
Code Review Quality: How Developers See It

Oleksii Kononenko
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

okononen@uwaterloo.ca

Olga Baysal
School of Computer Science

Carleton University
Ottawa, ON, Canada

olga.baysal@carleton.ca

Michael W. Godfrey
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

migod@uwaterloo.ca

ABSTRACT
In a large, long-lived project, an effective code review pro-
cess is key to ensuring the long-term quality of the code base.
In this work, we study code review practices of a large, open
source project, and we investigate how the developers them-
selves perceive code review quality. We present a qualita-
tive study that summarizes the results from a survey of 88
Mozilla core developers. The results provide developer in-
sights into how they define review quality, what factors con-
tribute to how they evaluate submitted code, and what chal-
lenges they face when performing review tasks. We found
that the review quality is primarily associated with the thor-
oughness of the feedback, the reviewer’s familiarity with the
code, and the perceived quality of the code itself. Also, we
found that while different factors are perceived to contribute
to the review quality, reviewers often find it difficult to keep
their technical skills up-to-date, manage personal priorities,
and mitigate context switching.

CCS Concepts
•Software and its engineering → Maintaining soft-
ware; Collaboration in software development;

Keywords
Code review, review quality, survey, developer perception

1. INTRODUCTION
In a large, long-lived project, an effective code review pro-

cess is key to ensuring the long-term quality of the code base.
Code review is considered to be one of the most effective
QA practices in software development. While it is relatively
expensive in terms of time and effort, it delivers benefits
of identifying defects in code modifications before they are
committed into the project’s code base [9]. Reviewers play
a vital role in the code review process not only by shaping
and evaluating individual contributions but also by ensuring
the high quality of the project’s master code repository.

Code review explicitly addresses the quality of contribu-
tions before they are integrated into project’s code base.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884840

Due to volume of submitted contributions and the need to
handle them in a timely manner, many code review pro-
cesses have become more lightweight and less formal in na-
ture [4, 25]. This evolution of review process increases the
risks of letting bugs slip into the version control repository,
as reviewers are unable to detect all of the bugs. In our
recent study [18], we explored the topic of code review qual-
ity by conducting a quantitative investigation of what fac-
tors may influence the quality of evaluating code contribu-
tions. The study was of quantitative nature as it employed
data mining and analysis of project’s repositories. While we
found that both technical and personal attributes are asso-
ciated with the review quality, many other factors such as
organization, its culture and structure, development cycles,
time pressures, etc., can potentially influence how reviewers
assess code changes. Since these “hidden” factors are diffi-
cult to take into account in a quantitative analysis because
such data is not available, easily accessible, or extractable
from the available artifacts, we decided to employ qualita-
tive research methods to fill the gap in the knowledge we
had about the developer perception and attitude towards
the code review quality.

Our qualitative study is organized around an exploratory
survey that we design based on the state-of-the-art quali-
tative research [8, 12, 28] and our own observations of the
Mozilla code review process and interactions with Mozilla
developers during our previous research project [5]. We
conducted an exploratory survey with 88 Mozilla core de-
velopers. Our qualitative analysis of the survey data aims
at addressing the following research questions:

• RQ1: How do Mozilla developers conduct code review?

Existing literature offers several case studies of how
code review processes are employed by various software
development projects and organizations [4,6,11,21,26,
27].

• RQ2: What factors do developers consider to be influ-
ential to review time and decision?

Code review is a complex process that involves people,
their skills and social dynamics, as well as development
artifacts and environments; thus, it can be affected
by both technical [15,21,25,27] and non-technical fac-
tors [7, 12,19,29].

• RQ3: What factors do developers use to assess code
review quality?

While the quality assessment of code contributions is
an active research area, the topic of code review qual-
ity remains largely unexplored. To better understand

developer perception and attitudes towards the quality
of the process that evaluates code changes, we further
refine this research question into the following subques-
tions:

– RQ3.1: How do reviewers assess the quality of a
patch?

– RQ3.2: How do developers define a well-done code
review?

– RQ3.3: What factors are perceived to contribute
to the review quality?

• RQ4: What challenges do developers face when per-
forming review tasks?

We believe that it is important to understand what on-
going problems developers deal with to provide them
with better tools to support their daily tasks and ac-
tivities.

Our main findings reveal that the review quality is pri-
marily associated with the thoroughness of the feedback, the
reviewer’s familiarity with the code, and the perceived qual-
ity of the code itself. As expected, we found that different
factors including technical, personal and social signals, are
perceived to contribute to the review quality. Also, we found
that reviewers often find it difficult to keep their technical
skills up-to-date, manage personal priorities, and mitigate
context switching.

The paper makes the following contributions:

• A qualitative study with the professional OSS devel-
opers who participated in our survey on the topic of
code review quality.
• A thorough survey analysis that offers insights into

the developer perception of the code review quality
and factors affecting it, as well as identifies of the
main challenges developers face when conducting re-
view tasks.
• A publicly available dataset of 88 anonymized survey

responses.

The rest of the paper organized as follows. Section 2 sum-
marizes prior related work. Section 3 describes our method-
ology including the survey design, participants, and data
analysis. Section 4 presents the results of the qualitative
study. Section 5 discusses implications of our work and sug-
gests possible future research directions. Section 6 addresses
limitations of our work. Finally, Section 7 concludes the pa-
per.

2. RELATED WORK
A large body of work has attempted to assess modern code

review as practised in the development of large software sys-
tems. Mockus et al. [21] were among the pioneer researchers
who studied open source development. By analyzing the
Mozilla and Apache projects, they identified the main char-
acteristics of open source communities such as the depen-
dency on the contributions from outside developers, and de-
velopers being free to choose tasks to work on. Rigby and
German [26] presented an investigation of code review pro-
cesses as practised within four open source projects: GCC,
Linux, Mozilla, and Apache. They identified the existence of
several review patterns as well as quantitatively studied the
execution of the review process inside the Apache project.
Later, Rigby and Storey [27] investigated the mechanisms
employed by developers of five open source projects to iden-
tify code changes they are competent to review. They ex-

plored the way stakeholders interact with one another during
the code review process. Their findings provided insights to
developers about how to effectively manage large quantities
of reviews. Additionally, their investigation reveals that the
identification of defects is not the sole motivation for modern
code review. Resolving non-technical issues, such as scope or
process issues, was among other motivations of code review.

Baysal et al. [7] empirically studied the WebKit project
and showed that review positivity, i.e., the proportion of
accepted patches, is also affected by non-technical factors.
The authors found that factors from both personal and orga-
nizational dimensions affect code review response time and
the outcome of a review. Jiang et al. [15] studied, through
an analysis of the Linux Kernel, the relation between patch
characteristics and the probability of patch acceptance as
well as the time taken for patches to be integrated into the
code base. The results of their study indicated that devel-
oper experience and patch maturity impact the patch ac-
ceptance, while the number of suggested reviewers, affected
subsystems, developer experience, and the time of submis-
sion affect the duration of a review. Bacchelli and Bird [4]
examined the motivations, challenges, and outcomes of tool-
based code reviews. They found that while the identification
of defects is the main purpose of code review, other motiva-
tions such as team awareness and knowledge sharing exist
as well.

Kemerer et al. [16] investigated the effect of review rate
(i.e., lines of code reviewed per hour) on the effectiveness of
defect removal and the quality of software products. Their
study showed that allowing sufficient preparation time for re-
views and inspections can improve their quality. Hatton [13]
found that defect detection capabilities differ among code re-
viewers — the “worst” reviewer was ten times less effective
than the best reviewer. Moreover, he found almost 50% im-
provement in defects detection between settings where the
source code is inspected by two developers together (76% of
faults found) and where the source code is inspected by two
developers separately (53% of faults found).

Pull-based development is a new model for distributed
software development; in this model proposed changes sub-
mitted as pull requests. In a quantitative study, Gousios et
al. [11] explored what factors affect the decision to accept a
pull request, as well as the time needed to make such a deci-
sion. They found that decision is dominated by the number
of recent changes to the files being modified by the pull re-
quest, the number of such files, and the size of a project;
while the time is mainly affected by the developer’s track
record and the test coverage of a project. Tsay et al. [29]
analyzed the influence of social and technical factors on ac-
ceptance of pull requests. Their study showed that while
many different factors affect pull request acceptance, the so-
cial distance and collaborator status are the most influential
ones.

Although modern code review has received a significant
attention recently, there is little empirical evidence on what
factors contribute to code review quality. A recent quali-
tative study by Gousios et al. [12] explored the practices
of pull-based development model. They conducted a two-
round survey with 21 and 749 GitHub integrators on what
factors they consider in their decision making process to ac-
cept or reject a pull request. They found that integrators
are most concerned with quality and prioritization.

In our recent empirical study [18], we quantitatively in-
vestigated the relationships between the reviewers’ code in-
spections and a set of factors, both personal and social in
nature, that might affect the review quality. We found that
54% of the reviewed changes introduced bugs in the code; we
also found that personal metrics, such as reviewer workload
and experience, and participation metrics, such as the num-
ber of involved developers, are associated with the quality of
the code review process. While we identified which of these
factors are more likely to contribute to the review quality,
our approach was mainly quantitative; we were limited by
the number of metrics whose values we could extract from
the code review data stored in the issue tracking system. To
improve the understanding of how developers perceive the
quality of their reviews and the factors they consider to be
important in preserving the quality of the code assessment,
we extend our previous work here by presenting a qualitative
study of developer perception and attitudes.

3. METHODOLOGY
We conducted an exploratory qualitative study that in-

volved data collection through a survey with professional
developers. This section describes the survey design, the
participants, and the analysis of the responses in detail.

3.1 Survey Design
The survey consisted of three main parts: nine questions

about the developer’s demographic background and work
practices, three Likert-scale questions related to different as-
pects of code review, and seven follow-on open-ended ques-
tions to allow developers to elaborate on issues raised by the
multiple choice questions. Participants were asked to spend
5–10 minutes to complete the survey.

The main goal of conducting the survey was to solicit de-
veloper feedback on the perceived quality of code reviews
and factors affecting review time, decision, and quality. We
also wished to identify key problem areas within the existing
review process.

3.2 Participants
We decided to continue our work within the Mozilla project

developer community for several reasons: much of our pre-
vious work has studied this project and we have good in-
tuition about the system and its development practices, we
have made good contacts within the project who are sup-
portive of our research goals, and because Mozilla is a well
known, very large, and long-lived open source project.

To identify potential participants for our study, we looked
at the 12 month history (from May 10, 2014 to May 10,
2015) of all contributions to the Mozilla project as they
are recorded in Bugzilla issue tracking system. Because of
the Bugzilla’s limitations on the search results, we directly
queried Mozilla’s Elastic Search cluster that contains the up-
to-date copy of Bugzilla data [23]. By processing the queried
data, we extracted 3,142 unique email addresses (Bugzilla
uses an email address as a unique user identifier). After
that, we queried the cluster for each email address to get the
information about developer’s activity: number of contribu-
tions submitted for review and the number of patches that
were reviewed by the developer during the studied period.
Finally, we used Bugzilla’s REST API to extract developers’
real names.

We decided to limit our survey to experienced developers
who were not new to the project. We computed an experi-

ence value as the sum of submitted and reviewed patches.
We set a threshold for the experience value at 15 — mean-
ing that anyone with a combined experience of at least 15
patches will pass the filter — which reduced the list of po-
tential participants to 843 (27%) people. To filter out de-
velopers who were new to the Mozilla project — regardless
of their experience level — we defined familiarity as having
contributions (submitted and/or reviewed patches) at least
6 months prior to the beginning of the studied period. This
filter further reduced the list of experienced developers to
403 (13%) people.

Once we selected developers whom we wanted to survey,
we sent out 403 personalized emails. Each email contained
the number of contributions submitted or reviewed during
the 12 months period and an invitation to participate in
the survey. The survey was open for 3 weeks (from May 29
to June 19, 2015) and received 88 responses (22% response
rate).

The beginning of the survey consisted of background-related
questions. By analyzing the responses, we found that we had
successfully targeted highly experienced developers: about
48% of respondents said that they have more than 10 years
of software development experience, while another 26% of
them have between 7 and 10 years of experience. Most of
the respondents have been performing code review for more
than 3 years (67%).

3.3 Survey Data Analysis
We applied a grounded theory methodology to analyze

the survey data; as we had no predefined groups or cate-
gories, we used an open coding approach. As we analyzed
the quotes, themes and categories emerged and evolved dur-
ing the open coding process [20].

Author Kononenko created all of the “cards”, splitting 88
survey responses into 938 individual quotes; these generally
corresponded to individual cohesive statements. In further
analysis, authors Kononenko and Baysal acted as coders to
group cards into themes, merging themes into categories.
For each open-ended question, we proceeded with this anal-
ysis in three steps:

1. The two coders independently performed card sorts on
the 20% of the cards extracted from the survey responses
to identify initial card groups. The coders then met to
compare and discuss their identified groups.

2. The two coders performed another independent round,
sorting another 20% of the quotes into the groups that
were agreed-upon in the previous step. We then calcu-
lated and report the coder reliability to ensure the in-
tegrity of the card sort. We selected two of the most popu-
lar reliability coefficients for nominal data: percent agree-
ment and Cohen’s Kappa. Coder reliability is a measure
of agreement among multiple coders for how they apply
codes to text data. To calculate agreement, we counted
the number of cards for each emerged group for both
coders and used ReCal2 [10] for calculations. The coders
achieved a substantial degree of agreement; on average
two coders agreed on the coding of the content in 96%
of the time (the average percent agreement varies across
the questions and is within the range of 94.2–97.2%; while
the average Cohen’s Kappa score is 0.68).

3. The rest of the card sort (for each open-ended question)
— 60% of the quotes — was performed by both coders
together.

4. RESULTS
During the open coding process, 30 main (including “ir-

relevant”) categories emerged. Table 1 presents these cate-
gories in detail reporting the number of quotes, the number
of respondents, the question numbers, the totals, and the
average percent agreement for each question.

4.1 RQ1: How do Mozilla developers conduct
code review?

First, we wanted to understand the current practices of
performing code review tasks at Mozilla. We asked devel-
opers several multiple choice questions with an option of
providing their own detailed response. The first pair of ques-
tions focused on the workload that developers face: the av-
erage number of patches they write and the average number
of reviews they perform each week. While the answers to
these two questions are skewed towards smaller workloads
(fewer than 5 patches per week submitted or reviewed, 69%
and 57% respectively), we received many more responses for
the heavier review workload than for the patch workload.
About 10% of the respondents reported that they review 11
to 20 patches each week, while another 4% said that they
review more than 21 patches each week. The analysis of a
contingency table for these two variables shows that devel-
opers with high workloads (i.e., over 10 patches/reviews per
week) tend to concentrate their efforts on a single task type,
i.e., either writing patches or reviewing them. The need
for “dedicated” reviewers is pursued to bring their unique
knowledge and expertise, e.g., overall architecture or domain
knowledge, to the project to ensure the correctness and fit
of code contributions. This finding mirrors Mozilla’s notion
of super reviewers — a small set of developers enlisted by
Mozilla who provide an additional review for certain kinds
of changes [24].

The remaining two questions focused on where develop-
ers perform code review (i.e., within what environment) and
where they discuss patches under review. While all review-
related information is stored in Bugzilla, there is no require-
ment in the Mozilla’s code review policies on where a review
should be performed. Surprisingly, although Mozilla pro-
vides their developers with a code review platform called
MozReview [32], only 5% of the respondents said that they
are using it. The majority of the respondents (80%) conduct
their code review tasks inside Bugzilla itself, while another
8% copy a patch locally into their IDE. As for the loca-
tions of patch discussions, developers were allowed to select
multiple of the proposed answers and/or their own answer.
The two overwhelmingly popular answers were Bugzilla and
IRC channel (99% and 78% respectively), while VoIP, email,
and face-to-face discussions received a similar number of re-
sponses (around 22% each). While this wide adoption of
IRC might be influenced by Mozilla itself, it also might be
explained by the fact that IRC allows them to have real-
time, less formal discussions with ability to bring in more
people into a conversation as needed.

RQ1: While most of developers write patches as well as
review them, a dedicated group of developers is responsi-
ble for reviewing code changes. The majority of reviewers
conduct code review in Bugzilla despite having access to a
custom built code review tool, and use various communica-
tion channels for discussing code modifications.

The following factors influence code review TIME

Percent

Priority of a bug

Severity of a bug

of people in the discussion

Review queue

Module

The length of the discussion

Number of resubmits

Patch writer experience

Code chunks

Number of modified files

Reviewer experience

Patch size (LOC)

0 50 100

Strongly Disagree Disagree Agree Strongly Agree

Figure 1: Factors influencing code review time.

4.2 RQ2: What factors do developers consider
to be influential to review time and deci-
sion?

We asked developers about the factors that they believe
are most likely to affect the length of time needed to review a
patch, as well as the decision of the review (i.e., accept or re-
ject). For each aspect (review time and decision), we solicit
developers’ opinions via a 5-point Likert-scale question and
probe more in-depth information via an optional follow-on
open-ended question. The proposed answers to Likert-scale
questions were compiled from the factors that were previ-
ously reported in the literature [7,15,31] to have an impact
on time and outcome. The open-ended questions provided
developers an opportunity to specify any other factors not
covered by the Likert-scale question.

1) Time. The analysis of the Likert-scale question (Fig-
ure 1) shows that size-related factors (patch size, the number
of modified files, and the number of code chunks) are the
ones the developers feel are most important (100%, 95%,
and 95% of positive responses respectively). This finding
is consistent with several previous quantitative studies that
demonstrate the correlation between the size of the code
change and the review time (i.e., smaller patches are more
likely to receive faster responses) [7,15,31]. The second most
positive group is experience — reviewer experience (96%)
and patch writer experience (91%). Again, this also mirrors
previous research that found that the increase in experience
leads to faster reviews. While all other proposed factors re-
ceived more than 50% of positive responses, the two factors
with the biggest numbers of negative responses stand out:
bug priority and severity received 36% and 30% of negative
responses respectively. Such high values speak against the
very idea of bug triage. It may be because Mozilla develop-
ers use the priority and severity fields inconsistently [14], or
because these fields are not used as intended (for example,
in our previous study, we found that over 96% of all patches
in WebKit project are assigned the same priority value [7]).

The manual coding analysis of the open-ended question
revealed several categories that developers believe have an
impact on code review time. The biggest theme identified
in the responses is code quality, which includes code quality
and change complexity categories. As explained by R67,
“The amount of in-code comments describing what the patch

Table 1: The list of categories that emerged during open coding.

Category
Q11 Q13 Q14 Q15 Q17 Q18

#Q #R #Q #R #Q #R #Q #R #Q #R #Q #R
Code quality 49% 57% 24% 30% 31% 65% 9% 22% 8% 15% 1% 2%
Testing 13% 28% 6% 9% 12% 36% 7% 15% 8% 15% – –
Time constraints 1% 4% – – – – 8% 20% 14% 19% 17% 25%
Change scope/rationale 11% 22% 9% 12% 26% 58% – – 4% 8% 10% 15%
Understanding code change/base – – 6% 9% – – 21% 30% 20% 31% 31% 38%
Human factors – – – – – – 17% 28% 14% 23% 11% 16%
Tools – – 4% 5% – – – – 6% 12% 9% 9%
Communication – – 2% 2% – – – – 8% 12% 1% 2%
Change complexity – – 18% 23% 10% 31% – – 8% 15% 10% 15%
Relationship/trust 5% 9% 3% 5% – – – – – – – –
Usefulness – – – – 1% 3% 1% 3% – – – –
Workload – – – – – – – – 4% 8% 4% 5%
Submitter related 2% 6% 3% 5% – – – – – – – –
Architecture/design – – – – 5% 15% 6% 10% – – – –
Reviewer related 9% 13% – – – – – – – – – –
Discussion 1% 4% – – – – – – – – – –
Conformance to project goals 6% 7% – – – – – – – – – –
Bug type – – 9% 12% – – – – – – – –
Selecting correct reviewer – – 7% 12% – – – – – – – –
Performance – – – – 2% 8% – – – – – –
Integration into code base – – – – 4% 15% – – – – – –
Security – – – – 1% 3% – – – – – –
Memory management – – – – 1% 2% – – – – – –
Familiarity with the author – – – – 1% 5% – – – – – –
Thorough feedback – – – – – – 23% 38% – – – –
Catching bugs – – – – – – 4% 8% – – – –
Organizational factors – – – – – – – – 4% 4% – –
Documentation – – – – – – – – 2% 4% – –
Context switch – – – – – – – – – – 6% 10%
Irrelevant 3% 7% 9% 12% 5% 15% 4% 10% – – – –
Total: 141 54 67 43 290 86 219 86 50 26 81 55
Average percent agreement 97.2% 96.6% 95.5% 94.2% 94.2% 95.0%

Notes: #Q: the number of quotes, #R: the number of respondents, Q11: factors affecting decision, Q13: factors affecting time,
Q14: patch quality, Q15: characteristics of code review quality, Q17: other factors affecting review quality, Q18: challenges.

does. Readability/variable-naming affecting how hard it is
to understand any particular hunk of the patch on its own.”
When reviewing patches, the developers stated that“patches
dependency” (R39) and “changes to the API surface between
modules” (R32) affect the review time.

Perhaps surprisingly, developers identified that the bug
type category also plays a role during the review of a patch
and affects its time. According to respondent R76, “When
the cause of the bug is obscure, it takes time to review”,
while R74 said “nature of the bug — some bugs require time-
consuming manual testing”.

Another category that emerged from the responses is patch
scope and rationale. Here, the scope also includes granu-
larity: “Whether the patch is broken up into self-contained
pieces or whether it’s one big patch touching lots of differ-
ent areas — 5 individual patches are much faster to review
in total than one big merged patch of those pieces” (R19).
Developers believe that the clarity of explanation of what
is being changed and why affects the review time: “clearly
identified goal for the patch” (R11) and “what is patch trying
to do, and should we even be doing that?” (R55). Under-
standing the code base category goes along with the scope of
a patch. Several developers stated that amount of knowledge
that a reviewer has about the code being changed affects the
review time.

Several of the emerged categories can be combined into a
social theme. One of the categories here is selecting the cor-

rect reviewer. There are different characteristics that iden-
tify the suitability of a reviewer. For R87 it is “the person-
ality of a reviewer”, while for R52 it is presence of “personal
backlog of work, and personal priorities”. Moreover, some-
times the reviewers themselves question their suitability for
reviewing a patch: “am I the best person to be reviewing this
patch?” (R55). Developers also identified the importance of
previous relationship with an author of a patch: “if someone
has a good track record I won’t think about the code in quite
as much detail compared to someone with a track record of
breaking things often” (R13). The other categories in this
theme are about submitter type (e.g., newcomer or not) and
the ease of communication between a patch writer and a
reviewer.

2) Decision. Contrary to the answers to the Likert-scale
question about the review time, we found no agreement be-
tween developers (i.e., strong prevalence of either positive
or negative answers) for the majority of factors in the case
of the review decision (Figure 2). Similarly to the previous
question, both patch writer experience and reviewer expe-
rience are the factors with the most positive answers (86%
and 84%). At the same time, the size-related factors (patch
size, the number of modified files, and the number of code
chunks) no longer have the overwhelming number of pos-
itive answers; instead, the respondents are more likely to
disagree with the statement that these factors affect review
decisions. Surprisingly, bug severity and priority are now the

The following factors influence code review DECISIONS

Percent

Review queue

Number of modified files

Code chunks

Number of resubmits

The length of the discussion

Module

Patch size (LOC)

of people in the discussion

Priority of a bug

Severity of a bug

Reviewer experience

Patch writer experience

50 0 50

Strongly Disagree Disagree Agree Strongly Agree

Figure 2: Factors influencing code review decision.

third and the fourth the most agreed factors. Another in-
teresting finding is related to reviewer workload: about 81%
of respondents disagree that workload affects the decision
in any way. This demonstrates that developers think of re-
viewers as highly capable of carefully analyzing every patch
regardless of the time pressure they might face. While such
attitude describes the project’s culture, this result contra-
dicts our previous finding that suggest that reviewers with
shorter review queues are more likely to reject a patch [7].

Several categories emerged during the analysis of the open-
ended question related to review decision. The highest im-
pact on the review decision is perceived to be code quality
of a submitted patch. While developers associate different
meanings with the term “code quality”; they can be grouped
into several sub-categories. The first one is adherence to the
code style (R57 – “the quality of the code, and whether it
adheres to accepted style and practices”), as well as spelling
(R38 – attention to “details such as spelling, grammar and
code formatting”). Other two sub-categories are readability
and simplicity of a patch (R34 – “ease of understanding of
code/changes, i.e., simplicity of code”), and presence and
quality of design or architectural changes. Finally, devel-
opers associate the code correctness and its maintainability
with code quality.

The second biggest category identified from the answers
is testing. When developers submit a patch they can include
the results of running existing tests, as well as include the
tests they wrote specifically for that patch. The two sub-
categories that we identified reflect the option patch writers
have. The first sub-category is focused on the presence of
automated tests in a patch: “... changes that are accom-
panied by tests are much more likely to be accepted” (R20).
Moreover, developers identified that the actual completeness
of tests is also important: “thoroughness of tests included in
patch” (R37). The other sub-category represents the pres-
ence of test results for a patch: “including test results as a
message on the bug tracker can either give the reviewer more
confidence to accept the patch (if the tests pass) or likewise
lead them to reject the patch (if the tests fail)” (R38).

Change scope and rationale is believed to be an of influ-
ential factor for reviewers making their decisions. Reviewers
first look for the actual appropriateness of change to be in-
corporated into the code base: “Does the feature fit in with
the product (for patches submitted out of the blue)” (R29).

As R10 explains: “... not all fixes or improvements are a
good idea to actually land, even if they’re correct”. Also, re-
viewers expect a clear explanation of the reasoning behind
the proposed change, how it solves a problem, and why an
author chose a particular way of doing it. According to R38,
including such information “can have a significant impact on
some reviewers’ confidence to accept the patch”.

Similarly to the previous question, we have a theme of
social categories. The reviews are done by humans, so the
process is likely to be influenced by their personalities. In-
deed, we identified reviewer related factors. Several develop-
ers report that with some reviewers it is more difficult to get
a patch accepted than with others: “a new reviewer might
feel inclined to find a fault to prove that they done due duty
in reviewing the patch” (R38), and “the perfectionist syn-
drome (Can you try ... ?)” (R49). In addition to that,
“individual quirks/preferences of the reviewer” (R20) play a
role as well. Relationship/trust between reviewer and patch
writer is found to play a critical role in decision making.
Several respondents stated that interpersonal relationship is
important for the review outcome. As explained by R36:
“If it’s someone you trust you don’t have to check things as
rigorously”. And finally, contributor type (i.e., whether he
is new, mentored, or experienced contributor) can influence
reviewers’ decisions: “if the patch writer is a new or first-
time contributor, the reviewer may be inclined to encourage
them by accepting their patch more readily (after identifying
any obvious problems that need fixing)” (R38).

RQ2: Developers believe that factors such as the experi-
ence of developers, the choice of a reviewer, size of a patch,
its quality and rationale affect the time needed for review;
while bug severity, code quality and its rationale, presence
and quality of tests, and developer personality impact review
decisions.

4.3 RQ3: What factors do developers use to
assess code review quality?

Quality is one of the key attributes of ensuring high stan-
dards of both code and project development. With this
research question, we explore how developers perceive the
quality of a patch and what characteristics they believe to
be essential in contributing to a well-done code review. To
answer this question, we analyzed two mandatory and one
optional open-ended questions, as well as one multiple-choice
question of the survey.

1) Perception of a patch quality.
One of the top attributes for developers when evaluating

patch quality is code quality. Code quality has many inter-
pretations. For some developers it is associated with coding
style such as “the names of things need to be descriptive”,
readability, compactness, maintainability (“lack of redun-
dant or duplicated code”, “strong and unverified coupling”),
“consistent indentation and style”, and “elegance and lack
of hacks”. While for others code quality is about the pres-
ence of meaningful comments (“comments should tell why
not what”), documentation and “clear and helpful” commit
messages, “I’m looking for a thoughtful summary that in-
structs me, reviewer, what is going on and what to expect”
(R28). Some developers find that “adherence [of the code] to
project module standards” was equally important to ensure
the changes are consistent and conformant to the Mozilla
Coding Standards.

Change rationale is the second top property that reviewers
look for. Patches are assessed for their correctness, “does [it]
actually implements what it intends to do?” (R19), associ-
ated risk and possible alternative solutions, “are there easier,
less risky ways to achieve the same thing?” (R35), func-
tionality and errors (e.g., “correct handling of exceptional
cases” (R33), “are all cases handled?” (R56)). Reviewers
examine whether the patch author understands the source
of the problem and the problem domain, without “introduc-
ing any other bugs” (R62) or ambiguity. Reviewers often
think of their own solution to the fix before reviewing it and
then compare it with the submitted patch. They also try to
understand how much time the author spent on the patch
and “how well the solution has been thought through: does
it needlessly reinvent the wheel, does it rewrite everything
from scratch even though a spot fix would have been better,
... does it use “clever” tricks that others will struggle to un-
derstand” (R64). In a nutshell, a high quality patch “usually
provides a robust solution for the problem” (R42).

Change complexity is also perceived as an important prop-
erty of the patch quality. Developers often look for simple so-
lutions: “simpler is better” (R20), “simplicity of code makes
a big difference. Code that is complicated often is the re-
sult of not being able to distill the problem down to its core.
Also, reducing the cognitive load required to understand the
code means it’s easier to maintain, and less likely to have
bugs in it” (R34). If a patch is trying to resolve more than
one issue, it is expected that submitter split it into multiple
patches: “if the patch is addressing 3 or 4 different things
it is lower quality than 3 or 4 separate patches for the indi-
vidual issues” (R13). Many developers agree that size of the
change is correlated to the bug-proneness: “small, focused
changes are easier to assess than large ones. If bug rate is
proportional to lines of code, quality is inversely proportional
to patch size. So, small patches preferred” (R28).

Testing is also a key indicator of quality for developers
when they evaluate patches. Reviewers expect code changes
to come with a corresponding test change. The lack of such
tests is a good sign that “test coverage is lacking and we’re
taking a risk accepting the patch” (R28). The presence of
tests in the patch also boosts developers confidence that the
patch actually fixes the problem. Many developers run and
test patches locally, or when testing is not practical, they
perform manual testing as well. As a part of manual testing,
developers often perform an operational proof such as code
walks through: “I walk through the changes, executing it
as I imagine the machine would, with as much variety of
inputs and states as I can imagine. I look for edge cases.
I try to consider what is not in the patch (things that are
being affected by the patch but are not directly changed by
the patch)” (R21).

Reviewers pay careful attention on how the patch fits into
the existing code base. Integration into the code base can be
examined by checking how the patch“melds with the existing
code or how it replaces the existing code” (R23), “how much
change there is and how far spread the change is” (R12), or
whether “the patch breaks web compatibility” (R4). Submit-
ters are often expected to be able to anticipate the upcoming
surrounding changes and have an overall understanding of
the impact of the change on other areas of the code. To sup-
port code maintainability, submitters are expected to con-
duct refactoring tasks if they see the need for it. Reviewers

can request to perform necessary refactoring if they find that
the patch is “contributing to code rot” (R38).

When reviewing patches, developers often examine whether
software architecture and design meet expectations. For ex-
ample, whether a code change “meets other design consider-
ations (e.g., PEP8 for Python code) (R67)”. It is expected
that submitted changes keep the architecture of the code
base intact to facilitate code comprehension and mainte-
nance: “does it continue the architecture of the existing code
or diverge in a way that makes future maintenance difficult?”
(R81), “I look for architectural impact to see if it is making
the code cleaner or messier” (R87). If the code changes rely
on APIs, reviewers check whether they are used appropri-
ately: “could the new APIs be misused?” (R65).

Among other characteristics that developers consider when
assessing changes are memory management such as“no leaks,
no unsafe memory usage” (R4), “no accesses to dead objects”
(R9), security such as security related checks and return
types, performance that relates to “the order of algorithms
used” (R38), “the right trade-offs between simplicity of code
and performance” (R24), efficiency and speed.

Social factors such as familiarity with the author play an
important role in evaluating patches. Previous relationships
with the submitters, their experience and reputation within
the project can determine the fate of their patches: “I set a
baseline based on any previous relationship with the submit-
ter, and the area of code concerned. If I know the submitter
I have both some idea of what to check and a better idea if
they’ll be around later to fix subsequent issues” (R56), “past
experience of patch author is a big factor” (R43).

2) Characteristics of a well-done code review.
This research question investigates developer perception

of the key characteristics contributing to a well-done code
review. Through an open-ended question, we asked develop-
ers’ opinion on what a high quality review means to them.

The majority of the developers (38%) responded that clear
and thorough feedback is the key attribute of a well-done re-
view. Reviewers are expected to provide feedback that 1)
is clear to understand; 2) is not only “about code format-
ting and style” (R6); 3) provides constructive advice, e.g.,
“points out major correctness issues first, and points our mi-
nor issues that can be clearly fixed without another round of
review” (R24), “highlighting potential problems ... and how
to fix them” (R42), “saying ‘this is the worst code I’ve ever
seen’ is not constructive” (R81); 4) is done by the correct re-
viewer who “has the domain knowledge to properly evaluate
the change” (R55); 5) is delivered via proper communica-
tion: “good code reviews are dialogues between the reviewer
and patch author” (R50); and 6) provides mentoring and
training for patch authors: “providing detailed mentoring to
help them improve faster” (R56), “to help the author of the
patch become a better programmer in the long term” (R35).

Developers expect reviewers to have understanding of the
code, in particular to know“the code that’s being changed and
what other pieces of code interact with it and what their as-
sumptions are (“what else could break?”) ...” (R19), “knowl-
edge of the code is paramount because otherwise reviews are
superficial” (R30). Submitters want reviewers to know the
outcome, the impact and “the side effects of the modified
code” (R49), as well as to ensure that the logic of the patch
makes sense. Reviewers are also expected to have an overall
understanding of the project’s code base: “enough domain
knowledge is always the first criteria for a well-done code

review” (R61) and “familiarity with utilities in other parts of
the repository that could be re-used” (R38).

We found that human factors play a crucial role for de-
velopers when receiving feedback. Developers associate good
reviews with the reviewers who possess (1) personal attributes
such as being “supportive, yet strict” (R9), “patient and sta-
ble” (R61), “punctual and tactful” (R28), “helpful and en-
couraging, especially when rejecting a patch”(R55),“express-
ing appreciation for contributions” (R38) especially if contri-
butions come from the newcomers to the OSS community,
and (2) inter-personal qualities such as being able to “es-
tablish clear and open-minded communication” (R73), “trust
the programmer to be competent enough to fix the problems”
(R64), provide positive and constructive feedback “with the
comments written in such a way that the patch author does
not take them personally” (R9) delivered in a “construc-
tive tone that respects/acknowledges the efforts of the patch
writer” (R21). From the developer perspective, code review
relies on the participation of everyone on the project, and
an ideal review process is described as the one that “allows
the author and the reviewer to work together to produce bet-
ter code than either could on their own, maintain quality
standards, and build familiarity with the code base” (R56).

Code quality, once again, is found to be a vital part of
the review process. The review quality is associated with
patch writers taking into consideration coding style and for-
matting, preserving code maintainability, embracing “cur-
rent best practice within the project” (R38). While reviewers
are responsible for “not allowing messy code in just because
of time” (R23), ensuring “the patch achieves what it was in-
tended to achieve”(R31) and“the code adheres to community
standards” (R82).

Quick turnaround time is also important for the responses
as they report that both parties, reviewers and submitters,
are expected be done in a timely manner, “the value of the
review feedback is in the proportion to the cost in terms of
delays and time spend” (R87). However, reviewers are to
avoid shipping their feedback “under stress or when there’s
a deadline” (R7) as this introduces risks of missing prob-
lems. Some developers noted that Mozilla code review suf-
fers from non-responsive reviewers due to overload or too
few reviewers available. As a result, the speed of reviews
might overweight the risks: “depending on what module, a
faster yet less thorough review is probably going to be OK,
and worth the risk” (R34).

Testing is seen as a feature that helps to accomplish the
review process. During the review, developers are expected
to apply the patch locally and test it to make sure it causes
no regression. Thorough and careful testing of the patch
ensures“it is doing what is is supposed to and not introducing
regressions” (R42). Among other factors contributing to a
well-done review are design and code pattern considerations,
providing architectural recommendations (e.g., interaction
wit other subsystems, use of correct APIs), and catching
the bugs left in the patch.

3) Factors affecting code review quality.
Through a mandatory multiple choice question and an op-

tional open-ended question, we asked participants to express
their opinion on the factors they find to influence code re-
view quality. The results of the relevant Likert-scale survey
question are summarized in Figure 3. The vast majority
of the developers agrees that factors such as reviewer ex-
perience and technical properties of the patch (patch size,

The following factors influence code review QUALITY

Percent

Priority of a bug

Severity of a bug

The length of the discussion

Review response time

Number of resubmits

of people in the discussion

Module

Review queue

Patch writer experience

Number of modified files

Code chunks

Patch size (LOC)

Reviewer experience

50 0 50 100

Strongly Disagree Disagree Agree Strongly Agree

Figure 3: Factors influencing code review quality.

code chunks, number of modified files) are strong indicators
of code review quality. Most developers (76-85%) also con-
sider that personal factors such as patch writer experience,
reviewer workloads, developer participation in the discussion
of code changes, module and number of resubmitted patches
are more likely to affect the quality of reviews. While devel-
opers have mixed feelings about whether severity and pri-
ority of a bug, review response time, and the length of the
discussion have an affect on code review and its quality.

From the open-ended question, we found a number of ad-
ditional factors that respondents think are influencing the
review quality (but were not present in our multiple-choice
question). As we have seen from previous findings, develop-
ers consider understanding of the code base as an important
property that characterizes the review quality: “domain ex-
pertise of both the author and reviewer” (R35), and “experi-
ence of the reviewer and familiarity with the code or domain
are pretty important” (R85).

Human factors such as reviewer mood, personality, ex-
perience, communication skills and style, style of making
reviews, and productivity (stress level) are seen as ones of
the highest determining factors in the quality of the review.
Time-related factors such as the time of the day the reviewer
gets to do a review, time pressure and deadlines, release
schedules, release management, and priorities of other tasks
are also among the factors that influence reviewer ability to
deliver efficient reviews. Code quality and patch complex-
ity, presence of tests, tool support, organizational overhead
are mentioned as other potential factors affecting the review
quality.

Developer perception of the factors affecting code review
quality matches the insights we obtained in our qualitative
analysis of the data from the project’s repositories [18]. Re-
viewer experience and their work loads, number of previous
patches, discussion around issues, as well as technical char-
acteristics of a code change such as its size and the number
of files it spreads across are found to be strong indicators of
the code review quality.

RQ3: Developer perception of code review quality is shaped
by their experience and defined as a function of clear and
thorough feedback provided in a timely manner by a peer
with a supreme knowledge of the code base, strong personal
and inter-personal qualities.

4.4 RQ4: What challenges do developers face
when performing review tasks?

This research question identifies key challenges developers
face when conducting code review tasks. We identified two
categories of challenges: technical challenges affect review-
ers’ ability to execute effective reviews, while personal chal-
lenges relate to their self-management and context switch-
ing. We also report the responses to an optional open-ended
question about the desired tool support that could help de-
velopers with their code review activities.

1) Technical challenges
The biggest challenge for developers is gaining familiarity

with the code. Since reviewers are often asked to review
the code they do not own, understanding the unfamiliar
code that the patch is modifying can be challenging, “our
module boundaries are broad, so patches often touch areas
that I’m not up-to-date on” (R37). Developers also find that
decision-making of whether the change is good can be diffi-
cult, “it’s really important that I understand what the patch
does” (R62). Related to this, reviewers often have to assess
whether they are capable of reviewing a particular patch or
whether they should delegate it to a different reviewer, “de-
ciding whether I am the most appropriate reviewer or if my
knowledge of the area of code is good enough to be an effective
reviewer” (R57). Reviewers are also expected to fully under-
stand the problem, which can be a time-consuming process
in particular if they review code in diverse areas of the code
base. Reviewers have to not only understand the change but
also understand its interactions with the existing code and
being able to determine what code has to be co-changed, as
well as “spot now-redundant code” (R74).

Another category of the technical challenges is related to
code complexity. Reviewers are often required to evaluate
large patches. The size of the patch is correlated with the
quality of the reviews. Large patches are difficult to review
because it can be difficult for developers to see the big pic-
ture: “long patches are hard to review - attention wanes,
quality of the review goes [down]” (R21). R12 mentions
that “if large patches are broken up it can still be difficult
to understand the bigger picture”. The complexity of the
pre-existing code can add up to this problem. Nevertheless,
being able to see the big picture can be troublesome yet very
critical for reviewers.

Finally, many reviewers complained about the current tool
support available to perform review tasks. Some of them
mentioned that reviewing in Bugzilla is difficult, while oth-
ers refer to Bugzilla as “a pretty good tool” (R62). Since run-
ning automated tests is a part of the review, developers find
applying the patch locally and testing it time-consuming.
Reviewers mention that existing tools are good at visualiz-
ing line-by-line change (“diff” tools) but fall short in provid-
ing a summary of what a patch is changing (not on the file
level).

2) Personal challenges
Reviewers often find themselves struggling with time man-

agement skills such as setting personal priorities and beat-
ing procrastination: “convincing yourself that reviews should
have higher priority than whatever other work you’re doing”
(R19), “how to get reviewing on a first priority and still get-
ting your own things done” (R40). All reviewers have other
non-review tasks to conduct such as writing patches, par-
ticipating in discussions, attending meetings (in person or

remotely), engaging and recruiting other members to the
community, or educating and training the new generation of
hackers. Thus, balancing time to perform reviews, as well
as all other daily activities can be a struggle. As R38 says
“I try to respond within 24 hours but sometimes a review for
15 patches can just show up out of the blue requiring a full
day to review. That throws all other plans out of schedule”.

On a personal level, reviewers often feel the pressure of
keeping up the personal technical skill level: “I need to con-
stantly improve, so I can help others too” (R52). While re-
viewers understand the importance of providing guidance
and support to new contributors, they admit that this can
be very time-consuming and carry risks of landing bug-prone
patches to the code repository. As R54 explains: “reviewing
patches by new contributors where hand-holding is needed...
it becomes tempting to simply land the patch to end the has-
sle for both the contributor and the reviewer. This frequently
results in buggy code landing in the tree”.

Several reviewers find it difficult to work on multiple tasks
simultaneously. Working on multiple tasks such as perform-
ing reviews and fixing a bug is common for developers. Con-
text switching from one problem space to another appears
to be challenging. More importantly, when the patch un-
dergoes several revisions, reviewers have to keep the context
between revisions of the patch to make sure all their concerns
with the proposed changes are addressed by the submitter.
From the submitter’s point of view, keeping track of the
comments from the reviewer or other peers can be difficult.
This becomes a challenge when a patch writer is working on
a large bug or feature that involves a substantial discussion
on the best way to resolve or implement it.

RQ4: The key challenges are twofold. Technical challenges
are associated with gaining familiarity with the code, coping
with the code complexity, and having suitable tool support.
While personal challenges are related to time management,
technical skills, and context switching.

3) Tools
The majority of respondents perform code review tasks

inside Bugzilla that provides a very basic and limited set of
code review related features — it allows side-by-side viewing
of the patch and code, as well as adding comments to the
patch diff. The most commonly requested feature is a built-
in lint-like tool that should provide automatic static anal-
ysis, automatic format and style checking, and automatic
spell-checking. Moreover, many developers stated that such
a tool should not only automatically check the code, but
also automatically fix it (where it is possible). Such a fea-
ture would allow them to focus on a bigger picture rather
spending time on small problems: “I should be paying more
attention to the architecture and the problem solving me-
chanics of the patch, rather than whether or not the braces
are in the right position” (R21).

Developers also expressed interests in having better devel-
opment environment that offers the ability to easily get the
patch from the issue tracking system into the local editor
for analysis. Another feature is autolanding (i.e., incorpora-
tion into the code base) of patches once they are reviewed.
Finally, the developers expressed a desire for direct access
to the indexed source code from inside the issue tracker to
better understand how the code that being changed is used,
as well as for the ability to get the change history of that
code.

Almost every code review involves “before-after” compari-
son of the code. Therefore, it is not surprising that develop-
ers want improved support for diff tools. The most desired
features here are the ability to see the diff “in the context
of the entire file” (R57) and compare the difference between
the original code and code with multiple consecutive patches
applied.

5. DISCUSSION
We now discuss several research directions that have emerged

from this work and can help researchers and practitioners to
plan their next research projects.

Reviewer recommender system. Mozilla developers need
to control an overwhelming flow of information including bug
reports, review requests, updates on their patches, etc. [5].
One way to help developers manage the increasing flow of
information is to provide them with tools that can assist
them with specific tasks. For example, for code review
tasks, a reviewer recommender system could be able to help
both reviewers and patch writers determine the right per-
son to review a code change at hand considering reviewer
code/module expertise, his or her current review loads and
availability (schedule). For example, R8 asks for a tool to
be able to “automatically identify potential reviewers based
on similar types of code change (perhaps in other modules)”.
While there is a large body of research that addresses this
problem of expertise recommendation and offers a variety of
techniques [2, 3, 22, 30], most existing solutions are research
tools that do not scale well or would otherwise be impracti-
cal to deploy within an industrial environment.

Next generation code review tool. Many reviewers ex-
pressed concerns with current support for tasks related to
code review. Code review is an essential part of the develop-
ment process at Mozilla; yet respondents complained about
the lack of a good code review tool. We found that develop-
ers expressed interests in having an online code review tool
that supports automatic static analysis, automatic format
and style checker, as well as automatic spell checker. These
features can help developers with their time-management by
allowing them to focus on the code change and how they fit
into the bigger picture rather than paying attention to the
formatting and style nits. The next generation review tool
should also support code indexing and navigation for review-
ers to be able to better understand code modifications and
their interactions with other areas of the code base. An-
other desired feature is related to developing better diff

tools to enable the comparison of different versions of the
code or tracking of individual code changes. Reviewers also
commented on the importance of having the ability to com-
pare code on “file-by-file” rather then “line-by-line” level and
to determine the differences between multiple consecutive
patches.

Reshaping OSS. While we only attracted and surveyed
Mozilla developers, the results of our study can be applied
to other OSS projects such as Linux, Apache, Red Hat, etc.
Most recent studies were either conducted at Microsoft [4]
or focused on the pull-based development model [12]. While
pull-based development (e.g., via GitHub) is gaining popu-
larity among distributed software development community,
the need to continue studying and supporting the evolu-
tion of large long-lived OSS projects remains as important
as ever. We noticed that some developers are interested in
borrowing emerging technologies (e.g., GitHub) and bring-

ing them to their own working environments. OSS projects
are constantly reshaping themselves [1], and researchers can
facilitate their growth by helping them address their practi-
cal needs and overcome the obstacles they face. Having said
that, our study adds to the existing body of knowledge on
code review.

6. THREATS AND LIMITATIONS
The first limitation lies in the validity of our findings from

the qualitative study. While we carefully designed our sur-
vey questions to ensure their clarity, as with all exploratory
studies, there is a chance we may have introduced the re-
searcher bias when applying coding to the open ended ques-
tions. We tried to minimize this by coding the 20% of the
card sorts extracted from each question independently, mea-
suring the coder reliability on the next 20% and reporting
these values in the paper (see Table 1).

As with any survey method, to control for sampling bias
can be challenging. We targeted the core developers of the
Mozilla community who actively participate in code review
tasks either by evaluating patches of their peer developers or
submitting their own code changes to reviewers for quality
assessment.

We only survey developers from one large open source
community, yet we targeted Mozilla’s core developers who
are full-time employees. While our findings might not gen-
eralize outside of Mozilla, we believe any medium and large
open source project employ similar code review practices.
Nevertheless, further research studies are needed to be able
to provide greater insight into code review quality and de-
velop an empirical body of knowledge on this topic. To en-
courage replication of our study, we documented our survey
questions and card sort results in a technical report that is
made available online [17]. We also made anonymized survey
responses publicly available1.

7. CONCLUSION
Code review is a vital element of any long-lived software

development project. A high-quality execution of this pro-
cess is essential to ensuring the ongoing quality of project’s
code base. This work explores the code review practices of
a large, open source project and aims to understand the de-
velopers’ perception of code review quality. To accomplish
this, we surveyed 88 core contributors to the Mozilla project.
The qualitative analysis of the survey responses provides in-
sights into the factors that affect the time and decision of
a review, the perceived review quality, and the challenges
developers face when conducting code review tasks. Our
findings suggest that the review quality is mainly associ-
ated with the thoroughness of the feedback, the reviewer’s
familiarity with the code, and the perceived quality of the
code itself. We also found that developers often struggle
with managing their personal priorities, maintaining their
technical skill set, and mitigating context switching.

8. ACKNOWLEDGEMENTS
We thank all Mozilla developers participated in our study

for their time, participation, and feedback.

1https://cs.uwaterloo.ca/˜okononen/review quality/

9. REFERENCES
[1] K. Amant and P. Zemliansky. Internet-based

Workplace Communications: Industry & Academic
Applications. Information Science Pub., 2005.

[2] J. Anvik. Automating bug report assignment. In
Proceedings of the 28th International Conference on
Software Engineering, pages 937–940, 2006.

[3] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix
this bug? In Proc. of the 28th Int. Conference on
Software Engineering, pages 361–370, 2006.

[4] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proceedings of
the International Conference on Software Engineering,
pages 712–721, 2013.

[5] O. Baysal, R. Holmes, and M. W. Godfrey. No issue
left behind: Reducing information overload in issue
tracking. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 666–677, 2014.

[6] O. Baysal, O. Kononenko, R. Holmes, and
M. Godfrey. The secret life of patches: A firefox case
study. In Proc. of the 19th Working Conference on
Reverse Engineering, pages 447–455, 2012.

[7] O. Baysal, O. Kononenko, R. Holmes, and M. W.
Godfrey. The influence of non-technical factors on
code review. In Proc. of the Working Conference on
Reverse Engineering, pages 122–131, 2013.

[8] A. Begel and T. Zimmermann. Analyze this! 145
questions for data scientists in software engineering. In
Proceedings of the 36th International Conference on
Software Engineering, pages 12–23, 2014.

[9] M. E. Fagan. Design and code inspections to reduce
errors in program development. IBM Syst. J.,
15(3):182–211, Sept. 1976.

[10] D. Freelon. ReCal2: Reliability for 2 coders.
http://dfreelon.org/utils/recalfront/recal2/.

[11] G. Gousios, M. Pinzger, and A. v. Deursen. An
exploratory study of the pull-based software
development model. In Proceedings of the 36th
International Conference on Software Engineering,
pages 345–355, 2014.

[12] G. Gousios, A. Zaidman, M.-A. Storey, and A. van
Deursen. Work practices and challenges in pull-based
development: The integrator’s perspective. In
Proceedings of the 37th International Conference on
Software Engineering, 2015.

[13] L. Hatton. Testing the value of checklists in code
inspections. IEEE Software, 25(4):82–88, 2008.

[14] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona,
and G. Robles. Towards a simplification of the bug
report form in eclipse. In Proc. of the Int. Working
Conf. on Mining Soft. Repos., pages 145–148, 2008.

[15] Y. Jiang, B. Adams, and D. M. German. Will my
patch make it? and how fast?: Case study on the linux
kernel. In Proceedings of the 10th Working Conference
on Mining Software Repositories, pages 101–110, 2013.

[16] C. F. Kemerer and M. C. Paulk. The impact of design
and code reviews on software quality: An empirical
study based on psp data. IEEE Trans. Softw. Eng.,
35(4):534–550, July 2009.

[17] O. Kononenko and O. Baysal. A Qualitative
Exploratory Study of How OSS Developers Define

Code Review Quality. Technical Report CS-2015-14,
University of Waterloo, Waterloo, Canada, August
2015.

[18] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and
M. W. Godfrey. Investigating code review quality: Do
people and participation matter? In Proceedings of the
International Conference on Software Maintenance
and Evolution, pages 111–120, 2015.

[19] J. Marlow, L. Dabbish, and J. Herbsleb. Impression
formation in online peer production: Activity traces
and personal profiles in github. In Proceedings of the
2013 Conference on Computer Supported Cooperative
Work, pages 117–128, 2013.

[20] M. Miles and A. Huberman. Qualitative Data
Analysis: An Expanded Sourcebook. SAGE
Publications, 1994.

[21] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346, 2002.

[22] A. Mockus and J. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. In
Proceedings of the 24rd International Conference on
Software Engineering, pages 503–512, May 2002.

[23] Mozilla. BMO/ElasticSearch.
https://wiki.mozilla.org/BMO/ElasticSearch.

[24] Mozilla. Code-Review Policy.
http://www.mozilla.org/hacking/reviewers.html,
August 2015.

[25] P. C. Rigby and C. Bird. Convergent contemporary
software peer review practices. In Proceedings of the
9th Joint Meeting on Foundations of Software
Engineering, pages 202–212, 2013.

[26] P. C. Rigby and D. M. German. A preliminary
examination of code review processes in open source
projects. Technical Report DCS-305-IR, University of
Victoria, January 2006.

[27] P. C. Rigby and M.-A. Storey. Understanding
broadcast based peer review on open source software
projects. In Proceedings of the 33rd International
Conference on Software Engineering, pages 541–550,
2011.

[28] L. Singer, F. F. Filho, and M.-A. Storey. Software
engineering at the speed of light: How developers stay
current using twitter. Technical Report DCS-350-IR,
University of Victoria, Victoria, Canada.

[29] J. Tsay, L. Dabbish, and J. Herbsleb. Influence of
social and technical factors for evaluating contribution
in github. In Proceedings of the 36th International
Conference on Software Engineering, pages 356–366,
2014.

[30] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller.
How long will it take to fix this bug? In Proceedings of
the 4th International Workshop on Mining Software
Repositories, pages 1–1, May 2007.

[31] P. Weissgerber, D. Neu, and S. Diehl. Small patches
get in! In Proc. of the 2008 Int. Working Conf. on
Mining Soft. Repos., pages 67–76, 2008.

[32] M. Wiki. MozReview. https:
//wiki.mozilla.org/Auto-tools/Projects/MozReview,

August 2015.

