A Taxonomy of Clonesin Source Code: The Re-Engineers M ost Wanted List

Cory Kapser and Michael W. Godfrey
Software Architecture Group (SWAG)
School of Computer Science, University of Waterloo
{cjkapser, migod} @uwaterloo.ca

Abstract

Code cloning —that is, the gratuitous duplication of
source code within a software system — is an endemic
problemin large, industrial systems[6, 5]. While there
has been much research into techniques for clone detec-
tion and analysis, there has been relatively little empiri-
cal study on characterizing how, where, and why clones
occur in industrial software systems. Our current re-
searchisto performan in-depth analysis of code cloning
in real software systems and to build a taxonomy of types
of code duplication.

Code duplication, or code cloning, is generally be-
lieved to be common in software systems[6, 10, 12, 11,
8, 1, 5]. Various problems are associated with code du-
plication, including increased code size and increased
maintenance costs. Other problemsassociated with code
duplication can be found in [6, 12, 8, 1, 5]. While clone
detection is an area of active research, and several tools
exist to facilitate code clone detection, there has been
relatively little empirical research on the types of clones
that are found, or where they are found.

A code clone pair is a pair of source code segments
that are structurally or syntactically similar. One of the
segmentsis usually acopy of the other, perhaps with mi-
nor changes. Code cloning occurs when devel opers cre-
ate two identical or similar code artifacts inside a soft-
ware system. For example, developers may copy and
paste code. Several methods exist for detecting code
clones in software, such as simple string matching [6],
using statistical fingerprints of code segments|[7], func-
tion metrics matching [10, 12, 11], parameterized string
matching [1, 8], and program graph comparison [5].

In our current research, we aim to profile the code
cloning activity within software systems and generate a
taxonomy of types of code duplication. In doing so, we
hope to gain more insight into how and why develop-

ersduplicate code, in an effort to aid the devel opment of
code clone detection techniques and code clone elim-
ination strategies. This taxonomy will consist of the
most commonly occurring clones, and the clones with
the strongest negative feedback. We plan to use large,
industrial size software for our case studies, which will
provide us with a better view of code cloning in the real
world.

Itisour position that generating ataxonomy of clones
will provide several important contributionsto clone de-
tection research. This research will provideinformation
about what kinds of clones are most prominent in soft-
ware systems and how they are structured. This will
give researchers more information on how to develop
and tune their clone detection techniques. A taxonomy
will provide an informative view of the types of code
duplication that exists in software. It will also provide
a more informative way of displaying code clones de-
tected within a software system. The taxonomy can
be used as a way of evaluating clone detection tech-
niques and provide feedback about where and when to
use them. Thisis important as it is still unclear which
clone detection techniques are strongest.

In [9] we have begun our initial research into this
taxonomy. There we have performed a case study on
the Linux kernel file-system subsystem. We categorized
different types of cloning activity using attributes such
as location and scope after manual inspection of code
clones found in the system. Each clone type provides
a description of where the clone typically occurs, why
it might arise, the problems associated with this type of
clone, and possible solutions to the problem. We pro-
vide empirical analysis of these categories, and valida-
tion of our results using two different clone detection
techniques. In future research we will try to incorpo-
rate more clone detection techniques, as this will ensure
larger coverage of the code clones within a software sys-
tem.

Other work tries to categorize clones for the purpose
of software maintenance. In[2], Balazinska et a. create
a schema for classifying various cloned methods based



on the differences between the two functions which are
cloned. Theresults producedin [2] are used by Balazin-
ska et a. in[4, 3] to produce software aided re engi-
neering systems for code clone elimination. This differs
from our work in that our classification schemeis based
on locality as well as clone type, and copied functions
areonly onetypein our case, athoughin[2] they break
this down into 18 categories. One of our main research
goals is to determine how much developers clone and
from where. This question is not answered by the clone
classification schemein [2]. In addition, the work in [2]
ignores code clones which are not function clones.

It is our position that this is an important step in un-
derstanding the phenomenon of code cloning and it will
provide critical information to be used in enhancing and
building clone detection software. Through case stud-
ies and further improving our taxonomy, we will gain
valuable information such as what types of clones pro-
vide the largest refactoring gains, what types of clones
are the most common, what clones are the most deadly,
and how software regquirements and design goals affect
the practice of clone duplication. This information will
help us evaluate current clone detection techniques, and
current code clone display and elimination methods. It
will also help guide us in uncovering problemsin clone
duplication research which need more work.

In the short term our research goals are to expand
our case study to other subsystemsin the Linux kernel,
more specificaly the driver subsystems, and to further
expand and refine our taxonomy. Points of refinement
are sub-classing clone types such as blocks within the
same function. Our long term goals are to use the tax-
onomy to study the evolution of code clones in a soft-
ware system. For example, we suspect that many code
block clones that occur across subsystems begin as full
function clones. We would like to test this hypothesis
by comparing clone detection results from multiple ver-
sions of a software system. We also plan to study how
the taxonomy can be used to improve the presentation of
detected clones to software maintainers.

References

[1] B.S. Baker. A program for identifying duplicated code.
In Proceedings of Computing Science and Satistics:
24th Symp. Interface, pages 49-57, 1992.

[2] M. Baazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Measuring clone based reengineering
opportunities. In Proceedings of the Sxth International
Software Metrics Symposium, pages 292—-303, 1999.

[3] Magdalena Balazinska, Ettore Merlo, Michel Dagenais,
Bruno Lague, and Kostas Kontogiannis. Partial redesign

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

of java software systems based on clone analysis. In The
Proceedings of the 6th. Working Conference on Reverse
Engineering, pages 326-336, 1999.

Magdalena Balazinska, Ettore Merlo, Michel Dagenais,
Bruno Lague, and Kostas Kontogiannis. Advanced clone
analysisto support object-oriented system refactoring. In
Proceedings of the 7th. Working Conference on Reverse
Engineering, pages 98-107, 2000.

Ira D. Baxter, Andrew Yahin, Leonardo M. De Moura,
Marcelo Sant’ Anna, and Lorraine Bier. Clone detection
using abstract syntax trees. In ICSM, pages 368-377,
1998.

Stéphane Ducasse, Matthias Rieger, and Serge Demeyer.
A language independent approach for detecting dupli-
cated code. In Hongji Yang and Lee White, editors, Pro-
ceedings ICSM'99 (International Conference on Soft-
ware Maintenance), pages 109-118. |EEE, 1999.

J. H. Johnson. Substring matching for clone detection
and change tracking. |n Proceedings of the International
Conference on Software Maintanence, pages 120-126,
1994.

Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.
Ccfinder: A multilinguistic token-based code clone de-
tection system for large scale source code. In Trans-
actions on Software Engineering 8(7), pages 654—670.
IEEE Computer Society Press, 2002.

Cory Kapser and Michael W. Godfrey. Toward a taxon-
omy of clonesin source code: A case study. In Evolution
of Large Scale Industrial Software Architectures, 2003.

K Kontogiannis. Evaluation experiments on the detection
of programming patterns using software metrics. In Pro-
ceedings of Working Conference on Reverse Engineer-
ing, pages 44-55. |EEE Computer Society Press, 1997.

K. Kontogiannis, R. De Mori, R. Bernstein, M. Galler,
and E. Merlo. Pattern matching for clone and concept
detection, 1996.

J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a software
system using metrics. In Proceedings of the I nternational
Conference on Software Maintenance, pages 244-253.
IEEE Computer Society Press, 1996.



