
Detecting API Usage Obstacles:
A Study of iOS and Android Developer Questions

Wei Wang and Michael W. Godfrey
David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, ON, Canada

{w65wang, migod}@uwaterloo.ca

Abstract—Software frameworks provide sets of generic func-
tionalities that can be later customized for a specific task. When
developers invoke API methods in a framework, they often
encounter obstacles in finding the correct usage of the API,
let alone to employ best practices. Previous research addresses
this line of questions by mining API usage patterns to induce
API usage templates, by conducting and compiling interviews
of developers, and by inferring correlations among APIs. In
this paper, we analyze API-related posts regarding iOS and
Android development from a Q&A website, stackoverflow.com.
Assuming that API-related posts are primarily about API usage
obstacles, we find several iOS and Android API classes that
appear to be particularly likely to challenge developers, even
after we factor out API usage hotspots, inferred by modelling
API usage of open source iOS and Android applications. For each
API with usage obstacles, we further apply a topic mining tool
to posts that are tagged with the API, and we discover several
repetitive scenarios in which API usage obstacles occur. We
consider our work as a stepping stone towards understanding API
usage challenges based on forum-based input from a multitude of
developers, input that is prohibitively expensive to collect through
interviews. Our method helps to motivate future research in API
usage, and can allow designers of platforms — such as iOS and
Android — to better understand the problems developers have in
using their platforms, and to make corresponding improvements.

I. INTRODUCTION

Today’s software development relies heavily on pre-defined
software frameworks, presented primarily as application pro-
gramming interfaces (APIs). APIs provide developers with
reusable libraries, programming paradigms, and task delega-
tion, with the aim of helping to deliver useful systems quickly
and with high-quality code.

However, developers sometimes complain that software
frameworks often provide one-size-fits-all mechanisms, and
a lack of quality documentation for typical uses can reduce
productivity of developers. Designers of software frameworks
may further fail to envision certain functionalities that are
required; designers may also introduce complexity in API
usage to accommodate a large variety of possible uses. Lines
of research regarding API usage includes field studies of API
learning obstacles [1],[2], mining temporal correlations among
API invocations [3],[4] and harnessing web content to aid API
learning [5].

When developers encounter API usage obstacles, a common
approach is to post questions on an information-sharing site
that is dedicated to programming technology. With that in
mind, we propose to mine selected posts from the well-known

my problem is whenever i rotate the device, yes! it respond to the orientation
change but it goes back to the first page.

ok picture this... you are already on the 10th page of the scrollView in portrait
then when you switched to landscape it is on the first page again.

 Asked: April 2012
Viewed: 451 times

tags
objective-c xcode uiscrollview
uiinterfaceorientation

I have a very simple UIScrollView example that simply doesn't do what it's
suposed to. Not sure if it's a bug with the API or a bug in my code

Basically, I've got a UIViewController with a UIScrollView as it's view. When I
add it to the UIWindow and change the orientation of the iPad I log out the
UIScrollViews size, which is incorrectly(?) reported.

Asked: July 2010
Viewed: 8422 times

tags
ios ipad uiscrollview orientation

Fig. 1. Excerpts from two posts in stackoverflow.com. Both posters had
encountered unexpected UI behaviour in a “scrollview” when changing the
orientation of mobile devices.

technology Q&A website stackoverflow.com (referred to as
SOF hereafter), in order to discover APIs from two mobile
development platforms — Android and iOS — that frequently
cause usage obstacles.

Consider the two SOF posts shown in Figure 1; both
posts concern UI defects that manifest themselves when users
change the orientation of their implementation of scroll view
of iOS devices. As shown in Figure 1, SOF users specify their
problems and questions in natural language; users can provide
tags to label their posts (shown in the left-bottom part in both
posts), and may also include related source code fragments.1

The first post has been viewed for more than eight thousand
times by other SOF members, suggesting that many developers
have encountered similar problems.

One of the basic assumptions made in this paper is that
SOF posts that are tagged with API class names are mostly
HOW-TOs concerning the tagged APIs. Treude et al. [8] report
that in general, most SOF posts are programming questions.
It is our experience that this observation is especially true for
posts with API tags. Therefore, by analyzing SOF posts that
are tagged by API-classes [9], we can attempt to detect which

1For details of the particular SOF posts, please refer to the links [6], [7];
only excerpts of posts are shown here due to space limitations.

978-1-4673-2936-1/13 c© 2013 IEEE MSR 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

61

parts of the iOS and Android APIs are particularly likely to
cause learning or usage obstacles. We decided to study only
iOS- and Android-related SOF posts for two reasons: first,
these two platforms belong to the same problem domain —
mobile device applications — so we expect that results from
two platforms can be contrasted with each other; and second,
both platforms were both released in 2007 — one year before
the launch of SOF itself — so we can capture a relatively
complete history of API-related questions regarding the two
platforms.

Our approach is novel in two ways over previous work in
studying API learning and usage obstacles. First, we harnesses
input contributed by a large number of developers with rel-
atively little effort compared to, say, interviews or similar
resource-intensive techniques. Second, we explicitly aim at
pinpointing concrete problems that cause API usage obstacles;
we believe concrete API usage problems are more likely to
lead to actionable solutions.

Our approach comprises two stages. First, we compare the
rank of API classes mentioned in SOF posts against the rank
of API usage frequency mined from a collection of iOS and
Android open source applications. Second, after identifying
API classes with apparent usage obstacles, we then summarize
possible scenarios of each API by applying a topic modelling
tool on all the posts that are tagged with the underlying API.

Our method is intended to supplement existing techniques
to study API usage obstacles. Our method can filter out API
classes that do not commonly lead to usage obstacles; this
allows us to apply more resource-demanding techniques, such
as mining API usage partial orders [3] or field studies [2] on
API classes that are more likely to cause usage obstacles.

We do not analyze answers to the developer questions
posted to SOF in this paper. Answers under each post may
represent examples about how to use each API classes cor-
rectly. However, according to policies of SOF, there is a
rather low entry-barrier to submitting answers, and the only
incentives for good answers are SOF “reputation marks”. A
collaborative information site that bear these two features
generates answers with a large quantity but poor quality, an
attribute that can be explicitly inferred under a free-entry Nash
equilibrium model [10]. Therefore, researchers must overcome
this problem before attempting to extract problem solutions
from SOF answer posts.

II. RESEARCH METHOD

A. API Usage in Source Code

Simply counting the number of times an API element is
mentioned in SOF may not yield a fair estimate of how
problematic it is. For example, a widely used API that has
relatively few problems may have more mentions in SOF than
a poorly designed API that gets less use. To account for this,
we establish a baseline of API usage frequency by mining
source code repositories of open source projects that use the
iOS and Android platforms.

The open source repository of iOS applications used in this
paper is provided bymaniacdev.com [11], a website that pro-

vides iOS development tutorials and education. This repository
has undergone six iterations over two years. We found 55 valid
iOS applications implemented in Objective-C, including some
popular products, such as the official application for Wikipedia
and Last.fm. Likewise, F-Droid [12] is our FOSS repository
for Android applications, from which we collected 250 valid
Android applications.

A natural approach to analyzing API usage would be to
extract elements of the abstract syntax tree (AST) that results
from compiling the source code. Most compilers that generate
an AST (such as clang or GCC) require a build tool to specify
compilation order and external dependencies. However, for the
Android and iOS application sources we collected, a majority
of them either did not include proprietary libraries that they
depend on or or did not include an build recipe. To overcome
this problem, we adopt a straightforward searching method.
Specifically, we extract all class names from the official
reference site of both iOS [13] and Android [14]. Using the
class names from the official reference sites, we created regular
expressions that match three key usage patterns: extending
from a platform class, instantiating a platform class, and
invoking a static method from a platform class. These three
patterns would seem to cover most typical library usages, so
we feel that this is a reasonable approximation of the API
usage that would be inferred by AST analysis.

B. Normalizing and Comparing API Usage and API Tags
For all SOF posts, we collect all tags that can be mapped to

API classes in the official reference of the iOS and Android
mobile platforms. After searching for API uses of every
project, API classes are ranked in each project and in each
platform. Some API classes are used particularly frequently
— such as NSString in iOS — while some other API classes
are used in almost all projects but with low frequency. In
order to summarize API invocations for different projects,
we normalize API calls within each project. Not knowing
the potential distribution of API invocations, we adopt an ad
hoc approach to normalize the scores of each invocation calls
across projects. For an API class ci in a project pn, a scoring
function RPn(ci) has four possible values — 1, 2, 3, or 4
— depending on which quartile the count of ci lies within;
the upper quartile maps to 4, and the lower quartile to 1. The
overall score of an API class R(ci) is the arithmetic mean of
RPn(ci) of each project. Formally, for an API class ci, and
the set of projects that call that API class P , the overall score
R(ci) for ci is:

R(ci) =

∑
n∈P Rpn

(ci)

|P |
By using this scoring method, we do not disproportionately
reward API classes that are frequently used in a project while
at the same time preserving the relative rank among API
classes.

C. Topic Mining For Posts
After listing tags that are frequently mentioned in SOF posts

but not frequently used in source code, posts with these tags

62

TABLE I
API USAGE FREQUENCY SHORTLIST AND API USAGE OBSTACLE LIST FOR IOS AND ANDROID PLATFORMS. API CLASSES THAT APPEAR ON BOTH THE
FREQUENCY AND OBSTACLE LISTS ARE HIGHLIGHTED. WE OMIT FULLY QUALIFIED NAMES FOR API CLASSES WHEN THERE IS NO REPETITIVE NAME.

iOS iOS Android Android
(tags) (quartile) (tags) (quartile)

UITableView NSUbiquitousKeyValueStore Intent ViewManager
UIView NSString android.app.Activity DataType

UITableViewCell UITableView android.widget.* EntityIterator
UINavigationController NSArray AsyncTask RemoteCallbackList

UIScrollView NSIndexPath BroadCastReceiver android.widget.*
UIImageView UIColor android.app.Fragment MediaStore

UIButton UIApplication MapView DropBoxManager
UIImage NSFileHandle WebView CommonDataKinds.Im

UITabbarController NSError ActionBar ValueAnimator
MKMapView UITableViewCell android.manifest.* PropertyValuesHolder

UITextView UIImage ViewPager TwoLineListItem
UITableViewController NSDictionary android.hardware.Camera.* BufferInfo

UIImagePickerController UIView SharedPreferences KeyFrame
UIPopoverController NSURL android.R.layout android.R.id

UITabBar NSURLConnection ContentProvider Intent
UISegmentedControl UIBarButtonItem ExpandableListView ContactsContract.Presence
UILocalNotification UIDocumentInteractonController AlarmManager ResultReceiver

UISlider UIFont ProgressDialog android.database.Cursor
UIActionSheet NSPort MediaPlayer android.util.Base64

NSURLRequest NSException android.provider.Contacts AnimatorSet
MFMailComposeViewControll NSUserDefaults android.gcm.* android.app.Dialog

TABLE II
SCENARIOS OF USAGE OBSTACLES. FOR ACCESS OF ORIGINAL POSTS UNDER EACH SCENARIO, PLEASE REFER TO FOOTNOTE 2.

API Class #posts with this tag Example of usage obstacles

UINavigationController 3,506 When adding navigation controller to a nested view, the nested view does not work properly
UIScrollView 3,448 Content not displayed as desired when user changes the orientation of a mobile device
UIImageView 2,837 Memory leaks when using UIImageView

android.app.Activity 2,885 Alarm timer does not work as intended within a lifecycle of an instance of android.app.Activity
AsyncTask 1,851 Progress indicator (ProgressDialog) is frozen when it is in an AsyncTask

BroadCastReceiver 1,409 Developers do not know how to trigger BroadCaseReceiver when a service is stopped

can be further examined to discover concrete scenarios of each
obstacle. Similar to the approach of Baura et al. [15] we use
a topic modeling technique —- Latent Dirichlet Allocation
(LDA) as implemented by the Mallet tool [16] — to discover
potential scenarios behind each usage obstacle. We tuned
Mallet to generate 100 topics for posts under each API
class. When applying LDA, we do not remove source code
from posts since LDA does not analyze semantic relations
among words. To our knowledge, no tools are readily available
to produce human-readable topics. Therefore, we manually
crosschecked between keywords of each topic and contents
of posts to extract common scenarios in which API usage
obstacles occur.

III. EXPERIMENT RESULT

A. Shortlists of API Usage Obstacles

Shortlists of API usage obstacles and API usage frequency
are shown in Table I. The shortlist of API usage obstacles of
iOS contains mainly of UI elements and UI controllers, while
for Android, we find components of many kinds. This is partly

due to the fact that most Android UI elements are contained
within the directory “android.widget”, which maps to only one
tag (Android-Widget) in the SOF community.

With the shortlist of API usage obstacles, we then run a
topic mining tool — Mallet [16] — on posts of each API.
Mallet generates lists of keywords from posts, then ranks items
according to a probabilistic model. Table II shows the partial
result of our manual generalization of scenario under which
some usage obstacles occurs. Each scenario is discussed in
SOF at least four times by different authors. Due to the space
limitations, we show examples for only the top three API
classes for each platform. To encourage discussion, we also
provide links to SOF posts under each scenario in a publicly
available website.2

In the obstacle scenarios shown in Table II, most of them
appear to arise from interactions among components of the
platform. It seems that many developers do not know how
to define interactions between UIScrollView and UI elements
that control orientation display (landscape or portrait) in iOS,

2http://swag.uwaterloo.ca/˜w65wang/msrchallenge.html

63

nor do many developers know how to design an alarm timer
within a lifecycle of an event-driven Android object.

Of course, we believe that there are likely to be many
more scenarios that cause API usage obstacles. While we do
not provide a complete list of these scenarios nor attempt to
validate them, we argue that the results shown in Table II are
important for two reasons. First, our technique opens up the
possibility to invite designers of platforms such as Android and
iOS to collect and analyze usage obstacles of their APIs as a
disciplined practice. To the best of our knowledge, there are
no dedicated channels through which platform designers can
learn about problems of their platform designs from feedback
of average developers. Second, our approach has the potential
to direct researchers to “obstacle hotspots” by using forum-
based input contributed by a multitude of developers, so
that more resource-demanding techniques — such as natural
language processing [17] and field studies — become feasible
to pinpoint concrete issues.

B. Threats to Validity

Internal Threats: As pointed out by Treude et al. [8],
nearly five percent of posts on SOF are non-technical, such
as experience sharing or career advice. We believe this would
not bring substantial error to this paper, since it is safe to
assume that few developers would discuss issues other than
programming questions in a post that is tagged with an API
class name. Our method also relies on correct tagging of each
post. However, analyzing APIs in content of posts would bring
new source of error, and may require semantic analysis. We
leave this to the future work. Another source of internal threat
comes from our manual intervention of generating common
scenarios of usage obstacles. To our knowledge, there is no
automated tool that generates similar results. We also provide
access to posts under each scenarios to encourage review and
discussion from our colleagues.

External Threats: We have only studied one information-
sharing site and software artifacts under two mobile devel-
opment platforms. This paper emphasizes on presenting the
feasibility of harvesting posts from SOF to infer API usages
obstacles; we also notice that tags for both Android and iOS
topics happen to match well with API classes in two platforms.
This may not apply well to other development platforms.

IV. CONCLUSIONS

Modern software frameworks provide rich sets of function-
ality; they are designed so that developers can take advantage
of powerful common infrastructures, avoid reinventing the
wheel, and delegate many routine design tasks. However, even
well-designed frameworks are large and complicated, and their
use entails a significant conceptual cost and a steep learning
curve.

In this paper, we investigate posts in an information sharing
website, stackoverflow.com, where most posts concern tech-
nical problems that software developers have. By comparing
the list of frequently mentioned API classes in posts against
the list of API usage frequency, we are able to discover API

classes that often cause usage obstacles but are not frequently
used. We also discover a few scenarios that appear to be the
common cause of API usage obstacles. To the best of our
knowledge, among research in API usage obstacles, this paper
is the first that uses the input of a multitude of developers to
reduce the problem space to a few “obstacle hotspots”, so
that more resource-demanding techniques can be applied to
pinpoint specific problems behind each API usage obstacles.
This would in turn make possible concrete solutions to these
problems.

We believe the result of this paper opens new research
opportunities. For example, researchers can adjust weights to
each post by analyzing the emotion of developers through
sentiment analysis. An ad hoc solution to usage obstacles is
to provide aid through improved API documentation. Sugges-
tions for API documentation improvements can be generated
by linking official documentation with API usage obstacle
hotspots. We leave these to future work.

REFERENCES

[1] M. P. Robillard, “What makes APIs hard to learn? Answers from
developers,” IEEE Software, vol. 26, no. 6, pp. 26–34, 2009.

[2] M. P. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[3] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns as partial
orders from source code: From usage scenarios to specifications,” in
Proc. of 15th FSE. ACM, 2007, pp. 25–34.

[4] G. Uddin, B. Dagenais, and M. P. Robillard, “Analyzing temporal API
usage patterns,” in Proc. of the 26th IEEE/ACM Intl. Conf. on Automated
Software Engineering, November 2011, pp. 456–459.

[5] C. Parnin and C. Treude, “Measuring API documentation on the web,”
in Proc. of the 2nd Intl. Workshop on Web 2.0 for Software Engineering,
vol. 2, 2011, pp. 25–30.

[6] stackoverflow.com, “UIScrollView not getting new size
on orientation change,” accessed in Feb. 2013.
[Online]. Available: http://stackoverflow.com/questions/3221456/
uiscrollview-not-getting-new-size-on-orientation-change?rq=1

[7] ——, “Objective-C: Orientation change with UIScrollview,” accessed
in Feb. 2013. [Online]. Available: http://stackoverflow.com/questions/
10380896/objective-c-orientation-change-with-uiscrollview

[8] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web?” in 33rd ACM/IEEE Intl. Conf. on
Software Engineering, NIER track, 2011, pp. 804–807.

[9] A. Bacchelli, “Mining challenge 2013: StackOverflow,” in The 10th
IEEE Working Conf. on Mining Software Repositories, 2013 (to appear).

[10] A. Ghosh and P. McAfee, “Incentivizing high-quality user-generated
content,” in Proceedings of the 20th international conference on World
wide web. ACM, 2011, pp. 137–146.

[11] ManiacDev.com, “Open source iPhone and iPad apps:
Real iOS source code examples,” accessed in
Feb. 2013. [Online]. Available: http://maniacdev.com/2010/06/
35-open-source-iphone-app-store-apps-updated-with-10-new-apps/

[12] F-Droid.com, “Android foss repository,” accessed in Feb. 2013.
[Online]. Available: http://f-droid.org/

[13] “iOS developer library,” Apple Inc., accessed in Feb. 2013.
[Online]. Available: https://developer.apple.com/library/ios/navigation/
index.html#section=Resource\%20Types\&topic=Reference

[14] “Class Index of Android API Classes,” Google Inc., accessed in
Feb. 2013. [Online]. Available: http://developer.android.com/reference/
classes.html

[15] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? An analysis of topics and trends in StackOverflow,” Empirical
Software Engineering, pp. 1–36, 2012.

[16] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002, http://mallet.cs.umass.edu.

[17] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program comprehen-
sion with source code summarization,” in Proc. of the 32nd ACM/IEEE
Intl. Conf. on Software Engineering, 2010, pp. 223–226.

64

