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escape analysis and demonstrates that capabilities and effects can be reconciled harmoniously. By assuming
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degree-of-impurity information in types. The system we present is expressive enough to support effect
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1 INTRODUCTION

Programming languages have to provide the ability to communicate with the outside world. More-
over, programs often need to non-locally interact with other parts of the program, for instance
via mutable state or exceptions. If a program depends on or modifies its context, it is effectful,
otherwise, it is pure. We say that effectful programs use an effect. Unrestricted or undisciplined use
of effects can lead to confusion and bugs [Coblenz et al. 2016]. To address this, language designers
have sought to enable programmers to statically and locally reason about the use of effects.

1.1 Effect Systems and Type-Based Reasoning

Effect systems extend the static guarantees of type systems to additionally track the use of effects
[Lucassen and Gifford 1988; Nielson et al. 1999; Plotkin and Power 2003; Tofte and Talpin 1997].
Typically, this additional information of the effect system (on the left) is also reflected in the type
of functions, which mention the set of effects a function might use (on the right).

Γ ⊢ s : 𝜏 / { Exc, State } 𝜏 → 𝜏 / { Exc, State }
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Based on the types, programmers can use this additional information to reason about programs. For
example, functions with an empty effect set are pure and can be executed in parallel without causing
data races. From a programmer’s perspective, however, effect systems usually have a number of
drawbacks, which inhibit a more widespread adoption. In particular, by enhancing function types
with effects such systems often track too much information. Types quickly become verbose, difficult
to understand, and difficult to reason about ś especially in the presence of effect-polymorphic
higher-order functions [Brachthäuser et al. 2020a; Rytz et al. 2012; Zhang et al. 2016]. Consequently,
programmers avoid effect systems and some languages, such as Scala, avoid adding an effect system.

1.2 Effects as Capabilities and Scope-Based Reasoning

Capabilities offer an alternative way to control the use of effects. In this model, one can use certain
effects only through capabilities [Dennis and Van Horn 1966; Miller 2006]. Restricting access to
capabilities restricts effects. A program, such as s below, can only perform effects of capabilities it
has access to. Similarly, the function type in the middle requires the two capabilities as arguments.

Γ, ex : Exc, st : State ⊢ s : 𝜏 (𝜏, Exc, State) → 𝜏 𝜏 → 𝜏

From a language designer’s perspective, capabilities offer an interesting alternative to traditional
effect systems: programmers can reason about effects the same way they reason about bindings.
Additionally, it has been shown that capabilities offer a lightweight alternative to traditional
effect polymorphism: contextual effect polymorphism [Brachthäuser et al. 2020a; Osvald et al. 2016].
Functions can use effects by closing over capabilities. These are not visible in the type of the function
(right column), simplifying signatures of effect polymorphic higher-order functions [Brachthäuser
et al. 2020a]. However, since since closure over capabilities is not visible in a function’s type, it
often hinders reasoning about its purity.

Some capabilities have a limited lifetime, like when modeling checked exceptions, and should not
leave a particular scope. The problem is non-trivial, since leaving a scope can also occur indirectly
via functions that close over capabilities. In an attempt to rule this out and guarantee effect safety,
type-based escape analysis [Hannan 1998; Osvald et al. 2016] distinguishes between first- and
second-class functions. Capabilities and functions closing over them are second-class. They can be
passed as arguments, but cannot be returned nor stored in data structures or mutable references.
This restriction rules out a large class of programs, which are safe but not typable. For instance,
since second-class functions cannot be returned, currying cannot be applied.

1.3 Explicit Boxing ś From Scope-Based to Type-Based Reasoning and Back

In this paper, we set out to restore the expressivity of first-class functions and type-based reasoning
about purity, without sacrificing the simplicity of contextual effect polymorphism.

As a starting point, we choose a core language with support for contextual effect polymorphism
via second class capabilities ś System Ξ ś [Brachthäuser et al. 2020a] and extend it with support
for first-class functions. We require a possible solution to meet the following criteria:

• Backwards compatibility. Types assigned by System Ξ should not change in the extension.
This entails that ergonomic advantages of lightweight effect polymorphism remain.

• Pay-as-you-go. Only when treating functions in a first-class way, programmers should be
confronted with additional complexity in the involved types.

We present System C, which aims at striking the balance between ergonomics (we offer the same
form of lexical reasoning and contextual effect polymorphism as System Ξ) and expressivity
(we additionally allow returning functions which close over capabilities and support type-based
reasoning). Our solution is based on the following design decisions:

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 76. Publication date: April 2022.



Effects, Capabilities, and Boxes 76:3

Second-class values. Following Osvald et al. [2016], and like System Ξ, we distinguish between
functions that can be treated as first-class values, and functions that are second-class (to highlight
this difference, we follow Brachthäuser et al. and explicitly refer to second-class functions as
blocks). Thus, we avoid confronting programmers with the ceremony associated with tracking
capabilities in types as much as possible. In particular, blocks can freely close over capabilities
and effectful computations can simply use all capabilities in their lexical scope, with no visible
type-level machinery to keep track of either fact.

Capability sets. Based on the work by Osvald et al., we annotate each binding in the typing context
with additional information. However, we do not only track whether a bound variable is first- or
second-class, but track precisely over which capabilities it closes. That is, we augment bindings (e.g.,
f :C 𝜎) in the typing context with capability sets (e.g. C). This information is only annotated at the
binder and is not part of the type. This is important for ergonomics: the additional information,
which is used to guarantee effect safety, is not visible to users unless explicitly requested.

Boxes. While blocks can freely close over capabilities and other blocks, they cannot be returned
from a function or stored in a field. To recover these abilities, System C features explicit boxing
and unboxing language constructs. They are inspired by equally named modal connectives and by
the work of Choudhury and Krishnaswami [2020] on comonadic type systems. Boxing converts
a second-class value to a first-class value, reifying the contextual information annotated on the
binder into the boxed value’s type (e.g., f :C 𝜎 ⊢ box f : 𝜎 at C). That is, instead of completely
preventing first-class values from closing over capabilities, the capabilities they close over are now
faithfully represented in their types. To use a boxed block, we have to unbox it. We make sure to
only perform this operation when the capabilities are still in scope, which guarantees effect safety
(e.g., x : 𝜎 at C ⊢ unbox x : 𝜎 C). The reader might find the following analogy helpful:

Conceptually, we treatmentioning capabilities as an effect. In the terminology of call-by-
push-value [Levy 1999], boxing corresponds to łthunkingž and unboxing corresponds
to łforcingž the effect of mentioning capabilities1.

The box and unbox constructs allow programmers to freely move between tracking capabilities
implicitly, via lexical scoping, or explicitly, in the types.

1.4 Contributions and Overview

This paper makes the following contributions:

• An example driven introduction to programming in System C, a calculus that reconciles
scope-based and type-based reasoning in a language with advanced control effects (Section 3).

• A formal presentation of System C with static and dynamic semantics (Section 4). The typing
context in System C is enhanced with information about block binders, which only becomes
visible in types when explicitly boxing blocks.

• A proof of progress and preservation (Theorems 4.2 and 4.4), and effect safety (Corollary 4.8).
• A full mechanization of the calculus, as well as proofs of the progress and preservation in
the Coq theorem prover (Section 4.5.4).

• An evaluation in terms of an implementation (Section 5) and several small case studies. This
paper is accompanied by an artifact consisting of an interactive demonstration and Coq
proofs, archived under https://doi.org/10.5281/zenodo.5833713.

Furthermore, Section 2 provides an in-depth presentation of the state-of-the-art and motivates our
work. Section 6 offers a comparison with additional lines of related work.

1A more detailed comparision with call-by-push-value can be found in Section 6.8.
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2 MOTIVATION

The motivation behind our work is to design a language that specifically features:

Lexical reasoning. Programmers can determine lexically where an exception / effect is handled.

Effect safety. The type system establishes that all exceptions (all effects) are eventually handled.

Ergonomics. The verbosity of effect tracking in types is limited to where it is necessary.

First-class functions. It should be possible to return effectful functions.

No prior work that we are aware of meets all of the above criteria. In the remainder of this section,
we will motivate each criterion and point out limitations of existing work. Readers who want to
first learn more about our proposed solution can skip to Section 3 and can come back if necessary.

2.1 Lexical Reasoning

Operationally, traditional implementations of (control) effects (such as exceptions or the more
general algebraic effects) are dynamically scoped [Brachthäuser and Leijen 2019]. Consider, for
instance, how exceptions behave in JavaScript:

function process(path) { 1○

function abort() { throw("processing aborted") }

try { 2○ eachLine(open(path), line ⇒ { 3○
/*. . .*/ abort() }) }

catch { msg ⇒ /*. . . handle IO exception, raised by open . . .*/ }

}

We define a function process that processes the contents of a file. To do so, it defines a local
function abort that raises an exception, signalling that processing failed. Since opening a file might
throw an exception, we additionally install an exception handler to deal with this error condition.
We then call a higher-order function eachLine with a function argument which uses abort.

The exception thrown by abortmight be conceivably handled at three different source locations:
Either 1○ by the call-site of process, 2○ by the handler inside process, or 3○ by a handler inside
of eachLine. Depending on the specific example and use case, all three are valid choices the
programmer could make. Now, what actually happens is that the exception will be handled by 2○
unless it happens to be handled by 3○. This is impossible to know without inspecting the source
code of eachLine. Moreover, to propagate the exception to 1○, we would have to explicitly forward
it from 2○, without accidentally forwarding any other exceptions. This behavior is common to most
languages such as JavaScript, ML, Java, Ruby, and many more.

The underlying problem is that, traditionally, exceptions are dynamically scoped: the exception
thrown by abort unwinds the call stack and the first catch clause relative to the dynamic call-site
of abort handles it. As explained by Zhang et al. [2016], higher-order functions such as eachLine,
make it difficult for programmers to statically reason about where an exception will be handled.
This behavior is not limited to exceptions but also applies to more general control operators, such
as algebraic effect handlers [Plotkin and Pretnar 2009].

Capabilities. To facilitate reasoning about exception handlers in the presence of higher-order
functions, Zhang et al. [2016] argue for a different semantics based on lexical scoping. Recently
lexically scoped exceptions have been generalized to lexically scoped effect handlers [Biernacki
et al. 2019; Brachthäuser et al. 2020a; Zhang and Myers 2019]. One particular way to obtain
lexically scoped effects is to model effects as capabilities [Gordon 2020] and perform capability
passing [Brachthäuser et al. 2020a]. Consider the previous example in a hypothetical language with
lexically scoped exceptions in explicit capability-passing style:
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function process(path, exc1) {

function abort() { exc1.throw("processing aborted") }

try { exc2 ⇒ eachLine(open(path, exc2), (line, exc3) ⇒ { /*. . .*/ abort() }) }

catch { msg ⇒ /*. . . handle IO exception . . .*/ }

}

Every exception handler introduces a term-level capability. Each of the three capabilities (e.g., exc1,
exc2, exc3) corresponds to one of the previously marked positions where the exception thrown by
abort might be handled. When we want to throw an exception, we have to use one such capability
and the exception will be handled by the handler that introduced it. In the function argument of
eachLine, we call abort, which in turn calls exc1.throw(. . .). By applying local reasoning it is
immediately clear that the exception will be handled at the call-site of process. Moreover, it is
directly possible to throw an exception to one of the other handlers, simply by using exc2 or exc3.
For this to be safe it is necessary (but, as we will see, not sufficient) that the capabilities are in scope.

2.2 Effect Safety

The purpose of an effect system is to statically guarantee effect safety [Nielson et al. 1999]. In the
special case of exceptions this means that all exceptions are eventually caught. Enriching function
types with effects enables programmers to reason about the presence and absence of particular
effects of interest. However, types inferred by traditional type-and-effect systems can be verbose
and difficult to understand. This is in particular the case for higher-order functions, where the
types not only accurately reflect which effects the function uses, but also which effects it handles.
Consider the following example in Koka [Leijen 2014], a language with a Hindley-Milner style type
system, featuring a row-based effect system, and dynamically scoped effects and handlers.

fun rethrow(func, prog) {

handle ({ prog() }) except throw(msg) { throw(func(msg)) }

}

The example defines a useful helper function which catches all exceptions in prog and rethrows
them after applying func to the message msg. Koka correctly infers the most general type:

forall<a,e> (func: (string) → <exc|e> string, prog: () → <exc,exc|e> a) → <exc|e> a

It abstracts over the result type a as well as effects e. The result type tells us that function rethrow

itself uses effect exc and potentially other effects e to return a result of type a. Inspecting the
inferred types of the argument functions sheds some light on how type-and-effect checking in
Koka (and other languages based on row polymorphism) works. There are two aspects, which we
believe are difficult for programmers who are learning the language:

(1) Maybe surprisingly, argument func is assigned effect <exc|e>, but why? Since the effect
system is based on row-polymorphism, the effect of func has to unify with the effects of its
calling context. So the effects of func(msg), of the handler body, and of the overall function
have to unify. Operationally this is correct, since func may use exceptions.

(2) Even more surprisingly, the type of argument function prog mentions two copies of exc.
Again, operationally this is correct since prog might itself either throw an exception that is
handled by rethrow, or one that is handled at the call-site of rethrow. Allowing duplicate
entries is also necessary for soundness [Leijen 2005; Xie et al. 2020].

The function rethrow in Koka is effect polymorphic. This is important because we want to pass
effectful functions to it. Consider the following helper function in Koka, which prepends the current
info string to all thrown exceptions.
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fun prependInfo(prog) { rethrow(fun(str) { getInfo() ++ str }, prog) }

It calls rethrow with a function which uses the info effect to express that the current info depends
on the context. Koka infers the following type:

forall<a,e> (prog : () → <exc,exc,info|e> a) → <exc,info|e> a

The argument to rethrow uses the info effect, which leaks into the inferred type of parameter
prog ś the problem of avoiding this issue is known as effect encapsulation [Lindley 2018]. Many
other problems of existing type- and effect systems, accidental capture [Zhang et al. 2016], or
effect parametricity [Zhang and Myers 2019], can be tracked down to the operational semantics
of the underlying language. The above type is correct and most general, but certainly not easy to
understand. We believe, the frequent use of functions with many function parameters can render
explicit polymorphism impractical. This scenario is common in OOP, where almost every method
is higher-order [Cook 2009].

2.3 Ergonomics

As an alternative to parametric effect polymorphism, second-class values admit a lightweight
form of effect polymorphism. Consider the same function in Effekt, a language with lexical effect
handlers [Brachthäuser et al. 2020a]:

def rethrow[A] { func: String ⇒ String / {} } { prog: () ⇒ A / {Exc} }: A / {Exc} =

try { prog() } with Exc { def throw(msg) ⇒ throw(func(msg)) }

The signature of rethrow is polymorphic in the result type A, but does not abstract over any effects.
No effect variables show up in types nor error messages. Yet, it features effect polymorphism and
guarantees effect safety. This is because effect signatures in Effekt are relative to the calling context.
The parameter func, enclosed in curly braces, denotes a so-called block ś a second-class function.
Blocks can use all effects from the context they were defined in; accordingly, func does not need to
explicitly mention any effects in its type ś it simply can use them. This form of polymorphism is
called contextual effect polymorphism [Brachthäuser et al. 2020a]. To illustrate, let us consider the
call-site in function prependInfo:

def prependInfo[A] { prog: () ⇒ A / {Exc} }: A / {Exc, Info} =

rethrow { str ⇒ info() ++ str } { () ⇒ prog() }

The signature of prependInfo expresses that it can handle the exception effect used by prog and
itself may use the exception and info effects. Notice how the first argument passed to rethrow is
effectful (it uses info), even though the required type is String ⇒ String / {}. Guided by the
types, Effekt translates to System Ξ, a core calculus in explicit capability-passing style.

def prependInfo[A] (prog : Exc⇒ A, exc1 : Exc, info : Info) : A =

rethrow[A] ({ str⇒ info() ++ str}, { exc2 ⇒ prog(exc2) }, exc1)

The function argument closes over capability info, hiding it in its closure. While this leads to concise
signatures, it means we cannot require function parameters to not use certain effects!

2.4 First-Class Functions

Effect safety for lexically scoped effect handlers means that a capability is only used while the
corresponding handler is on the stack. In other words, capabilities shall not escape their handler.
For example, the following program should be ruled out, since the capability exc leaks via closure:

try { exc ⇒ return (() ⇒ exc.throw("Unsound!")) } catch { . . . }
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Type-based escape analysis [Hannan 1998] can provide this static guarantee. One particular solution
is based on second-class values, which can be passed as arguments, but never be returned [Osvald
et al. 2016]. To establish effect safety, capabilities (like exc) need to be second class. But, as we have
seen, functions can close over capabilities, hiding their use. In consequence, existing work either
(a) distinguishes between first-class functions that cannot close over capabilities and second-class
functions that can [Osvald et al. 2016] or (b) treats all functions as second-class [Brachthäuser et al.
2020a]. While many useful programs can still be written with such a restriction, both solutions
come with a severe loss of expressivity.

2.5 The Best of Both Worlds

To summarize, capability-passing establishes lexical scoping between the binding-site of a capability
and its use. Modeling effects as capabilities has multiple advantages. Firstly, programmers can
re-apply their knowledge about variable binding to reason about effects. Secondly, combining it with
a type-system based on second-class values results in a lightweight form of effect polymorphism,
leads to simplified signatures, and avoids problems such as effect encapsulation. However, prior
work imposes severe restrictions on the use of second-class functions resulting in a significant
loss of expressivity. Furthermore, second-class functions silently close over capabilities, which
enables contextual effect polymorphism but also prevents type-based reasoning about purity. In
the following section, we introduce System C, a language that lifts many of the above mentioned
restrictions while preserving all the advantages of capability passing and second-class values.

3 PROGRAMMING WITH SYSTEM C

In this section, we will introduce System C and the underlying concepts by example.

3.1 Capabilities

One important aspect of System C is that it uses capabilities for authority control [Dennis and
Van Horn 1966; Melicher et al. 2017; Miller 2006]. Operationally, a capability is an ordinary object
with effectful methods. Holders of the capability are entitled to perform the corresponding effects.
What makes capabilities special is that we want to keep track of their use in a program, to indirectly
track the use of effects. To control access to capabilities, our system uses second-class values in
the style proposed by Osvald et al. [2016]Ðboth capabilities and functions that close over them are
second class. As we will see, our system allows transitioning back-and-forth between first- and
second-class values. When converting to a first-class value, the (otherwise implicitly) captured
capabilities become visible in its type (and only then). When transitioning back to second class, we
use this information to decide whether the transition should be allowed.

Global capabilities. Consider the following program written in System C.

def sayTime(): Unit { console.println("Current time is: " + time.now()) }

It defines a block sayTime that prints the current time to the terminal. To do so, sayTime uses two
capabilities: console and time. As expected of second-class values, this is not mentioned in the type,
which is sayTime: () ⇒ Unit. Here, we rely on scope-based reasoningÐwe can reference both
console and time, therefore we can use them. This intuition carries over to capability-polymorphic
terms. Consider repeat, which takes a block parameter f and repeats it n times2.

def repeat(n: Int) { f: () ⇒ Unit }: Unit

{ if (n == 0) { () } else { f(); repeat(n - 1) { f }} }

2We enclose value parameters (and arguments) with parenthesis and use curly braces for block parameters (and arguments).
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Unlike traditional effect systems, in which repeat would need to be explicitly effect-polymorphic,
we rely on scope-based reasoningÐrepeat receives f as second-class argument, therefore it can
use it. Similarly, wherever we can use a capability, we can also use it with repeat.

repeat(3) { () ⇒ console.println("Hello!") }

repeat(3) { () ⇒ sayTime() }

3.2 Boxes

There are situations in which scope-based thinking fails usÐwe sometimes want to prevent a given
term from being able to use some (or all) capabilities. For instance, consider a function parallel

that takes two blocks and runs them in parallel:

def parallel { f: () ⇒ Unit } { g: () ⇒ Unit }: Unit

parallel { () ⇒ console.println("Hello, ") } { () ⇒ console.println("world!") }

In this example, argument blocks can capture arbitrary capabilities. Evaluating them in parallel
could perform non-deterministic side-effects or introduce data races. But how can we express a
version of parallel that requires the function arguments to be pure? The answer in System C is:
we transition to type-based reasoning:

def parallel(f: () ⇒ Unit at {}, g: () ⇒ Unit at {}): Unit

In this version, parallel now expects first-class functions as arguments. First-class functions are
blocks whose types keep track of what set of capabilities they might reference. The functions
passed to parallel need to be pureÐthey cannot reference any capabilities. Our problematic call
to parallel now look as follows:

parallel( box {console} { () ⇒ console.println("Hello, ") }, // ill-typed!

box {console} { () ⇒ console.println("world!") }) // ill-typed!

The type of either argument is () ⇒ Unit at {console}, making the above ill-typed3. Note how
box marks the transition from scope-based to type-based reasoning. It takes a block and turns it
into a first-class value. The boxed block can only access capabilities admitted by the boxed type. In
the following, we manually annotate the box with {} and thus console cannot be accessed:

box {} { () ⇒ console.println("Hello, ") } // ill-typed!

To complete the picture, consider what capability sets would be inferred in the following term:

box {?} { () ⇒ sayTime() }

Intuitively, we should allow sets no smaller than {console,time}, since sayTime itself uses those
capabilities. But how can System C infer this information and refuse programs like the ill-typed
example above? The answer is that this information is kept at the binders itself. Which is to say,
our system annotates the following blocks with capability sets:

def {console, time} sayTime() : Unit

def {} repeat(n: Int) { f: () ⇒ Unit }: Unit

def {console, time} sayTimeThrice(): Unit { repeat(3) { () ⇒ sayTime() } }

3We use the notation {. . . } to display capability sets, which are inferred by the type checker and displayed by the IDE.
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3.2.1 Local Capabilities. So far we have only discussed global capabilities, which prevented us from
highlighting one important aspect of our approach to capabilities. In System C, neither capabilities
nor blocks can be returned. Why do we want such a restriction? Consider the following term:

withFile("a.txt") { file ⇒ file.readByte(0) }

Function withFile creates a capability to access a file, and passes it to a block. After the block
terminates, withFile closes the handle and returns the result of the block. If we let the handle
outlive the block, using it afterwards results in an errorÐthis is precisely what we want to prevent.
We could follow Osvald et al. [2016] and Brachthäuser et al. [2020a] and forbid to return any
capabilities or functions that close over them. However, this is overly restrictive since sometimes
we might want to return a capability from some scope, other than its own.

Example 3.1. Consider that we may want to do the following: open file A.txt, open file B.txt,
read B’s contents to define a block that then continues to read from A, return the block from the
scope of file B so that we can use it. Naturally, our block will need to use the handle to A, so how
can we return it? We box the block into first-class value, at which point we can see (based on its
type) that returning it is safe. The above scenario can be modeled in System C as follows:

withFile("A.txt") { fileA ⇒

val offsetReader : Int ⇒ Byte at {fileA} =

withFile("B.txt") { fileB ⇒

val offset = fileB.readByte(0);

return box {fileA} { pos ⇒ fileA.readByte(pos + offset) }

};

(unbox offsetReader)(10)

}

Note how in order to use offsetReader, we first need to unbox it. In System C, first-class functions
cannot be used at allÐthey first need to be unboxed, which turns them back into second-class
blocks4. We only allow unboxing when all the capabilities mentioned in the box’s type are in scope.
The reason for why this is sound becomes apparent if we consider the previous sentenceÐsince
unboxing turns boxes back into second-class values, we can only unbox blocks in environments
that anyway have access to no less than what the block has access to!

3.2.2 From Scope-Based Reasoning to Type-Based Reasoning and Back. Our notion of scope-based
reasoning comes from the idea of second-class values [Osvald et al. 2016]. The familiar concept of
lexical scoping enables convenient and flexible reasoning about the use of effects [Brachthäuser et al.
2020a; Zhang and Myers 2019]. As already pointed out, not being able to return second-class values
at all is an overly harsh restriction. Other than the example we have already seen, it immediately
rules out the common technique of currying functions with second-class arguments.
Our notion of type-based reasoning is inspired by an approach to reasoning about effects with

capabilities introduced by Choudhury and Krishnaswami [2020]. They demonstrate how to recover
a notion of pure functions in a language that does not otherwise keep track of effects. The idea is to
have a special type of values that are guaranteed to not have access to any capabilities. We take this
idea and generalize it to keep track of which capabilities a value has access to. A function of type
S ⇒ T at {} is known to be pure, but we are not limited to using the empty set in function types.

An example is the value box sayTime, which has an inferred capability set of {console, time} .

That is, we not only know that it is impure, but also which capabilities it closes over.

4In our implementation of System C, we infer almost all necessary boxing and unboxing operations. However, in the paper,

for exposition we refrain from doing so.
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System C harmoniously combines these two ways of reasoning about effects via capabilities
and allows programmers to move between them. We mediate between blocks and functions by
explicitly converting them with box and unbox, respectively. As long as blocks are used in a strictly
second-class manner, by design, closing over capabilities is not visible to the programmer. However,
as soon as a function is used as a first-class value, the capabilities come to light.

3.2.3 Capability Polymorphism. Effect systems based on capabilities give rise to a new notion of
contextual effect polymorphism [Brachthäuser et al. 2020a], as observed in the repeat example.
Blocks passed to repeat can simply use all capabilities in their lexical scope. Since System C

supports boxing blocks, this (so far invisible) polymorphism now can manifest itself in types:

def repeater { f: () ⇒ Unit }: Int ⇒ Unit at { f }

{ return box { n ⇒ repeat(n) { f } } }

The return type of repeater uses a limited form of term dependent types to express capability
polymorphism: intuitively, the returned function closes over any capabilities that f closes over. This
becomes visible when calling repeater with sayTime, which closes over console and time:

val repeatTime : Int ⇒ Unit at { console, time } = repeater { sayTime }

By design, block arguments, such as f are always capability polymorphic. In contrast, block
definitions, such as sayTime are always capability monomorphic. Only capabilities and polymorphic
block variables are allowed to occur in capability sets.

3.3 Effect Handlers in System C

System C combines the notion of second-class values with a particularly general and challenging
language feature (already present in System Ξ): effect handlers [Plotkin and Pretnar 2009, 2013].
One potentially uncommon aspect of our effect handlers is that we use lexical effect handling in
capability-passing style [Biernacki et al. 2019; Brachthäuser et al. 2020a]. We briefly introduce effect
handlers and refer the interested reader to other introductions [Pretnar 2015]Ðthe work by Zhang
et al. [2020] and Brachthäuser et al. [2020a] is particularly similar in syntax and semantics to our
approach. Potentially the simplest and most familiar application of effect handlers are exceptions.

try { console.println("hello"); exc.throw("world"); console.println("done") }

with exc: Exc { def throw(msg: String) { console.println(msg + "!") } }

After printing the string "hello", by invoking exc.throw, control flow is transferred to the handler,
which simply prints the string "world!". The final call to println is unreachable. Handlers
introduce capabilities, such as exc, which here has type Exc. The attentive reader will notice a
potential problemÐif capabilities are terms, what happens if we perform exc.throw outside of
the enclosing try? The answer is: exc is a block and cannot leave the enclosing scope. As such,
exc.throw can only be performed when it is handled. Trying to return it will yield a type error:

try { return (box {exc} exc) } with exc: Exc { . . . } // type error

The type of the boxed capability is Exc at {exc}, which is not well-formed outside of the
corresponding handler that binds it. Unlike exceptions, effects handlers in our system are not
limited to aborting the computationÐthey can continue it at the original call to the capability.

val before = time.now();

try { console.println(watch.elapsed()) } with watch: Stopwatch {

def elapsed() { resume(time.now() - before) }

}

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 76. Publication date: April 2022.



Effects, Capabilities, and Boxes 76:11

Again, the handler introduces a capability of type Stopwatch. However, this time the handler
implementation resumes the computation by passing a value of type Int, the return type of the
effect operation. Interestingly, the continuation resume closes over both the capabilities used by
the handled program, as well as the capabilities used by the handler itself. In this case, we have

box {console, time} resume since the handled program uses console and the handler uses time.

3.4 Conclusion

System C combines two approaches to effects via capabilities: scoped-based reasoning (which
admits lightweight polymorphism) and type-based reasoning (which enables reasoning about
absence). We can move between the two styles with box and unbox.

4 FORMAL PRESENTATION

In this section, we formally present the syntax, static and dynamic semantics of System C, and
highlight meta-theoretic properties. The presentation follows the one of Brachthäuser et al. [2020a].
For clarity, and to focus on the novel aspects of System C, we omit type polymorphism from our
presentation of System C, which is largely orthogonal to the rest of our calculus (Section 5.1). We
highlight some important aspects of the calculus, which we will discuss later in full detail5.

Computation and values. Since the calculus supports control effects via effect handlers, it is
presented in fine-grain call-by-value [Levy et al. 2003]. We syntactically distinguish statements,
which may perform effectful computation (that is, they are serious in the terminology of Reynolds
[1972]), from expressions and blocks, which are pure (that is, trivial) and cannot perform effects.

Values and blocks. Following Brachthäuser et al. [2020a], we separate the universe of values into
expression values that are considered first-class [Osvald et al. 2016] and block values, which we
consider second-class. To emphasize the first-class nature of expression values, we often speak
of values and blocks. Importantly, blocks may implicitly close over capabilities, whereas values
are explicit and reveal captured capabilities in their type. Syntactically, we distinguish between
variables that stand for expression values (x, y, . . . ) and variables that stand for block values (f, g,
. . . ). The stratification can also be observed on the level of types, where we introduce value types 𝜏
and block types 𝜎 , correspondingly.

Boxing and unboxing. Blocks can be lifted into values by boxingÐreifying contextual information
in the type; (function) values can be lowered into blocks by explicit unboxingÐmaking capture
information contextually available.

4.1 Syntax

Figure 1 defines the syntax of System C. We have syntactic categories for expressions, blocks, and
statements. Only statements can perform effectful computation. As usual, we follow Barendregt
[1992] and require that all variable names are globally unique.

4.1.1 Expressions. Expressions are either variables, primitives, or boxed blocks. The evaluation
of expressions never has side effects. We could add, for example, integer addition to the syntactic
category of expressions. Boxing a block (i.e., box b) performs no side effects either, and only reifies
the information about its captured capabilities from the typing context into the type of the resulting
boxed block. The ability to box blocks presents a significant extension to other calculi with first- and
second-class values [Brachthäuser et al. 2020a; Osvald et al. 2016], because it allows a second-class
block b to be lifted to become a first-class value v.

5An extended technical report [Brachthäuser et al. 2022] includes our calculus and its operational semantics in more detail.
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Syntax:

Expressions e ::= x expression variables

| () | 0 | 1 | ... | true | false | ... primitives

| box b box introduction

Blocks b ::= f block variables

| { (ÐÐÐ⇀xi : 𝜏 i,
ÐÐÐ⇀

fj : 𝜎 j) ⇒ s } block implementation

| unbox e box elimination

Statements s ::= def f = b; s block definition

| b(Ð⇀ei ,
Ð⇀

bj ) block application

| val x = s; s sequencing

| return e returning

| try { f ⇒ s } with { (Ð⇀xi , k) ⇒ s } handlers

Types:

Value Types 𝜏 ::= Int | Boolean | ... base types

| 𝜎 at C boxed block types

Block Types 𝜎 ::= (Ð⇀𝜏 i ,
ÐÐÐ⇀

fj : 𝜎 j) → 𝜏

Capabilities C ::= ∅ | {f } | C ∪ C

Environments:

Environments Γ ::= ∅ empty environment

| Γ, x : 𝜏 value bindings

| Γ, f :∗ 𝜎 tracked bindings

| Γ, f :C 𝜎 transparent bindings

Fig. 1. Syntax of the language System C ś differences to System Ξ highlighted in grey .

4.1.2 Blocks. Blocks in System C play the role of functions in other languages. In contrast to
traditional functions in other lambda calculi, our blocks are multi-arity to avoid the complexity
of currying in effectful languages. Blocks come in two forms: block literals and unboxed values.

Block literals are of the form { (ÐÐÐ⇀xi : 𝜏 i,
ÐÐÐ⇀

fj : 𝜎 j) ⇒ s }. They simultaneously abstract over multiple
value parameters xi : 𝜏 i as well as multiple block parameters fj : 𝜎 j . The body of a block literal is a
(potentially effectful) statement. Unboxing an expression with (unbox e) re-embeds the first-class
(function) value e into the universe of blocks. Boxing and unboxing are inverse operations of each
other and we have that box (unbox e) ≡ e as well as unbox (box b) ≡ b.

4.1.3 Statements. Finally, statements represent potentially effectful computation in System C.
Block definitions def f = b; s and statement sequencing operations val x = s1; s2 evaluate blocks
and statements to block and expression values respectively and bind them to names before evaluating
the remaining portion of the program. Multi-arity block application takes multiple expressions as
well as multiple blocks. Note that only blocks can be applied, and in particular, boxed blocks must
first be unboxed before they can be called.

Effect handlers. System C supports effect handlers in capability-passing style [Brachthäuser et al.
2020a]. A handling statement of the form try { f ⇒ s1 } with { (Ð⇀xi , k) ⇒ s2 } introduces a fresh
capability f in the scope of the handled program s1. When the capability is invoked, control is
passed to the handler s2 with arguments bound toÐ⇀xi and the continuation bound to k. Calling the
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Surface Language Core Calculus

def f(x: T1) { f : T2 ⇒ T3 } = . . . def f = { (x : T1, f : T2 → T3) ⇒ ... } Block abstr.

f { x ⇒ . . . } f({ x⇒ ... }) Block app.

{ T1 ⇒ T2 } ⇒ T3 (f : T1 → T2) → T3 Block types

try { . . . } f : S with { . . . } try { f⇒ ... } with { (x, resume) ⇒ ... } Resumptions

f(g()) val x = g(); f(x) Fine-grain CBV

s1; s2 val x = s1; s2 Sequencing

Table 1. Mapping between the informal surface syntax and formal presentation of System C.

continuation transfers control back to original call-site of the capability. Note that only expression
values can be passed to the capability, which is important for effect safety, as otherwise a capability
introduced in the body of the handled program may leave its defining scope.

4.1.4 Types. System C differentiates between value types 𝜏 and block types 𝜎 , just like how it
distinguishes expression values and block values; we assign value types to expression values,
and block types to blocks. Analogously to term-level boxing, a block type 𝜎 can be annotated (or
łboxedž) with a capability set C to form a value type (that is, 𝜎 at C). Grammatically, capability sets
C are sets of block variable names f ś however, well-formed types and terms can only mentioned a
subset of bindings, which we explain in Section 4.1.5. Block types take multiple value types 𝜏 i and
multiple block types fj : 𝜎 j to a single value type 𝜏 . In particular, the return type 𝜏 can mention
any of the bound fj within a capability set. Block types add a limited form of term dependency to
System C. One example is a capability-polymorphic identity function: { (f : 𝜎) ⇒ return box f }.
Here, the term-level boxing is reflected in the return type of (f : 𝜎) → 𝜎 at {f}, which mentions f.

4.1.5 Environments. Contexts Γ can bind first-class values x : 𝜏 and second-class blocks. Based on
different annotations on the binder, we distinguish between two different kinds of block bindings.

Firstly, a binding of the form f :∗ 𝜎 is tracked. That is, the use of the block f will be tracked by the
type system. We also refer to these tracked block variables as capabilities. Only tracked bindings can

be mentioned in capability sets. Secondly, a binding of the form f :C 𝜎 is transparent. In order to
use block f , all capabilities C are required to be in scope. We refer to those bindings as transparent,
since using f by itself will not be tracked in the type system. Furthermore, they will never occur in
capability sets and consequently do not occur in types.

4.2 Surface Syntax

There are differences between our formal calculus and the surface language we have used in our
motivating examples. To facilitate mapping between the two languages, Table 1 relates the syntax
and summarizes a few syntactical abbreviations. In System C, block definitions have separate lists
of block and value parameters separated by a comma. Our informal syntax distinguishes between
value parameters and block parameters, by enclosing value parameters in parenthesis and block
parameters in braces. In the examples, we also use additional features such as type polymorphism,
algebraic data types, or mutable variables. Those extensions will be discussed in Section 5.

4.3 Typing

The static semantics of System C is defined in terms of three typing judgements for expressions,
blocks, and statements (Figure 2). We present the (meta-level) syntax of the judgements itself in
grey. We start with block typing as it features the most relevant ideas in System C.
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Block Typing. Γ ⊢ b : 𝜎 C

f :C 𝜎 ∈ Γ

Γ ⊢ f : 𝜎 C
[Transparent]

f :∗ 𝜎 ∈ Γ

Γ ⊢ f : 𝜎 { f }
[Tracked]

Γ,
ÐÐÐ⇀xi : 𝜏 i,

ÐÐÐÐ⇀

gj :
∗ 𝜎 j ⊢ s : 𝜏 C ∪Ð⇀gj

Γ ⊢ { (ÐÐÐ⇀xi : 𝜏 i,
ÐÐÐ⇀gj : 𝜎 j) ⇒ s } : (Ð⇀𝜏 i ,

ÐÐÐÐ⇀gj : 𝜎 j) → 𝜏 C
[Block]

Γ ⊢ e : 𝜎 at C

Γ ⊢ unbox e : 𝜎 C
[BoxElim]

Γ ⊢ b : 𝜎 C′ C′ ⊆ C

Γ ⊢ b : 𝜎 C
[BSub]

Expression Typing. Γ ⊢ e : 𝜏

Γ ⊢ n : Int
[Lit] x : 𝜏 ∈ Γ

Γ ⊢ x : 𝜏
[Var]

Γ ⊢ b : 𝜎 C

Γ ⊢ box b : 𝜎 at C
[BoxIntro]

Statement Typing. Γ ⊢ s : 𝜏 C

Γ ⊢ s0 : 𝜏0 C0 Γ, x : 𝜏0 ⊢ s1 : 𝜏1 C1

Γ ⊢ val x = s0; s1 : 𝜏1 C0 ∪ C1
[Val]

Γ ⊢ e : 𝜏

Γ ⊢ return e : 𝜏 ∅
[Ret]

Γ ⊢ b : (Ð⇀𝜏 i ,
ÐÐÐ⇀

fj : 𝜎 j) → 𝜏 C
ÐÐÐÐÐÐÐ⇀

Γ ⊢ ei : 𝜏 i
ÐÐÐÐÐÐÐÐÐÐÐ⇀

Γ ⊢ bj : 𝜎 j Cj

Γ ⊢ b(Ð⇀ei ,
Ð⇀

bj ) : 𝜏 [
ÐÐÐÐ⇀

fj ↦→ Cj] C ∪
Ð⇀

Cj

[App]

Γ ⊢ b : 𝜎 C′
Γ, f :C

′
𝜎 ⊢ s : 𝜏 C

Γ ⊢ def f = b; s : 𝜏 C
[Def]

Γ ⊢ s : 𝜏 C′ C′ ⊆ C

Γ ⊢ s : 𝜏 C
[SSub]

Γ, f :∗
Ð⇀
𝜏 i → 𝜏0 ⊢ s1 : 𝜏 C ∪ {f }

Γ,
ÐÐÐ⇀xi : 𝜏 i, k :C 𝜏0 → 𝜏 ⊢ s2 : 𝜏 C

Γ ⊢ try { f ⇒ s1 } with { (Ð⇀xi , k) ⇒ s2 } : 𝜏 C
[Try]

Fig. 2. Static semantics of System C.

4.3.1 Block Typing. Typing judgements for blocks and statements have the form Γ ⊢ b : 𝜎 C.
In these judgements, C is a subset of Γ and tracks the effect of mentioning capabilities. We can
read it in two ways: first, as an input, which describes a context restriction; only those capabilities
mentioned in C will be available. second, as an output, which describes a context requirement; typing
b requires all tracked capabilities in C to be in scope. As usual, we require that all components b,
𝜎 , and C are well-formed with respect to the typing context Γ. Typing rules Transparent and
Tracked check block variables and express the requirements on the context. Referencing tracked
variables requires the variable itself to be in the context. For transparent bindings, we require that
the annotated capability set C. This is important, as this constraint enforces the restriction that
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blocks may only be invoked, and hence effectful computation are only performed, in a context
where the corresponding capabilities are in scope. A boxed block value can be unboxed through
rule BoxElim only when the annotated capability set is compatible with the requirements in the
current context C. Again, this ensures that effectful computations can only be performed in a
context where its capabilities are in scope. Finally, rule Block types block literals. As usual, the
body of the block literal s is checked in a context extended with the bindings for values xj and
blocks gj where the latter are marked as tracked capabilities. As we will see in rule App, this is to
support capability polymorphism. In contrast, all blocks bound by def are capability monomorphic.

4.3.2 Expression Typing. The judgement form Γ ⊢ e : 𝜏 assigns a value type 𝜏 to an expression
e, in a typing environment Γ. Expression typing is completely independent of any requirements
on the context. This highlights a central aspect of System C: expressions are first class and can be
freely used without any limitations. This is safe, as capabilities that are implicitly captured by an
expression can only be used by unboxing the expression, which checks if the capabilities mentioned
on the boxed type are present in the lexical context. Most rules are completely standard; the only
interesting rule is the rule for boxing blocks ś BoxIntro, which reifies the requirement C under
which we check the enclosed block b into the type 𝜎 at C, making it visible to the programmer.

4.3.3 Statement Typing. Typing rules Val and Ret are completely standard. Val simply collects
the requirements for the binding and the body. Rule Ret types and expression and thus does not
have any requirements. Similarly to block typing, statement typing includes a rule SSub to shrink
the current requirement to a subset. Let us now explain the other three rules in detail.

Typing applications. Rule App, is used to check an application b(Ð⇀ei ,
Ð⇀

bj ). The callee b has to be
checked against a block type. The value arguments ei need to conform to value types 𝜏 i . Typing each
block argument bj , however, can result in different requirements Cj . The resulting type of checking

the application is 𝜏 [
ÐÐÐÐ⇀

fj ↦→ Cj]. That is, occurrences of block variable names fj in the return type 𝜏 are
substituted with the concrete requirement the arguments could be type checked in. Where Block
serves the dual purpose of abstracting over terms (expressions and blocks) and (implicitly) over
capability sets, rule App now applies the block b to terms as well as (implicitly) to capability sets.

Typing block definitions. Rule Def checks the bound block b under an arbitrary restriction C′ and
annotates the binder with this restriction to type check the rest of the program s. Block definitions
are transparent, that is, f itself will not show up in any capability set. Notably, the restriction C′ is
independent of C and thus does not necessarily need to be a subset of C. In this regard, rule Def is
very similar to rule BoxIntro as it delays the requirements C′ to the use site of f .

Typing effect handlers. Rule Try checks statements of form try { f ⇒ s1 } with { (Ð⇀xi , k) ⇒ s2 }

in a context Γ under a context requirement C. We first discuss typing of the body s1 and typing of
the handler s2. Handling brings a fresh capability f into the scope of the handled program s1. The
capability has block typeÐ⇀𝜏 i → 𝜏0, which we also refer to as the effect signature. That is, given a list
of value arguments it returns a value of type 𝜏0. We refer to 𝜏 i as the types of the arguments of the
effect operation, to 𝜏0 to the return type of the effect operation, and to 𝜏 as the answer type of the
handler. Like in the rule Block, the capability binding for f is marked as being tracked. However,
unlike rule App we do not substitute for f in the answer type 𝜏 . This is essential to guarantee
effect safety. By marking f as tracked, it cannot leave the scope of the corresponding handler that
introduced it. In particular, if a first-class function closes over f , then f will necessarily appear in
its type. That is the following example program does not type check, since box f has type 𝜎 at {f}:

try { (f : 𝜎) ⇒ return box {f} f } with { ... }
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The return type 𝜎 at {f} is not well-formed outside of the handler, since the block variable f
is not bound. In consequence, effect safety indirectly follows from (1) tracking capabilities and
(2) well-formedness of types. Finally, the handler implementation s2 itself is type checked in a
context extended with the parameters of the effect operation xi : 𝜏 i and the continuation k. The
continuation expects a value of type 𝜏0 as an argument (the return type of the effect operation), and
will itself return 𝜏 (the answer type of the handled statement). Most importantly, the continuation
is marked as transparent and annotated with the capability set C. As witnessed by the operational
semantics, the continuation closes over both the handled statement as well as the handler statement
and thus is annotated with C, the restriction which both statements are type checked under.

4.4 Operational Semantics

We define the semantics of System C as a small-step operational semantics using evaluation
contexts [Wright and Felleisen 1994]. To allow capturing and resuming continuations, the semantics
of System C closely follows the generative semantics presented by Brachthäuser et al. [2020a],
who in turn present a variant of multi-prompt delimited control [Biernacki et al. 2019; Gunter et al.
1995]. Figure 3 extends the syntax with runtime constructs that only appear during reduction:

Labels. All runtime constructs refer to unique runtime labels l. We only require that labels can
be compared for equality and that we are able to generate fresh labels at runtime. We represent
concrete labels as hexadecimal hashes (e.g., @a5f) to highlight that they are created at runtime.

Delimiters. The additional statement #l { s } with { (Ð⇀xi , k) ⇒ s } represents a delimiter that
delimits a statement s at a given label l (or prompt in the terminology of Felleisen [1988], Sitaram
[1993], andGunter et al. [1995]). It also contains the original handler implementation { (Ð⇀xi , k) ⇒ s },
which we sometimes abbreviate with the meta variable h.

Capabilities. The additional block value capl represents a capability. Calling a capability captures
the stack segment up to the next dynamically enclosing delimiter for the label l, and transfers
control to the corresponding handler. While we could also attach the handler implementation to the
capability and pass it, alongside the label, to the call-site [Brachthäuser and Schuster 2017; Zhang
and Myers 2019], we choose to locate the handler with the delimiter, because it simplifies proofs.

Label sets. Capability sets C are extended with an additional production (e.g., {l}), which effec-
tively turns them into heterogeneous sets of block variables and labels. Source programs start with
variable sets onlyÐreduction then replaces free block variables with runtime labels.

Label contexts. The global label context Ξ behaves like a store and maps runtime labels to effect
signaturesÐ⇀𝜏 i → 𝜏0. The label context is merely a proof device necessary to prove type preservation.

Reduction Rules. The presentation of the operational semantics in Figure 3b follows Gunter et al.
[1995] and is based on delimited evaluation contexts Hl where the label l does not appear in any
delimiters in Hl . This is necessary to establish that captured continuations are always delimited by
the dynamically closest delimiter for a label. Most reduction rules are standard and we only point
out significant differences to previous presentations. We overload the notation for substitution in
the following way: we use f ↦→ w to refer to a substitution of block variable f by block value w in
terms. Additionally, we use f ↦→ C to refer to a substitution of block variable f by capability set C
in both terms (that is, in type annotations) and types. This substitution replaces all occurrences of
f in capability sets by C. The result of substitution is then flattened.
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Extended Syntax for Operational Semantics:

Runtime Labels l ::= @a5f | @4ba | ... labels

Runtime Statements s ::= ... | #l { s } with { (Ð⇀xi , k) ⇒ s } delimiters

Runtime Blocks b ::= ... | capl capabilities

Runtime Capabilities C ::= ... | {l} label sets

Runtime Signatures Ξ ::= ∅ | Ξ, l : Ð⇀𝜏 i → 𝜏0 label context

(a) Extended Syntax of System C.

Evaluation Contexts:

Contexts E ::= □ | val x = E; s | #l { E } with { (Ð⇀xi , k) ⇒ s }

Delimited Contexts Hl ::= □ | val x = Hl ; s | #l′ { Hl } with { (Ð⇀xi , k) ⇒ s } where l ≠ l′

Reduction Rules:

(box) unbox (box b) −→ b

(val) val x = return v; s −→ s[x ↦→ v]

(def) def f = w; s −→ s[f ↦→ w]

(ret) #l { return v } with h −→ v

(app) ({ (
Ð⇀

xi ,
Ð⇀

fj ) ⇒ s })(
Ð⇀

vi ,
Ð⇀

wj) −→ s[
ÐÐÐÐ⇀

xi ↦→ vi,
ÐÐÐÐ⇀

fj ↦→ Cj,
ÐÐÐÐ⇀

fj ↦→ wj]

where ∅ ⊢ wj : 𝜎 j Cj

(try) try { f ⇒ s } with { (Ð⇀xi , k) ⇒ s′ } −→ #l { s[f ↦→ {l}, f ↦→ capl] } with { (Ð⇀xi , k) ⇒ s′ }

where l ̸∈ dom Ξ, and ⊢ f :
Ð⇀
𝜏 i → 𝜏0, then Ξ(l) :=

Ð⇀
𝜏 i → 𝜏0

(cap) #l { Hl [ capl (
Ð⇀vi ) ] } with h −→ s[ÐÐÐÐ⇀xi ↦→ vi, k ↦→ { y ⇒ #l { Hl [return y] } with h }]

where h = { (Ð⇀xi , k) ⇒ s }

(b) Operational semantics of System C ś we omit congruences.

Fig. 3. Additional runtime constructs and operational semantics of the language System C. The global context
Ξ maps labels to effect signatures at runtime ś it is extended by rule (try).

Reducing values and blocks. The only reduction of expressions and blocks is box/unbox elimi-
nation as defined in rule (box)6. To keep the presentation concise, we omit congruences.

Value and block binders. The reduction of value (val) and block binders (def) is completely
standard. Since blocks bound by def are capability-set monomorphic, reducing block binders only
performs term-level substitution f ↦→ w and does not need to substitute a capability set for f .

Application substitutes capability sets. In contrast, in reduction rule (app), we simultaneously
substitute fj with a block value wj in terms and a capability set Cj in types. Like in typing rule
App, Cj denotes the context requirement the argument block wj was checked in. Interestingly, all
redexes (including application) can be type checked in the empty typing context Γ. This implies
that the substituted capability sets Cj do not contain any block variables, but only runtime labels.

6One could imagine that blocks are stack-allocated, while boxed blocks are heap-allocated. Unboxing then could copy the

closure back to the stack. We leave working out the details of this observation to future work.
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Handling introduces delimiters. Rule (try) creates a fresh runtime label l, delimits the handled
statement s with this label, and substitutes a capability that refers to l for the block variable f .
Similarly, on the type-level, we substitute the singleton label set {l} for block variable f . As a
side-effect, we record the effect signature of f in the global label context Ξ. As already pointed out,
the global context is only necessary to prove type preservationÐwhen handling an effect operation,
we need to establish that the type of the capability and the type at the handler still agree.

Capabilities capture the continuation. The most interesting rule (cap) captures part of the context
Hl . The application of a capability with label l is only meaningful in a context, which is delimited
at label l. This becomes visible in (cap), where the delimiter #l , the delimited context Hl , and the
capability application form a redex. We reify this context as a continuation and substitute it (as well
as the argument v) in the body of the handler implementation. Effect safety means that applications
of a capability with label l only occur in a context that contains a delimiter at l (Theorem 4.2).

Only boxed values can leave delimiters. Once a statement is reduced to a value, rule (ret) discards
the delimiter. This is the very point where effect safety could be violated. So why is this reduction
safe? As already pointed out in the discussion of typing rule Try, since only values can be returned,
blocks that could potentially close over labels will have to be boxed. Boxing in turn reifies captured
capabilities, and therefore labels, into the type of an expression. Wellformedness of type of v
guarantees that no reference of l can occur in the type and thus v cannot close over l.

Example 4.1. In fact, a returned value can close over a labelÐbut only if the corresponding
capability is never used. Take the following example reduction:

try { f⇒ return box {} { () ⇒ val g = box f; return 42 } } with { ... }

The example type checks and the returned value has type () → Int at {}. By rule (try), we obtain

#@a31 { return box { () ⇒ val g = box cap@a31; return 42 } } with { ... }

which then (by rule (ret)) steps to:

box { () ⇒ val g = box cap@a31; return 42 }

Notably, the returned value does contain a reference to label @a31. However, the value itself cannot
be unboxed, as we show in Section 4.5, disarming the capability it contains.

4.5 Safety

We state progress and preservation and point out important aspects of our proof.

4.5.1 Progress. Given an arbitrary label context Ξ, closed and well-typed System C programs
either return a value or can take a step. Here, the relation ↦−→ describes congruence, that is,
statement reduction under an evaluation context E.

Theorem 4.2 (Progress of System C). If ∅ ⊢ s : 𝜏 ∅, then s is return v or s ↦−→ s′.

The proof of progress is mostly straightforward. Only the case of capability application requires
special precautions. In particular, we state the following auxiliary lemma.

Lemma 4.3 (Labels are delimited). If ∅ ⊢ E[capl (
Ð⇀vi )] : 𝜏 ∅

and Γ ⊢ capl (
Ð⇀vi ) : 𝜏 ′ C and ⊢ctx E : 𝜏 ′⇝ 𝜏 C, then E = E′[ #l { Hl } with h ].

This lemma uses the judgement ⊢ctx E : 𝜏1 ⇝ 𝜏2 C to type contexts. Here, 𝜏1 is the type at
the hole and 𝜏2 is the return type of the resulting statement. Importantly, capability set C can be
thought of as an output of the relation. It represents the restriction under which the hole can be
type checked, that is, all labels delimited by the context.
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Proof of Progress. The proof of progress simply amounts to splitting s into an evaluation
context and a redex, such that s = E[sred]. If sred is a redex, other than capl (

Ð⇀vi ), we can simply
invoke rule cong, otherwise we use Lemma 4.3 followed by rule (cap). □

4.5.2 Preservation. Performing a reduction step on a statement preserves its type:

Theorem 4.4 (Preservation of System C). If ∅ ⊢ s : 𝜏 ∅ and s ↦−→ s′ then ∅ ⊢ s′ : 𝜏 ∅.

Proving preservation requires proving of substitution lemmas. In particular, it requires a variant
taking simultaneous substitution of blocks and capability sets into account:

Lemma 4.5 (Substitution of blocks and capability sets). Given a well-typed statement
Γ1, f :∗ 𝜎, Γ2 ⊢ s : 𝜏 C1 and a block E ⊢ b : 𝜎 C2 that can be checked under restriction
E ⊢ C2 wf , then Γ1, Γ2 [f ↦→ C2] ⊢ s[f ↦→ b, f ↦→ C2] : 𝜏 [f ↦→ C2] C1 [f ↦→ C2].

The corresponding lemmas for expressions and blocks are similar.

Proof. The proof proceeds by mutual induction over the typing derivation. Due to context
restrictions and capability sets, proving substitution requires reasoning about subset inclusion,
but is straightforward otherwise. Notably, by construction all entries l :

Ð⇀
𝜏 i → 𝜏0 in the signature

environment Ξ are typable in the empty context Γ and thus substitution is idempotent on them. □

Furthermore, we need to make sure that capturing the continuation preserves types.

Lemma 4.6. Given a well-typed effect call ∅ ⊢ Hl [ capl (
Ð⇀vi ) ] : 𝜏 C ∪ {l} with effect signature

l :
Ð⇀
𝜏 i → 𝜏0 ∈ Ξ, it follows that y : 𝜏0 ⊢ Hl [ return y ] : 𝜏 C ∪ {l}.

Proof of Preservation. By induction over the typing derivation, followed by inversion on the
step taken. Steps (app) and (try) both require the lemma for simultaneous substitution (Lemma 4.5).
The only other interesting case is the application of rule (cap). Here, we need to construct a typ-

ing derivation for s[ÐÐÐÐ⇀xi ↦→ vi, k ↦→ { y ⇒ #l { Hl [return y] } with h }]. Assuming the label typing
l :
Ð⇀
𝜏 i → 𝜏0 ∈ Ξ, in order to apply the substitution lemma on the continuation k, we need to

show that ∅ ⊢ { y ⇒ #l { Hl [return y] } with h } : 𝜏0 → 𝜏 C. After applying rules Block
and Reset, we finally use Lemma 4.6 to conclude the proof. □

4.5.3 Effect Safety. We characterize effect safety as ruling out a particular class of stuck terms:
capability applications without a corresponding delimiter [Brachthäuser et al. 2020a].

Definition 4.7 (Undelimited Label). A statement s contains an undelimited label l, if it has the
form Hl [(capl (

Ð⇀vi )].

Corollary 4.8. Starting from an empty context reducing a well-typed program ∅ ⊢ s : 𝜏 ∅

never results in an undelimited label.

This corollary directly follows from progress and preservation. It further relates to Lemma 4.3,
which guarantees that labels are always delimited.

4.5.4 Mechanization. This paper is accompanied by a mechanization of System C in the Coq
theorem prover [Bertot and Castéran 2004], as well as proofs of the usual progress and preservation
theorems. To facilitate mechanization, we chose to diverge from the presentation in the paper:

Representing names. We base our mechanization efforts on the proofs by Aydemir et al. [2008],
who in turn use a locally nameless representation to distinguish free from bound variables. Conse-
quently, we represent capability sets as triples of free variables (opaque atoms), bound variables
(natural numbers), and labels. The universes of labels and atoms are disjoint.
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Explicit annotations. Instead of assuming capability sets from the context, as is done in our
presentation of System C, our mechanized formulation requires that some terms are explicitly an-

notated with that capability set. This includes application (i.e., b(Ð⇀ei ,
ÐÐÐÐ⇀

bj @ Cj)), block definition (i.e.,
def f @ C = b; s), and handlers (i.e., try @ C { f ⇒ s1 } with h). This way, in the mechanization
we never have to infer the capability sets and restrictions.

Abstract machine semantics. We model the semantics of statements with control effects in terms
of a state machine. This way, to search for the correct delimiter unwinding the stack takes place
frame by frame. For each unwinding step, we can easily establish the invariant that all free labels
in the captured continuation are delimited in the remaining stack, and that the effect call can be
type checked in the composition of the continuation and the stack.

Label safety. To ensure that an effect handler associated with a label is invoked with the right
arguments, we extend the state of the abstract machine with a field for runtime effect signatures Ξ,
acting as a source for fresh labels [Dybvig et al. 2007] and to guarantee that the handler itself is
invoked with arguments of the proper type [Brachthäuser et al. 2020a].

Type polymorphism. Finally, to ensure that System C can be used as a basis for modeling
effect safety for practical languages, we formalized support for value-type polymorphism in our
mechanization of System C, as described in Section 5.1. As value types 𝜏 are orthogonal to the
effect system in System C, our proof terms for dealing with value-type polymorphism are mainly
straightforward extensions of the proof terms one would obtain in a mechanization of System F.
In particular, one can never unbox a term which is typed with a value-type variableÐBoxElim
expects a expression typed with a concrete boxed block type.

5 DISCUSSION OF LANGUAGE EXTENSIONS

We have implemented the static and dynamic semantics as a compiler from System C to JavaScript.
We submit the implementation, all the code examples in this paper, as well as additional small case
studies as supplementary material. In this section, we further evaluate the design of System C and
the involved concepts by discussing several implemented language extensions.

5.1 Parametric Type Polymorphism

Γ, X ⊢ b : 𝜎 C

Γ ⊢ [X ] ⇒ b : ∀X . 𝜎 C
[TAbs]

Γ ⊢ b : ∀X . 𝜎 C

Γ ⊢ b[𝜏] : 𝜎 [X ↦→ 𝜏] C
[TApp]

Type polymorphism is largely orthogonal to tracking capture in capability sets. To support type
polymorphism, we extended the syntax of blocks with support for type abstraction and type
application, together with the above two standard typing rules. Importantly, type variables X range
over value types, not block types. That is, values of type X cannot silently close over capabilities. A
function like def f[X] (x : X) cannot perform unboxing on x since it is parametric in its type X. We
extended System C with type polymorphism in our implementation and proved its soundness in
our mechanization. Proving the extension did not impose any interesting challenges.

5.2 Mutable State

In languages with support for control effects, the implementation of local mutable variables requires
some care in order to obtain the correct backtracking behavior [Brachthäuser et al. 2018; Kiselyov
et al. 2006]. Effect handlers are general enough to express mutable state, but rely on first-class
functions to do so. Where System Ξwas unable to express local state as an effect handler, System C

with its support for first-class functions now makes it possible.
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Γ, f :∗ Reg ⊢ s : 𝜏 C ∪ {f }

Γ ⊢ region { f ⇒ s } : 𝜏 C
[Region]

Γ ⊢ e : 𝜏 Γ ⊢ b : Reg C

Γ ⊢ new b(e) : Ref[𝜏] C
[New]

Γ ⊢ b : Ref[𝜏] C

Γ ⊢ !b : 𝜏 C
[Get]

Γ ⊢ b : Ref[𝜏] C Γ ⊢ e : 𝜏 C

Γ ⊢ b := e : Unit C
[Put]

Fig. 4. Extension with local backtrackable state.

def handleState[S, R](init: S) { prog: {State[S]} ⇒ R }: R {

val stateFun: S ⇒ R at {prog} =

try { val res = prog { state }; return box {prog} { (s: S) ⇒ res } }

with state: State[S] {

def get() { box {prog} { (s: S) ⇒ (unbox resume(s))(s) } }

def set(v: S) { box {prog} { (_: S) ⇒ (unbox resume(()))(v) } }

};

return (unbox stateFun)(init)

}

This example in System C type checks and exhibits the correct behavior. The boxed block uses the
capabilities that prog uses. While it is possible to emulate local mutable state with effect handlers,
for efficiency and flexibility it is worthwhile to investigate a direct implementation.

Scoped State. To support state, Figure 4 extends System C with two new block types: Reg to
describe dynamic regions and Ref[𝜏] to represent reference cells of type 𝜏 . We also extend the
language with three new statement forms. region { f ⇒ s } delimits a fresh region and introduces
a region capability Reg that can be used to create fresh references. References of type Ref[𝜏] can
be accessed (i.e., !b) and written to (i.e., b := e) using the new statement forms. Finally, new b(e)

is a block, which given a region initializes a fresh reference and returns a capability to access that
reference. The example on the left presents a simple example using the state extension7.

region r {

var x in r = 42;

val t = x;

x = (t + 1)

}

region r {

var x in r = 42;

val f: () ⇒ Int at {r} = box {r} { () ⇒ x };

(unbox f)()

}

We create a region, allocate a reference initialized to 42, and increment its content. The example
on the right illustrates that access to mutable references becomes visible in boxed blocks. The
box is typechecked under {r}, since dereferencing x requires r to be in scope. In our implemen-
tation, every block definitions and effect handlers implicitly creates a new region; for example,
function definitions def myFun() { . . . } automatically introduces a fresh (equally named)
region def myFun() { region myFun { . . . } }. When allocating a variable, omitting the
region will default to the closest lexical region. This allows us to express the above example as
region r { var x: Int = 42; val t = x; x = t + 1 }. At the same time, however, we still
guarantee capability safety. It is interesting to see how references that are used in a second-class

7The surface language differs slightly from the calculus and we write x for !x, x = e for x := e, region r { . . . } for

region { r ⇒ ... }, and var x in r = e; s for def x = new r (e) ; s.
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way, and therefore naturally follow a stack discipline, do not need any special precautions to
prevent them from escaping. It is only when we want to return a reference, or a closure that uses
it, that the region becomes visible in the type. We believe that even for languages without effect
handlers this design for region-based resource management would be worth investigating.

Example 5.1. As a more advanced example of mutable state and effects, we demonstrate one
of the original motivations of supporting first-class functions: Being able to express cooperative
multitasking using effect handlers [Ahman and Pretnar 2021; Dolan et al. 2017; Leijen 2017a].

interface Proc { def fork(): Boolean }

def schedule { p: { Proc } ⇒ Unit }: Unit {

var q: Queue[() ⇒ Unit at {p, schedule}] = emptyQueue();

try { p {proc} } with proc: Proc {

def fork() { q = enqueue(q, box {p, schedule} { () ⇒ resume(true) });

q = enqueue(q, box {p, schedule} { () ⇒ resume(false) }) }

};

while (nonEmpty(q)) { val (q2, k) = dequeue(q); q = q2; (unbox k)() }

}

The above handler implementation assumes the presence of a Queue datatype along standard opera-
tions such as enqueue, dequeue, and nonEmpty. When fork is invoked, it pushes two continuations
to the queue, once resuming with true and once resuming with false. In order to be able to store
a second-class continuation in a Queue, we need to explicitly box it. Boxing reifies the capability set
of the continuation into the type, which is () ⇒ Unit at {p, schedule}. The handled program
closes over p and the handler itself uses state allocated in the region named schedule, hence the
whole try statement can only be typechecked under a restriction allowing for both capabilities. As
discussed in Section 4.3, the continuation is also annotated with this restriction.

5.3 Type- and Capability Inference

While we leave a full formal treatment of inference to future work, here we want to report on our
experiences in implementing System C. Reading the context restriction C of a typing judgement
as an output, the type system of System C can be thought of as tracking the effect of referencing a
block variable. This can be seen in typing rule Tracked, which łintroducesž the variable f into the
restriction. However, the typing rules presented in Section 4.3 are not fully algorithmic. There are
four rules that require some adjustments to facilitate type and capability inference.

Subsumption. As usual, subsumption rules BSub and SSub present difficulties for type inference.
Since System C only supports subtyping on capability sets (as subset inclusion) but not on types,
in our implementation, we simply defer all applications of subsumption to one rule: BoxIntro. If a
box is annotated with an expected capability set box C b and the block b can be checked under C′,
we then assert that C′ ⊆ C. In all other cases, we either compute capability set requirements via
set union (like rule Val) or collect equality constraints (as in Try below).

Abstraction. We rephrase rule for block abstraction Block as follows:

Γ,
ÐÐÐ⇀xi : 𝜏 i,

ÐÐÐÐ⇀

gj :
∗ 𝜎 j ⊢ s : 𝜏 C

Γ ⊢ { (ÐÐÐ⇀xi : 𝜏 i,
ÐÐÐ⇀gj : 𝜎 j) ⇒ s } : (Ð⇀𝜏 i ,

ÐÐÐÐ⇀gj : 𝜎 j) → 𝜏 C −Ð⇀gj

[Block]
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Inspecting the conclusion, we see that block abstraction conceptually handles (that is, removes)
bound block parametersÐ⇀gj , while application introduces the corresponding capability sets Cj by
means of set union in the conclusion.

Capability Set on the Continuation. Maybe the most challenging rule is Try, which masks, that is
removes, a tracked variable. We can rephrase it as:

Γ, f :∗
Ð⇀
𝜏 i → 𝜏0 ⊢ s1 : 𝜏 C1 C = (C1 \ { f }) ∪ C2

Γ,
ÐÐÐ⇀xi : 𝜏 i, k :C 𝜏0 → 𝜏 ⊢ s2 : 𝜏 C2

Γ ⊢ try { f ⇒ s1 } with { (Ð⇀xi , k) ⇒ s2 } : 𝜏 C
[TryEff]

While the rule above is more algorithmic, the astute reader might have noticed that on the premise
checking s2, the łoutputž requirement C2 also indirectly appears as part of the annotation on binder
of the continuation k. This cyclic definition makes it difficult to derive a fully algorithmic variant
that assigns C2 to the minimal capability set. In our implementation, we annotate the continuation
binder k with a fresh unification variable for the capability set. After checking the handler s2, we
might have gathered cyclic constraints that would require fixed point computation to be solved.
Our implementation can infer the correct solution for all examples and case studies submitted, we
leave solving the constraints in the general case to future work. We want to note that this potential
complication only arises since we offer support for first-class continuations. Languages that only
support exception handlers and regions would not encounter this difficulty.

5.4 Effect Handlers and Object-Oriented Programming

In the introduction, we used capabilities like console assuming they have multiple membermethods
(e.g., println, and readln). This is not reflected in the description of our core calculus, which
only formalizes blocks, but no objects or methods. The following example uses an extension with
interfaces and objects:

interface Counter {

def inc(): Unit

def get(): Int

}

def makeCounter { pool: Region }: Counter at {pool,console} {

var count in pool = 0;

def {console, pool} c = new Counter {

def inc() { console.println(count); count = count + 1 }

def get() { count }

};

return box {console, pool} c

}

Perhaps unintuitively we treat objects as a generalization of blocksÐthat is, they are second-class
by default! This implies that objects, such as c, can simply close over arbitrary capabilities. In this
case, c closes over console and the region pool, which (as with blocks) is not visible in its type.
Only if and when we want to return c do we box it, making its capabilities explicit in its type. As
it has been pointed out earlier [Brachthäuser et al. 2020b; Zhang et al. 2020], it is very natural to
unify the notion of effect signatures and interfaces, capabilities and objects, as well as handlers and
classes. The only difference is that objects created with new do not have a continuation to capture.

6 RELATED WORK

The calculus presented in this paper builds on different lines of work, centered around capabilities.
In this section, we offer a discussion of this work, before comparing System C to other approaches
based on effects and coeffects.
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6.1 Capability-Based Systems

Osvald et al. [2016] present a calculus 𝜆1/2, implementing a type-based escape analysis [Han-
nan 1998] that distinguishes between first-class and second-class values. They demonstrate that
second-class values provide a lightweight alternative to effect systems, which can even express
borrowing [Osvald and Rompf 2017]. Our work is closely connected to 𝜆1/2: tracked blocks in
System C correspond to second-class values, while expression values correspond to first-class
values. They propose a generalization to arbitrary lattices. Similarly, in System C, we precisely
track the capability sets of transparent block bindings, which form a lattice. In their calculus only
pure functions can be treated first-class, while in System C arbitrary blocks can be boxed.
Brachthäuser et al. [2020a] build on 𝜆1/2, develop it into a full language with support for effect

handlers, and explore the novel and lightweight form of effect polymorphism offered by treating
effects as capabilities. Their core calculus System Ξ is the basis for System C. It divides the universe
of types into value and block types, and distinguishes between expressions, blocks, and statements.
However, their calculus does not offer explicit boxing and unboxing, neither on the term level, nor
on the type level. In consequence, blocks can never be returned or stored as values. This greatly
simplifies the type system of System Ξ. System C is designed to be backwards compatible with
System Ξ: Programs only using blocks as second-class need no changes or additional annotations.

6.2 Representing Closure in Types

Boxing in System C makes the requirements a block imposes on the calling context explicit in its
type. There have been various lines of work to enrich the types of closures with information about
its context. Hannan [1998] proposes a type-based escape analysis with the goal of facilitating stack
allocation. The analysis tracks variable reference using a type-and-effect system and annotates
every function type with the set of free variables it captures. The authors leave the treatment of
effect polymorphism to future work. In a similar spirit, Scherer and Hoffmann [2013] present
Open Closure Types to facilitate reasoning about data flow properties such as non-interference.
They present an extension of the simply typed lambda calculus that enhances function types
with the lexical environment used to type the closure. Odersky et al. [2021] propose to gradually
establish exception safety in Scala with capabilities. To ensure capability safety, they track captured
capabilities by enhancing types with capture sets. Similarly to System C, their calculus supports a
closely related concept of boxing, as well as lightweight dependent types. Unlike their calculus,
System C distinguishes between first-class values (where capture is tracked in types) and second-
class values (where capture is tracked on binders), improving the ergonomics. System C also tracks
mention of capabilities with an effect-like system, making it more precise. For example, a statement
g :∗ 𝜎 ⊢ def f = g; return () : Unit ∅, has the empty restriction. Finally, while their system
features full subtyping, System C only features subeffecting on blocks and statements.

6.3 Comonadic Type Systems

Comonadic type systems, as presented by Choudhury and Krishnaswami [2020], allow programmers
to reason about purity in an impure language. A special type constructor Safe witnesses the fact
that its values are constructed without using any (impure) capabilities. Importantly, explicit box
introductions and box eliminations mark the transition between scope-based reasoning, and type-
based reasoning about effects (that is, impurity). The concept of boxing and unboxing in System C is
inspired by their work. They annotate each entry in the typing context with additional information
about whether it is pure (or safe, e.g., x : As) or impure (e.g., x : Ai), similar to our annotations
on block binders. Their notion of purity is related to our notion of expression values: a pure value
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is constructed only by accessing other pure values. Similarly, an expression value in System C can
only (immediately) consist of other expression values. There are two important differences, though.

Generalizing the notion of impurity. They only distinguish pure from impure values. Since it
is their goal to create isolated islands of purity in an otherwise impure language, making this
distinction suffices. They already point out that,

[A] direction for future work lies in the observation that our □-comonad [. . . ] takes
away all capabilities [. . . ]. However, we could consider a graded or indexed version of
the same [. . . ], i.e., □C , which only takes away a set of capabilities C [. . . ].

In this paper, we do almost exactly this. However, in System C the boxed type 𝜎 at C does not
witness which capabilities C are łtaken awayž, but instead, which capabilities might have been
used to construct this boxed value. This generalization is significant for our use case of establishing
effect safety. Effect handlers locally introduce capabilities, that we want to subtract (or mask),
because their effects are delimited and cannot be observed outside of the handler. This would not
be possible in a system that only distinguishes between pure and impure computation.

Context purification. Another interesting difference is our notion of restricting the typing context.
The context of typing judgements for statements Γ ⊢ s : 𝜏 C consists of two parts: the typing
context Γ and the restriction C. Together, they enable restricting the use of block variables, as
witnessed by rules Tracked and Transparent. In System C this context restriction does not
necessarily have to become smaller as we nest boxes. This is illustrated in the following example on
the left, which does type check. Here, we write box C b to refer to a type ascription box b : 𝜎 at C

for some block type 𝜎 .

{ (f : () ⇒ Int) ⇒

return box {} { () ⇒

return box {f} { () ⇒ f() }

}

}

(Γ, f :∗ 𝜎)C = Γ
C, f :∗ 𝜎 if f ∈ C

(Γ, f :C
′
𝜎)C = Γ

C, f :C
′
𝜎 if C′ ⊆ C

(Γ, f :C
′
𝜎)C = Γ

C otherwise

(Γ, x : 𝜏)C = Γ
C, x : 𝜏

On the left, the nested box imposes the restriction {f }, while the outer box imposes a stronger
restriction {}. This is different in the work of Choudhury and Krishnaswami [2020] and also in
the work of Osvald et al. [2016]. Both restrict contexts by filtering the typing context, written
Γ
C . In our setting, this restriction could be implemented as sketched on the right. That is, only

those bindings which are compatible with C remain in Γ
C8. This eager filtering of the context is a

significant difference which would make the language less expressive.

6.4 Contextual Modal Types

Effectful Contextual Modal Type Theory [Zyuzin and Nanevski 2021] aims to relate algebraic effects
and contextual modal logic [Nanevski et al. 2008]. Like System C, it syntactically distinguishes pure
expressions from effectful computation. The judgement for typing computation (i.e., Δ; Γ ⊢ c ÷ T )
takes two contexts, Δ to bind expressions and Γ to bind effect operations. Computations can be
embedded into expressions by boxing, which delays the computation. The type of boxes is indexed
by an algebraic effect theory Ψ, reifying the context of effect operations Γ at box creation into the
type. While conceptually related, there are a few important differences. Lambda abstractions in
ECMTT can only abstract over expressions, not effect operations. They also only close over the
value context Δ. In contrast, blocks in System C can both take expressions and capabilities as

8Furthermore, to maintain well-formedness also all bindings which refer to other filtered block variables need to be removed.
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arguments and also close over both. In ECMTT the only way to force a boxed computation is by
immediately handling it. Unhandled effects need to be forwarded explicitly and ECMTT does not
support effect polymorphism. Importantly, ECMTT is much closer to classical effect systems, while
System C implements lexical effects and models capabilities on the term level, including closure.

6.5 Coeffect-Based Systems

Dually to how effect systems annotate the output of the typing judgement with additional informa-
tion, coeffect systems enrich the input of a typing judgement, that is, the typing context [Petricek
et al. 2014]. Petricek et al. differentiate between two forms of coeffects: structural and flat. Structural
coeffects annotate each bound variable, while flat coeffects annotate the context as a whole. Our
annotations on block variable bindings roughly correspond to structural coeffects, whereas the
context restriction C roughly corresponds to a flat coeffect. While coeffects served as a source of
inspiration for System C, the precise connection is unclear. It would be interesting to to see whether
we could instantiate Petricek et al.’s framework. It is not immediately clear to us how to combine
structural and flat coeffects to at the same time annotate individual bindings and restrict the context
as a whole. Furthermore, System C supports some limited form of term dependency in types to
support capability polymorphism. It would be interesting to see how the coeffect framework could
be extended to support coeffect polymorphism in this way. Our type of boxed blocks 𝜎 at C is
reminiscent of the graded box modality of Gaboardi et al. [2016], but we do not know how to
instantiate their system to accommodate our use case. Our use of box seems to be closer to the box
introduction of Nanevski et al. [2008], but again the precise connection is not clear to us.

6.6 Effect-Based Systems with Capabilities

Zhang and Myers [2019] present a language with effect handlers, where effect operations are used
by invoking methods on capabilities. In a similar vein, Biernacki et al. [2019] present a language
with effect handlers where they track the use of effect instances in the type of functions. Their
type- and effect systems guarantee effect safety by tracking the use of capabilities. However, they
establish effect safety by means of traditional effect systems and do not have a notion of second-class
values. Instead they directly support parametric effect polymorphism. Every function, even if it is
only used in a second-class way, carries effect information whereas in our language System C this
information only becomes visible when functions are made first-class.

Crary et al. [1999] present a language with a type system that statically tracks capabilities. Their
motivation is to make region-based memory management safe. The underlying problem they solve
is similar to ours: we want to make sure that capabilities are only used when they are still valid.
They have a separate notion of regions, while in System C tracked variables serve the dual purpose
of regions and handles, depending on whether they appear as terms or in types. When viewed like
this, their system becomes similar to ours. Again, the key benefit of System C is that no type-level
region information is needed for variables that follow a stack discipline.

6.7 Effect Systems and Type-Based Reasoning

In Sections 1.1 and 2.2 we compared with various related work on effect systems that feature
type-based reasoning. Those systems [Biernacki et al. 2019; Leijen 2017b; Lindley et al. 2017; Zhang
and Myers 2019] typically support effect polymorphism in terms of abstraction and application
of effect variables. In contrast, System C features two modes of operation, first- and second-class,
mediated by boxing and unboxing. In second-class mode, we fully avoid the ceremony of parametric
effect polymorphism. However, System C does not improve the verbosity of type-based reasoning
with first-class values, which is comparable to existing solutions. Importantly, transitioning to
type-based reasoning is performed selectively and details are only exposed when necessary.
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6.8 Call-by-Push-Value

Levy [1999] presents call-by-push-value (CBPV) as a paradigm that subsumes call-by-value and
call-by-name. CBPV distinguishes between values (denoted A) and computations (denoted B) on
the type-level. Value types can be embedded into computation types with a type constructor F A

and computation types can be embedded into value types with a type constructor U B.

Similarities. By presenting System C in fine-grain call-by-value, we also distinguish pure expres-
sions from side-effecting computations. We furthermore separate computation into the separate
syntactic categories of statements and blocks. On the type level all System C statements can be
thought of as typed against a computation type F ⌈ 𝜏 ⌉. Ignoring our addition of capabilities C,
the typing rules for returning and sequencing computation align with those of CBPV. The typing
judgements of boxing and unboxing, which correspond to thunking and forcing in CBPV, also
align.

Differences. Despite some similarity, there are important differences between System C and
CBPV. The mapping of System C to CBVP is not complete. In particular, CBPV does not support
abstraction over computation and its functions can only be applied to values, not computations.
That is, there are no equivalents of block variables, block abstraction, and block application in
CBPV. Furthermore, there are CBPV programs which are not expressible in System C. For example,
CBPV functions have the general shape of A → B and can result in further computation, which is
not possible in System C. We accommodate the typical use case of this feature by generalizing to
multi-arity functions. In CBPV term abstraction by itself does not delay computation, but merely
requires an argument to be on top of the stack. For example, in CBPV, the following two programs
are semantically equivalent:

M to x in (𝜆y N ) ≡ 𝜆y (M to x in N ) } where y ̸∈ fv(M)

Both programs are computations of function type A → B and expect a value (y : A) to be on the
top of the stack when executed. In System C a program corresponding to the first one would not
be syntactically correct, as blocks (computations of function type) cannot be returned without
boxing. Since in System C, blocks already delay computation, we repurpose the thunking / boxing
construct to delay the effect of łmentioning a tracked variablež. We leave a full formal comparison
of System C and CBPV to future work.

7 CONCLUSION

In this paper, we presented System C, in which natural scope-based reasoning and precise type-
based reasoning can co-exist and programmers can switch between the two. Capabilities and blocks
let us assign simple types to common definitions, while boxed blocks allow us to circumvent typical
limitations of second-class values and let us be precise in signatures where necessary. System C

integrates well with languages with advanced control flow, as witnessed by our implementation
of effect handlers. Our system is sound as well, as evidenced by the proof mechanized in Coq.
We studied System C as an alternative effect system for capability-based lexical effects. However,
the design might also be interesting for languages with simple control effects (like exceptions)
or region-based resource management. In the future, to remove the burden of explicitly passing
capabilities we would like to investigate effect inference.
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