a user needs to become familiar with the metrics and also allows a user to

employ similar approaches in the analysis of the call-graphs.

6.3 Implementation Issues

This section describes implementation issues I encountered and solved during the writing of the

advanced implementation of theSCG.

6.3.1 Dynamic Memory Allocation

At the time a sample is taken, memory often needs to be allocated to store the profiling data.

For example, memory is required to store the nodes of the CCT.However, conditions related

to the behaviour and state of theµC++ kernel and task can preclude the successful execution of

118 Chapter 6. Statistical Call-Graph

this action [Les05]. Since dynamic memory allocation is a potentially blocking operation in a

concurrent system, a task requesting memory may need to be blocked and another task may need

to be scheduled. When a sample is taken, and the collected data needs to be stored, a task may be

executing in the kernel; however, theµC++ kernel cannot block. Also, when a sample is taken, a

task may be holding a spinlock (used by theµC++ kernel to protect critical data-structures) and in

this case a task cannot enter the kernel and block. Therefore, in both of these situations blocking

is impossible, and hence, dynamic memory allocation is not permitted.

If dynamic memory allocation is not permitted at the time of asample, then the sample is lost

(i.e., the profiling data collected for the sample is not stored). In order to substantially reduce

the number of lost samples, I created a node pool and a data pool. Per-task pools were chosen

because they exclude the need for mutual exclusion, and hence, there is no corresponding con-

tention. Each task maintains an array of node objects (CCT nodes) and an array of data objects

(per-task objects at each node) representing the pools. Thearrays (of size 20) are initialized with

dynamically allocated node and data objects during creation of the task’s metric specific data

structures. At the time of a sample, the nodes in the pool are used if the addition of nodes to the

CCT is required, but dynamic memory allocation is not permitted. If dynamic memory allocation

is permitted, then the nodes are simply dynamically allocated at the time of the sample and the

pool is replenished. The possibility of a lost sample still exists because the number of nodes to

be added to the CCT may be greater than the number of nodes currently available in the pool.

The data pool is used in the same way.

The number of lost samples depends on the machine as well as the amount of time the pro-

gram spends in the run-time system. The total number of lost samples is reported, in addition

to the total number of samples taken, at the bottom of the task/coroutine-selection window (see

Figure6.6).

6.3.2 Handling Cycles

This issue involves the handling of cycles during analysis.In the initial implementation, all

cycles are collapsed (i.e., reduced to a single node or pseudo-routine) [Les05]. Unfortunately,

6.3. Implementation Issues 119

when a cycle is collapsed, the execution behaviour of the cycle members is lost; therefore, in the

advanced implementation, I chose not to collapse cycles.

During analysis, each CCT is analyzed using a depth-first-search. Each sampled call-stack

(i.e., each node path representing a sampled call-stack, see Section6.2.1.1) in the CCT is tra-

versed from its lowest node in the tree (i.e., the node representing the routine executing at the

time of the sample) up to the root node. Walking up the path simply requires following the caller

pointer maintained by each node object up to the root node. During this analysis, self and descen-

dant samples are assigned to the routines, represented by the nodes along the path. In the usual

case (without a cycle), the lowest node in the tree is assigned a self sample and every other node

is assigned a descendant sample. While assigning a sample toa node, a counter is incremented

corresponding to the node’s current caller (the node above it in the call-stack, except for the root)

and corresponding to the node’s current callee (the node below it in the call-stack, except for

the lowest node). The value of each counter equals the numberof samples assigned to a routine

that must be attributed to the counter’s associated caller or callee. These counters allow for a

routine’s assigned samples to be properly attributed to itscallers and callees in the visualization

(i.e., to populate the callers and callees panes of Figure6.7 for a routine). For example, while

examining the lowest node of the path in Figure6.9, a self sample is assigned to routine B and

one self sample is counted for routine D as a caller of routineB. No sample is counted for a

callee of routine B because routine B is executing at the timeof the sample.

When the call-graph includes a cycle, the traversal may encounter more than one node repre-

senting the same routine (e.g., routine B in Figure6.9). In this case, some nodes are not assigned

descendant samples in order to prevent double counting. Each distinct routine, represented along

the path, is assigned only a single sample, and therefore, atmost only one caller and one callee

counter is incremented. In the example, routine B is assigned a self sample (as described above),

and therefore, does not get a descendant sample when encountered for the second and third

times in the path. These conditions ensure that the total descendant samples for a routine equals

the sum of the descendant samples for its callers as well as the sum of the self and descendant

samples for its callees. In theECG, similar adjustments were often impossible because of the

presence of back-edges in the CCT (see Section5.3.2).

120 Chapter 6. Statistical Call-Graph

Analysis
Direction of

Path (Call-Stack) from CCT Corresponding Call-Graph

DA

B

S

B

D

B

A

B

S

Figure 6.9: Advanced Implementation: Example Call-Stack

6.4 Related Work

This section describes two current profiling tools that include statistical call-graphs. HP Caliper

provides profiling metrics for C, C++, Java, Fortran and Assembly programs, including multi-

threaded programs. Sun Studio Performance Analyzer profiles C, C++, Fortran and Java pro-

grams, also supporting multithreaded programs.

6.4.1 HP Caliper

HP Caliper is a general-purpose performance analysis tool that helps a user understand the exe-

cution performance of a program [HP07]. A graphical user interface and command line version

of Caliper are available. Profiling data is saved in databases for later visualization. Two visual-

izations provide the statistical call-graph (dynamic) data of the Sampled Call-Graph metric: the

Histogram Tab and the Call Graph Tab.

6.4. Related Work 121

Histogram Tab

Caliper uses a CPU cycles hardware event to trigger samplingat a user defined interval. The His-

togram Tab provides information on a process, module, thread or routine basis (see Figure6.10).

The per-routine data displayed includes the total number ofself samples and self time for the

routine, the total number of calls to the routine and the selftime per-call. The data can be dis-

played as raw numbers or as percentages of a grand total, local total (e.g., with respect to the

current process, module or thread) or cumulative total. Thepercentages are shown as numbers

as well as histograms within the individual table fields and aseparate bar graph. The table can

be sorted on any column.

Call Graph Tab

The Call Graph Tab also lists each routine, and for the routine currently selected in the list, it

updates a callers and callees pane (see Figure6.11). The information displayed for each routine

includes the number of self plus descendant samples for the routine as a percentage of the total,

the number of self samples for the routine as a percentage of the total, the percentage of self

samples relative to self plus descendant samples and the number of calls (and recursive calls)

to the routine. The percentages are again displayed as raw numbers and histograms. For each

caller of the selected routine, the total number of samples of the routine attributed to the caller is

displayed as well as the number of calls from the caller to theroutine over the total calls to the

routine (as a percentage and fraction). For each callee of the selected routine, the total number of

samples of the routine attributed from the callee is displayed as well as the number of calls from

the routine to the callee over the total calls to the callee (as a percentage and fraction). A Callees

Visited pane keeps track of the current path in the call-graph.

Sampling

At each sample, the Sampled Call-Graph metric stores a copy of the branch-trace-buffer (BTB).

The BTB is a circular buffer of size 8 implemented in hardwareon the Itanium 2 processor. Two

addresses are stored in the buffer for each routine call, so at any time at most 4 routine calls exist

in the buffer. Therefore, routine addresses can be overwritten in the buffer before a sample is

122 Chapter 6. Statistical Call-Graph

Figure 6.10: HP Caliper Histogram Tab

Figure 6.11: HP Caliper Call Graph Tab

6.4. Related Work 123

taken; such routines may go unreported in the call-graph. HPCaliper now has a new statistical

call-graph metric called the Sampled Call-Stack Profile. Ateach sample, instead of storing a

copy of the BTB, a copy of the full call-stack is stored. The time event triggers sampling and

the visualization is similar to that of the Sampled Call-Graph metric. The Sampled Call-Stack

Profile is currently only available for the HP-UX operating system, which I do not have access

to; therefore, the Sampled Call-Stack Profile is not discussed further.

6.4.2 Sun Studio Performance Analyzer

Sun Studio Performance Analyzer helps a user identify potential performance problems, and lo-

cate the part of the program where the problems occur [Sun05]. A graphical user interface and

command line version of the Performance Analyzer are available. Profiling data is also saved

(as experiments) for later visualization. Two visualizations provide the statistical call-graph (dy-

namic) data: the Functions Tab and the Callers-Callees Tab.Data from multiple experiments can

be combined and viewed on one tab.

Functions Tab

The sampling events available in the Performance Analyzer include time and various hardware

events (e.g., CPU cycles, completed instructions, cache misses, etc.). A user can define a custom

sampling interval for each event. The Functions Tab lists the routines and displays the self and

total (self plus descendant) time or hardware-event countsfor each routine (see Figure6.12). The

information on the Functions Tab is displayed for each sampling event selected by a user. The

top routine represents the entire program, and hence, reveals the total time or hardware events

executed during the running of the program. The data can be filtered by process, module or

thread, and individual routines can be hidden. Furthermore, a user can modify the presentation

of the tab. A user can sort on any column, display the data in any column as raw numbers or per-

centages, and show or hide columns of data. The Callers-Callees Tab is updated for the routine

selected on the Functions Tab.

124 Chapter 6. Statistical Call-Graph

Figure 6.12: Sun Studio Performance Analyzer Functions Tab

Figure 6.13: Sun Studio Performance Analyzer Callers-Callees Tab

6.4. Related Work 125

Callers-Callees Tab

The Callers-Callees Tab displays the callers and callees for the selected routine (see Figure6.13).

The selected routine, with its corresponding information,is also displayed in between the Callers

and Callees panes. For each caller of the selected routine, the total time or hardware-event counts

for the routine attributed to the caller are displayed as well as the self and total values for the

caller routine as a whole. For each callee of the selected routine, the total time or hardware-event

counts for the routine attributed from the callee are displayed as well as the self and total values

for the callee routine as a whole. Similar to the Functions Tab, a user can modify the presentation

of the Callers-Callees Tab.

Other Tabs

Sun Studio Performance Analyzer provides some further useful information in other tabs. The

Source Tab shows the file containing the source code of the selected routine, annotated with pro-

filing data for each line. The Timeline tab shows a chart of thesampling points recorded during

monitoring as a function of time. Clicking a sampling point displays the data for that sample in

the Event Tab. The Event Tab displays information such as thetime the sample was taken, the

duration of time since the previous sample, and a colour-coded representation of the call-stack at

the time of the sample.

A user can also pause and resume data collection for the running program (but not perform

real-time analysis) using control buttons or an application program interface (API).

6.4.3 Comparison

Table6.1summarizes and compares the relevant features ofµProfiler’sSCGmetric and the two

profiling tools discussed in the previous sections. Some of the important features are discussed

in detail.

HP Caliper’s Sampled Call-Graph metric, like gprof, does suffer from the gprof fallacy (see

Section5.4.3). Also, as a consequence of storing a copy of the BTB at each sample, the resulting

call-graph may be disconnected. Compared to a full call-stack, the BTB only provides the last

126 Chapter 6. Statistical Call-Graph

four call-stack entries (or caller-callee routine pairs);hence, routines and routine calls existing

elsewhere in the call-stack are not recorded. Therefore, ingeneral HP Caliper’s Sampled Call-

Graph metric provides less accurate call-graph information than the statistical call-graph metrics

of µProfiler and Sun Studio Performance Analyzer.

µProfiler HP Sun Studio
SCG Metric Caliper Perf. Analyzer

Hardware Events
p p p

Combine Profiling Runs
p

(side-by-side display)
Instrumentation Control

p p p
No gprof Fallacy

p p
Data Saved to File

p p
Graphical User Interface

p p p
Interactive Caller-Callee Display

p p p
Multiple Formats

p
Cycles Information

p p
Complete Call-Graph

p
Call-Graph Break Down

p p p
Sorting

p p
Source Information

p p p
Callees Visited List

p p
Histograms of %s

p p
Table 6.1: Statistical Routine Call-Graph: Comparison of Related Profilers

Both theSCGand Sun Studio Performance Analyzer have multiple samplingevents available

for a user (e.g., time and various hardware events). HP Caliper only provides a single hardware

event of CPU cycles. The Performance Analyzer displays all data as hardware-event counts or as

time. Caliper displays all data as time by converting the CPUcycles. However, unlike the other

profiling tools, theSCGallows a user to view the call-graph data in multiple formatssuch as the

number of samples taken, time or hardware-event counts. Multiple formats allow users to view

the call-graph information from several different perspectives as well as choose which format

best suits their analysis.

Another feature only available in theSCG is a complete call-graph. By not including a

6.5. Performance 127

complete call-graph, Caliper and Performance Analyzer fail to provide a user with a means of

viewing and analyzing the entire call-graph at one time.

Overall, µProfiler’s SCG metric provides many important features, and furthermore,in-

cludes features unavailable in the other profiling tools. Some features not currently provided

in µProfiler, such as routine-level instrumentation control, saving data to a file and sorting, are

possible enhancements for future work.

6.5 Performance

This section describes the performance of theSCGwith respect to both time and space.

6.5.1 Time

To evaluate the running time of theSCG, I constructed a worst-case test program (see Ap-

pendixB.1), profiled the program with theSCG metric, and compared its running time to the

same test program run without profiling. The program was alsorun with HP Caliper and Sun

Studio Performance Analyzer for a cross-profiler comparison. Only the running time of the test

program itself was measured, i.e., the time includes monitoring and data collection but not time

spent during analysis or visualization.

The test program is the same program used to evaluate the running time of theECG (see Sec-

tion 5.5) except Routines G1 through G6 call routine H1 2,100,000 times (versus 30,000 times).

The test program was compiled with optimization (i.e., O2 flag) and run multiple times with a

decreasing sampling interval (i.e., increasing number of samples). Testing for theSCG and HP

Caliper was done on one machine (Itanium II 1499 Mhz) and testing for the Sun Studio Perfor-

mance Analyzer was done on a different machine (UltraSPARC III 1062 Mhz). Unfortunately,

a direct comparison betweenµProfiler and Sun Studio on the same UltraSPARC architecture

was impossible becauseµProfiler is only ported to the hardware-event interface for the Solaris-

8 operating system and Sun Studio only runs on Solaris-10. Porting µProfiler to Solaris-10 is

future work. Table5.2 shows the results of the performance testing in microseconds. The CPU-

128 Chapter 6. Statistical Call-Graph

µProfiler HP Caliper Sun Studio Analyzer
Sampling Time per % Time per % Time per %

Interval (ms) Sample (µs) Increase Sample (µs) Increase Sample (µs) Increase
10.00 28.80 0.29 9.80 0.10 83.777 0.92
7.80 24.32 0.31 9.76 0.13 50.84 0.96
5.60 19.93 0.36 8.24 0.15 45.56 1.13
1.10 19.72 1.77 2.73 0.25 28.08 2.52
0.78 19.45 2.50 2.31 0.30 27.97 3.57
0.56 19.97 3.59 2.13 0.38 27.81 4.95
0.33 19.47 5.84 2.40 0.72 27.70 8.17
0.22 18.96 8.53 2.52 1.13 27.86 12.29
0.11 19.05 17.14 2.26 2.03 28.01 25.60
0.06 18.87 33.99 2.02 3.64 27.92 53.13

Table 6.2: Statistical Routine Call-Graph: Time Performance Results

cycles hardware event was used as the sampling event, and thesampling intervals in the table are

computed by converting CPU cycles to millisecond time units. The percentage increase is with

respect to the no profiling case.

The per-sample time is calculated by dividing the difference between the profiled running

time and corresponding no-profiler running time by the number of samples taken. As the sam-

pling rate increases (i.e., the sampling interval decreases), the running time of the program in-

creases for all profilers as seen in the table with the increasing percentages. The time per-sample

quickly stabilizes as the sampling rate increases for all profilers. Although the test program was

run for a sufficient duration for stabilization to occur across all rates, when fewer samples are

taken the time per-sample values are higher. Further experiments have revealed that this is the re-

sult of a lower data cache hit-rate, which slows the entire program. The numbers for HP Caliper

are significantly lower than those for theSCGand Sun Studio Performance Analyzer because the

metric does less work at each sample and provides a much less accurate call-graph. Compared

to the Sun Studio Performance Analyzer, the time per-sampleand percentage increase numbers

for theSCG are somewhat lower. However, it must be noted again that these two profilers run

on different machines, and hence the numbers may not be directly comparable. The percentage

6.5. Performance 129

increases for theSCG, for this worst-case program, are reasonable given the overhead of creating

the storage data structures and, at each sample, collectingand storing the necessary data.

6.5.2 Space

To examine the space cost of a CCT, the space costs of the individual data structures (see Sec-

tion 6.2.1) are examined. The data structures include the general treeobject, the node object

and the data object. The general tree object maintains a pointer to the root node of the tree, an

array (of size 240) of routine addresses (pointers) representing the call-stack at the last sample,

an integer to store the size of the last call-stack, an integer to store the sampling event triggering

the last sample and a boolean specifying whether or not the last sample was lost. Therefore,

in a standard 32 bit system with 4 byte pointers, 4 byte integers and a 1 byte boolean (with 3

bytes of padding to maintain proper alignment) each tree object requires 976 bytes of space (i.e.,(4 bytes�240)+16bytes).

Each node object consists of a pointer to link the node objectin a node’s queue, a routine

address (a pointer), a pointer to its caller node in the tree,a queue of pointers to its callee node

objects and a queue of pointers to its data objects. A queue requires 8 bytes of space; and

therefore, each node object requires 28 bytes of space. Eachdata object consists of a pointer to

link the data object in a node’s queue, a pointer to the task associated with the data and an array

of integers (with one array entry for the time event and each hardware counter). Therefore, the

space cost of each data object is computed according to the following formula

Total space per-data-ob ject= 12bytes+(number o f hardware counters�4 bytes) (6.2)

Each task maintains a node pool which consists of an array of 20 pointers to node objects and

a data pool which consists of an array of 20 pointers to data objects. For each array, two integers

are required to store the size of the array and the number of available objects. Therefore, the

space cost for the pools is computed according to the following formula

Total space f or pools= 24bytes+(20�28bytes)+(20�size o f a data ob ject) (6.3)

130 Chapter 6. Statistical Call-Graph

The test program used to evaluate the running time of theSCG creates one tree (single task

program) with 102,644 node objects and 102,644 data objects. The number of node and data

objects is for a worst case scenario where the tree includes all possible sampled call-stacks.

Assuming the test program is run on a processor with 4 hardware counters, the total space cost

for the tree is

Total space cost= 976bytes+(102644�28bytes)+(102644�28bytes)+584+(20�28) = 5;750;184bytes
(6.4)

The space cost of 5.48 MB is reasonable given that the depth and breadth of the call-graph

is large, i.e., large number of node and data objects in the tree. For theECG, the space cost is

approximately 4.2 times larger (see Section5.5.2p.101) as a result of the size of the data objects;

200 bytes for theECG compared to 28 bytes for theSCG.

6.6 Summary

The advances made toµProfiler’sSCGmetric have achieved the goals stated at the beginning of

the chapter. Firstly, based on functionality and the comparison to related work,µProfiler’sSCG

metric is similar to state-of-the-art vendor statistical call-graph metrics. Secondly, the run-time

of the SCG metric compared to the related work shows similar performance and space costs

are reasonable. Thirdly, theSCG metric, through the careful collection, separation, analysis

and visualization of profiling data, scales to programs of long duration and complex behaviour.

Finally, I believe the collective achievement of the goals results in a call-graph metric providing

an environment conducive to more thorough and simpler user analysis.

Chapter 7

Conclusions and Future Work

This thesis focused on profiling user threads in concurrent,object-oriented programs running in

a shared-memory, uni/multi-processor environment. Profiling is accomplished usingµProfiler, a

concurrent object-oriented profiler written inµC++, a concurrent dialect of the C++ programming

language.

The contributions of this thesis include major advances to the following µProfiler metrics:

the Execution State Chart as part of the Execution State metric, the Exact Routine Call-Graph

metric and the Statistical Routine Call-Graph metric.

The Execution State metric charts each task’s states duringexecution of the program. By

only drawing the visible area of the chart, the Execution State Chart is now scalable to programs

of long duration and with large numbers of tasks and states. The chart provides high magni-

fication as well as fine-grained control through options suchas the “Magnification Step”. The

introduction of the “Elided” state ensures the chart is always accurate and logically consistent.

The dynamic nature of the X-axis provides a precise divisionof the axis, allowing for more exact

reading of the chart. Furthermore, the evaluation of time and space costs reveals good perfor-

mance, and a cross-profiler comparison indicates the metricis functionally state-of-the-art.

The Exact Routine Call-Graph metric and the Statistical Routine Call-Graph metric both

provide a call-graph profile of the program’s dynamic execution. The exact metric provides

higher accuracy at the cost of higher overhead, whereas the statistical metric provides lower

131

132 Chapter 7. Conclusions and Future Work

overhead at the cost of lower accuracy. For both metrics, major advances were made to the

data structures storing the profiling data and the visualization of the data. A space efficient data

structure called the context calling tree now stores the profiling data. The visualization provides

an interactive experience, allowing a user to display data for a particular event, and for specific

coroutines (coroutine-selection pane on per-task call-graph) or tasks (task-selection pane on per-

coroutine call-graph). Also, a user can progress through the call-graph step-by-step by selecting

routines in the various panes, with that movement being tracked in the callees-visited pane. The

per-task and per-coroutine call-graphs provide separation of data and multiple perspectives for

analysis. Furthermore, cross-profiler comparisons revealsimilar run-time performance and state-

of-the-art functionality.

To ensureµProfiler is well-designed and includes common features expected by profiler

users,µProfiler was compared to several vendor profilers to establish a baseline for both fea-

tures and performance. Through this comparison, it was found thatµProfiler has some unique

functionally unavailable in other commonly used profilers,suggesting some advancement in the

state-of-the-art.

Overall, for a user, the advances have resulted in more powerful, scalable, functional and

intuitive metrics with good performance, yet at the same time resulted in simpler analysis. A

user can spend less time and effort learning the metrics, while spending their analysis time more

effectively and efficiently.

7.1 Future Work

There are a number of possible directions for future work forµProfiler. Currently, performance

data cannot be saved to or loaded from a file. Saving and loading data to/from a file gives

a user easy access to the performance data for later analysis(i.e., after the visualizations of the

performance data have been terminated). Such functionality is particularly important because the

nondeterministic nature of concurrent programs makes it difficult to reproduce specific results by

simply re-running and re-profiling a program. Also,µProfiler currently does not do any real-time

analysis; all data is analyzed and visualized post-mortem.Real-time analysis and visualization

7.1. Future Work 133

could be beneficial for some metrics, especially given certain types of long running programs, as

a user would not have to wait for the program to finish to start viewing performance data.

For theEST metric, the addition of an aggregate view, such as the one provided by some of

the related execution state profiling tools, would provide auser with a high-level overview of the

global execution-state of their program. Also, given a large number of tasks displayed on the

ESTC, it would be advantageous to be able to sort the tasks by various criteria.

A number of improvements can also be made to theECG metric. Routine-level instrumen-

tation control would allow a user to selectively choose which routines are profiled, and hence,

allow a user to precisely focus the analysis. Also, by only instrumenting certain routines in a

program, the probe effect can be reduced. Given a large number of routines displayed, it would

also be advantageous to sort the routines by various criteria. A simple graphical tree represen-

tation of the call-graph could also be beneficial. By highlighting the paths in the tree where the

program is consuming the most time, a user could quickly focus the analysis.

In theSCG metric, in addition to instrumentation control, sorting and a graphical tree, im-

provements related to the sampling interval and hardware-event selection can be made. Currently,

a user is presented with general defaults for the sampling intervals; however, it would be valuable

to provide customized defaults based on certain criteria such as characteristics of the program be-

ing profiled. Also, because a processor has only a limited number of hardware counters and each

of those counters can count only certain hardware events, a user can simultaneously select only

a limited number of hardware events. Multiplexing (or time sharing) can mitigate this restriction

by having different counters count different events duringdifferent periods of time. Future work

should explore the multiplexing of hardware counters for theECG andSCGmetrics.

Finally, for both theECG andSCG metrics, another possible enhancement is object-based

profiling. For example,µC++ monitor objects could form a call-graph, in addition to the per-

task and per-coroutine call-graphs. A per-monitor call-graph would include data related to the

execution of the particular monitor and its routines. This further breakdown provides yet another

perspective for a user when analyzing a call-graph.

Appendix A

Object-Oriented Notation

The notation described in this appendix is based on the object-oriented design notation of Peter

Coad and Jill Nicola [CN93]. The original notation has been simplified and extended to include

objects specific toµC++. The design of theµProfiler kernel in Chapter3 and the design of the

data structures in Chapters5 and6 are illustrated using this notation.

or

Attribute 1

Attribute 2

Class Name

or

Attribute 2

Attribute 1

Class Name

Class/Object SymbolAbstract Class Symbol

Class NameClass Name

Figure A.1: Class and Object Notation

FigureA.1 shows the symbols used to illustrate classes and objects. A class defines the

behaviour and properties of all objects instantiated from it, and therefore, an object is an instance

135

136 Appendix A. Object-Oriented Notation

of a class. The Abstract Class symbol represents an abstractclass, one that cannot be instantiated.

The Class/Object symbol represents a class that can be instantiated with one or more objects

instances. The inner rounded rectangle represents the class definition and the outer rounded

rectangle represents the instances of that class. Each of these symbols contains the name of the

class and below the name are the class attributes. Only attributes relevant to the design being

described are included, if any at all.

Active Object Symbol

Class Name

Figure A.2: Active Object Notation

µC++ has active objects, such as tasks, containing a thread ofcontrol and an execution state.

The Active Object symbol shown in FigureA.2 is not part of Coad and Nicola’s original notation,

but was introduced by Dorota Zak [Zak00].

There are three types of relations that can be indicated between classes and objects: inher-

itance, aggregation and association. The inheritance relation is represented by a line with a

semicircle drawn between classes (see FigureA.3). The derived classes, connected to the bottom

of the semicircle, inherit the attributes and routines of the base class, connected to the top of the

semicircle. A derived class “is-a” base class with additional specialization. Because inheritance

occurs between classes, and not objects, the lines are connected to the inner rectangle of the

Class/Object symbols. Derivation can occur from an abstract base-class (abstract derivation) or

a concrete base-class (concrete derivation).

The aggregation relation is represented by a line with a triangle drawn between objects (see

FigureA.4). The triangle points away from a member object and towards acontaining object.

The containing object “has-a” member object as an attribute. Because aggregation occurs be-

tween objects, and not classes, the lines are connected to the outer rectangle of the Class/Object

symbols.

Object-Oriented Notation 137

Abstract Base
Class Name

Class Name
Derived

(a) Abstract Derivation

Class NameClass Name
DerivedDerived

Base
Class Name

(b) Concrete Derivation

Figure A.3: Inheritance Notation

The association relation is represented by a line drawn between objects (see FigureA.5).

Each object “uses” (or is “aware of”) the other object. Because association occurs between ob-

jects, and not classes, the lines are connected to the outer rectangle of the Class/Object symbols.

The aggregation and association relations display cardinality symbols next to each object,

representing how many objects of one class are connected to how many objects of the other

class. In FigureA.4, the containing object contains zero or more instances of the member object,

and each member object is contained by only one containing object. In FigureA.5, an object of

class A is associated with one object of class B, and an objectof class B is associated with one

or more objects of class A.

138 Appendix A. Object-Oriented Notation

Containing

Class Name

Member

Class Name

0,n

1

Figure A.4: Aggregation Notation

1,n

1

Class Name B

Class Name A

Figure A.5: Association Notation

Appendix B

Program Source Code

B.1 Call-Graph Test Programinlude <uC++.h>void A();void B1(); void B2(); void B3(); void B4(); void B5(); void B6();void C1(); void C2(); void C3(); void C4(); void C5(); void C6();void D1(); void D2(); void D3(); void D4(); void D5(); void D6();void E1(); void E2(); void E3(); void E4(); void E5(); void E6();void F1(); void F2(); void F3(); void F4(); void F5(); void F6();void G1(); void G2(); void G3(); void G4(); void G5(); void G6();void H1();void A() {B1();B2();B3();
139

140 Appendix B. Program Source CodeB4();B5();B6();} // Avoid B1() {C1();C2();C3();C4();C5();C6();} // B1. . .void B6() {C1();C2();C3();C4();C5();C6();} // B6void C1() {D1();D2();

B.1. Call-Graph Test Program 141D3();D4();D5();D6();} // C1. . .void C6() {D1();D2();D3();D4();D5();D6();} // C6void D1() {E1();E2();E3();E4();E5();E6();} // D1. . .

142 Appendix B. Program Source Codevoid D6() {E1();E2();E3();E4();E5();E6();} // D6void E1() {F1();F2();F3();F4();F5();F6();} // E1. . .void E6() {F1();F2();F3();F4();F5();F6();} // E6

B.1. Call-Graph Test Program 143void F1() {G1();G2();G3();G4();G5();G6();} // F1. . .void F6() {G1();G2();G3();G4();G5();G6();} // F6void G1() {for (int i = 0; i < 30000; i++) { H1(); }} // G1. . .void G6() {for (int i = 0; i < 30000; i++) { H1(); }

144 Appendix B. Program Source Code} // G6void H1() {} // H1void uMain::main() {A();} // uMain::main

Bibliography

[ABL97] G. Ammons, T. Ball, and J.R. Larus. Exploiting hardware performance counters

with flow and context sensitive profiling. InProceedings of the SIGPLAN Confer-

ence on Programming Language Design and Implementation, pages 85–96, 1997.

68, 69

[AGH00] K. Arnold, J. Gosling, and D. Holmes.The Java Programming Language. Addison-

Wesley, 2000.1

[App] AppPerfect. AppPerfect Java Profiler Data Sheet. http://www.appperfect.com/-

products/devsuite/jp.html. Last accessed May 2007.52

[AS00] M. Arnold and P.F. Sweeney. Approximating the calling context tree via sampling.

Research report, IBM Research Division, 2000.107

[BDS+92] P.A. Buhr, G. Ditchfield, R.A. Stroobosscher, B.M. Younger, and C.R. Zarnke.

µC++: Concurrency in the object-oriented language C++.Software - Practice and

Experience, 22(2):137–172, 1992.2, 20

[BH05] P.A. Buhr and A.S. Harji. Concurrent urban legends.Concurrency and Computa-

tion: Practice and Experience, 17(9):1133–1172, 2005.2, 5

[Blo70] B.H. Bloom. Space/time trade-offs in hash coding with allowable errors.Commu-

nications of the ACM, 13(7):422–426, 1970.72

145

146 Bibliography

[Bor03] Borland. Borland Optimizeit 6 Thread Debugger 1.4 User’s Guide, 2003. http://-

info.borland.com/techpubs/optimizeit/optimizeit6/index1280x1024.html. Last ac-

cessed May 2007.52, 57

[BS07] P.A. Buhr and R.A. Stroobosscher.µC++ Annotated Reference Manual, Version

5.4.1. David R. Cheriton School of Computer Science, University of Waterloo,

2007. ftp://plg.uwaterloo.ca/pub/uSystem/uC++.ps.gz.Last accessed May 2007.

4, 20, 21

[Cha91] S. Chamberlain.LIB BFD, the Binary File Descriptor Library. Cygnus Support,

first edition, 1991.28

[CL00] S. Choi and E.C. Lewis. A study of common pitfalls in simple multi-threaded

programs. InProceedings of the 31st SIGCSE Technical Symposium on Computer

Science Education, pages 325–329. ACM Press, 2000.2

[CN93] P. Coad and J. Nicola.Object-Oriented Programming. Prentice Hall PTR, 1993.

135

[Den97] R.R. Denda. Profiling concurrent programs. Diplomarbeit, Fakultät für Mathematik

und Informatik, Universität Mannheim, 1997. ftp://plg.uwaterloo.ca/pub/theses/-

DendaThesis.ps.gz. Last accessed May 2007.10, 17, 19, 22

[ejt07] ej-technologies. JProfiler Manual, 2007. http://resources.ej-technologies.com/-

jprofiler/help/doc/help.pdf. Last accessed May 2007.52

[FFMC03] N. Froyd, R. Fowler, and J. Mellor-Crummey. Low-overhead call path profiling

of unmodified, optimized code. InProceedings of the 19th Annual International

Conference on Supercomputing, pages 81–90, 2003.68, 107

[GCC] GCC.The GNU Compiler Collection. http://gcc.gnu.org. Last accessed May 2007.

24

Bibliography 147

[Gen81] W.M. Gentleman. Message passing between sequential processes: The reply primi-

tive and the administrator concept.Software - Practice and Experience, 11(5):435–

466, 1981. 26

[GKM82] S. Graham, P. Kessler, and M. McKusick. gprof: A callgraph execution profiler.

In Proceedings of the 1982 ACM SIGPLAN Symposium on Compiler Construction,

pages 120–126. ACM Press, 1982.8, 90, 92, 98

[GR89] N. Gehani and W.D. Roome.The Concurrent C Programming Language. Silicon

Press, 1989.2

[gra96] University of Glasgow, Functional Programming Group. GranSim User’s Guide,

1996. http://www.dcs.gla.ac.uk/fp/software/gransim/user7.html#SEC47. Last ac-

cessed May 2007.52

[HF94] D. Heller and P.M. Ferguson.Motif Programming Manual for OSF/Motif Release

1.2. O’Reilly & Associates, Inc., second edition, 1994.23

[HH04] C. Hughes and T. Hughes.The Joys of Concurrent Programming. Addison-Wesley,

2004. 1

[HLM95] J.K. Hollingsworth, J.E. Lumpp, and B.P. Miller. Techniques for performance mea-

surement of parallel programs.Parallel Computers: Theory and Practice, pages

225–240, 1995.2, 3

[HM93] J.K. Hollingsworth and B.P. Miller. Dynamic controlof performance monitoring

on large scale parallel systems. InProceedings of the 7th International Conference

on Supercomputing, pages 185–194. ACM Press, 1993.9

[Hol94] J.K. Hollingsworth. Finding Bottlenecks in Large Scale Parallel Programs.

PhD thesis, Computer Sciences Department, University of Wisconsin - Madison,

1994. ftp://ftp.cs.wisc.edu/paradyn/papers/Hollingsworth94Dissertation.ps. Last

accessed May 2007.10

148 Bibliography

[HP04] HP. HP Visual Threads Online Help, 2004. http://h21007.www2.hp.com/dspp/-

files/unprotected/visualthreads/doc/help2004/htmlhelp/vt.html. Last accessed May

2007. 52

[HP06] HP. HPjmeter 2.1 User’s Guide, 2006. http://www.hp.com/products1/unix/java/-

hpjmeter/infolibrary/userguide.pdf. Last accessed May 2007.52

[HP07] HP. HP Caliper User Guide, 2007. http://h21007.www2.hp.com/dspp/files/-

unprotected/caliper/caliper-user-guide.html. Last accessed May 2007.120

[HWG03] A. Hejlsberg, S. Wiltamuth, and P. Golde.The C# Programming Language.

Addison-Wesley, 2003.1

[Int07] Intel. VTune Performance Environment User’s Guide, 2007. http://www.intel.com/-

software/products/documentation/vlin. Last accessed May 2007. 94

[JFL98] M. Ji, E.W. Felten, and K. Li. Performance measurements for multithreaded pro-

grams. InProceedings of the 1998 ACM SIGMETRICS Joint InternationalConfer-

ence on Measurement and Modeling of Computer Systems, pages 161–170. ACM

Press, 1998.2

[KR88] B.W. Kernighan and D. Ritchie.The C Programming Language. Prentice Hall,

1988. 1

[Les05] J. Lessard. Profiling concurrent programs using hardware counters. Master’s thesis,

School of Computer Science, University of Waterloo, 2005. ftp://plg.uwaterloo.ca/-

pub/theses/LessardThesis.ps.gz. Last accessed May 2007.19, 31, 66, 79, 103, 118

[LP85] C.H. LeDoux and D.S. Parker. Saving traces for Ada debugging. InProceedings

of the 1985 Annual ACM SIGAda International Conference on Ada, pages 97–108.

Cambridge University Press, 1985.8

Bibliography 149

[MCC+95] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L.

Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn parallel performance

measurement tools.IEEE Computer, 28(11):37–46, 1995.8

[MH89] C.E. McDowell and D.P. Helmbold. Debugging concurrent programs.ACM Com-

puting Surveys, 21(4):593–622, 1989.8

[MMB+94] A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, and F. Bodin. Performance

Analysis of pC++: A portable data-parallel programming system for scalable parallel

computers. InProceedings of the 8th International Parallel Processing Symposium

(IPPS), Cancun, Mexico, 1994.2

[MR82] M.F. Morris and P.F. Roth.Computer Performance Evaluation: Tools and Tech-

niques for Effective Analysis. Van Nostrand Reinhold, New York, 1982.16, 33

[Net] NetBeans. NetBeans IDE Profiler Online Documentation. http://-

profiler.netbeans.org/docs/help/index.html. Last accessed May 2007. 52,

55

[PN93] C.M. Pancake and R.H.B. Netzer. A bibliography of parallel debuggers. InPro-

ceedings of the 1993 ACM/ONR Workshop on Parallel and Distributed Debugging,

pages 169–186. ACM Press, 1993.4

[She99] S. Shende. Profiling and tracing in Linux. InProceedings of the Extreme Linux

Workshop #2, Monterey, CA, 1999.10

[Str97] B. Stroustrup.The C++ Programming Language. Addison-Wesley, 1997.1, 20

[Sun04] Sun Microsystems.UltraSPARC III Cu User’s Manual, Version 2.2.1, 2004. ftp://-

www.sun.com/processors/manuals/USIIIv2.pdf. Last accessed May 2007.31

[Sun05] Sun Microsystems. Sun Studio 11: Performance Analyzer, 2005. http://-

docs.sun.com/app/docs/doc/819-3687. Last accessed May 2007. 123

150 Bibliography

[Tuf83] E.R. Tufte.The Visual Display of Quantitative Information. Graphics Press, 1983.

16

[Uni95] United States Government. Ada Reference Manual, 1995. http://-

www.adapower.com/rm95.php. Last accessed May 2007.1

[XMN99] Z. Xu, B.P. Miller, and O. Naim. Dynamic instrumentation of threaded applications.

In Proceedings of the 7th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Program, pages 49–59. ACM Press, 1999.1

[Zak00] D. Zak. Analyzing multi-threaded program performance with µProfiler. Mas-

ter’s thesis, School of Computer Science, University of Waterloo, 2000. ftp://-

plg.uwaterloo.ca/pub/theses/ZakThesis.ps.gz. Last accessed May 2007.10, 19, 34,

65, 136

	Introduction
	Performance of Concurrent Programs
	Locating Performance Problems

	Definitions
	Thesis Organization

	Profiling
	Instrumentation
	Direct and Indirect Instrumentation
	Instrumentation via Insertion
	Instrumentation via Hardware Counters

	Monitoring
	Exact Monitoring
	Statistical Monitoring
	Hardware Counters and Monitoring

	Analysis
	Real-Time Analysis
	Post-Mortem Analysis
	Combination

	Visualization

	Profiler
	Target Environment
	C++
	C++ Language Constructs
	Coroutine
	Task

	Design Objectives
	Profiling on a Per-Thread Basis
	Profiling at Different Levels of Detail
	Selective Profiling
	Support Different Forms of Visualization
	Extendibility
	Portability, Interoperability, and Maintainability

	Instrumentation Insertion
	C++ Kernel Instrumentation
	User Code Instrumentation

	Profiler Kernel
	Profiler Metrics
	Execution Monitors
	Analyzers and Visualizers
	Alternative Profiler Design

	Accessing Hardware Counters

	Execution State Chart
	Initial Implementation Issues
	Advanced Implementation
	Implementation Details
	Addressing Initial Issues

	Implementation Issues
	Scrollbar Scaling
	X-Axis Labelling

	Other Considerations
	Task Details
	Performance
	Time
	Space

	Related Work
	HP Visual Threads
	NetBeans Profiler
	Borland Optimizeit Thread Debugger
	Comparison

	Summary

	Exact Call-Graph
	Initial Implementation Issues
	Advanced Implementation
	Data Collection
	Creating and Updating a CCT
	Coroutines

	Visualization
	Addressing Initial Issues

	Implementation Issues
	Handling Coroutines
	Handling Cycles

	Related Work
	gprof
	Intel VTune
	Comparison

	Performance
	Time
	Space

	Summary

	Statistical Call-Graph
	Initial Implementation Issues
	Advanced Implementation
	Data Collection
	Creating and Updating a CCT

	Visualization
	Addressing Initial Issues

	Implementation Issues
	Dynamic Memory Allocation
	Handling Cycles

	Related Work
	HP Caliper
	Sun Studio Performance Analyzer
	Comparison

	Performance
	Time
	Space

	Summary

	Conclusions and Future Work
	Future Work

	Object-Oriented Notation
	Program Source Code
	Call-Graph Test Program

	Bibliography

